Abstract

Recent research revealed that using the effective medium approach to generate arbitrary multi-phase level computer-generated holograms is a promising alternative to the conventional multi-height level approach. Although this method reduces the fabrication effort using one-step binary lithography, the subwavelength patterning process remains a huge challenge, particularly for large-scale applications. To reduce the writing time on variable shaped electron beam writing systems, an optimized strategy based on an appropriate reshaping of the binary subwavelength structures is illustrated. This strategy was applied to fabricate a three-phase level CGH in the visible range, showing promising experimental results.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E.-B. Kley, L.-C. Wittig, M. Cumme, U. D. Zeitner, and P. Dannberg, “Fabrication and properties of refractive micro-optical beam-shaping elements,” Proc. SPIE 3879, 20–31 (1999).
    [CrossRef]
  2. A. Schilling, H. P. Herzig, L. Stauffer, U. Vokinger, and M. Rossi, “Efficient beam shaping of linear, high-power diode lasers by use of micro-optics,” Appl. Opt. 40(32), 5852–5859 (2001).
    [CrossRef]
  3. E.-B. Kley, “Continuous profile writing by electron and optical lithography,” Microeltron. Eng. 34(3-4), 261–298 (1997).
    [CrossRef]
  4. J. M. Miller, M. R. Taghizadeh, J. Turunen, and N. Ross, “Multilevel-grating array generators: fabrication error analysis and experiments,” Appl. Opt. 32(14), 2519–2525 (1993).
    [CrossRef] [PubMed]
  5. M. Banasch, L.-C. Wittig, and E.-B. Kley, “Fabrication tolerances of binary and multilevel Computer Generated Holograms (CGHs) with submicron Pixel Size,” MOC´04–10th Microoptics Conference, Germany (2004).
  6. P. Blair, M. R. Taghizadeh, W. Parkes, and C. D. W. Wilkinson, “High-efficiency binary fan-out gratings by modulation of a high-frequency carrier grating,” Appl. Opt. 34(14), 2406–2413 (1995).
    [CrossRef] [PubMed]
  7. E. Noponen and J. Turunen, “Binary high-frequency-carrier diffractive optical elements: electromagnetic theory,” J. Opt. Soc. Am. A 11(3), 1097–1109 (1994).
    [CrossRef]
  8. J. Mait, D. Prather, and M. Mirotznik, “Design of binary subwavelength diffractive lenses by use of zeroth-order effective-medium theory,” J. Opt. Soc. Am. A 16(5), 1157–1167 (1999).
    [CrossRef]
  9. P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, “Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff,” J. Opt. Soc. Am. A 16(5), 1143–1156 (1999).
    [CrossRef]
  10. C. Ribot, P. Lalanne, M. S. Lee, B. Loiseaux, and J. P. Huignard, “Analysis of blazed diffractive optical elements formed with artificial dielectrics,” J. Opt. Soc. Am. A 24(12), 3819–3826 (2007).
    [CrossRef]
  11. H. J. Hyvärinen, P. Karvinen, and J. Turunen, “Polarization insensitive resonance-domain blazed binary gratings,” Opt. Express 18(13), 13444–13450 (2010).
    [CrossRef] [PubMed]
  12. W. Yu, K. Takahara, T. Konishi, T. Yotsuya, and Y. Ichioka, “Fabrication of multilevel phase computer-generated hologram elements based on effective medium theory,” Appl. Opt. 39(20), 3531–3536 (2000).
    [CrossRef]
  13. W. Freese, T. Kämpfe, E.-B. Kley, and A. Tünnermann, “Design of binary subwavelength multi-phase level computer generated holograms,” Opt. Lett. 35(5), 676–678 (2010).
    [CrossRef] [PubMed]
  14. W. Freese, T. Kämpfe, E.-B. Kley, and A. Tünnermann, “Design and fabrication of a highly off-axis binary multi-phase level computer-generated hologram based on an effective medium approach,” Proc. SPIE 7927, 792710, 792710-7 (2011).
    [CrossRef]
  15. E.-B. Kley, W. Freese, T. Kämpfe, A. Tünnermann, U. D. Zeitner, D. Michaelis, and M. Erdmann, “Large-scale application of binary subwavelength structures”, Proc. IEEE/LEOS, 148–149 (2009).
  16. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [CrossRef]
  17. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14(10), 2758–2767 (1997).
    [CrossRef]
  18. W. Freese, T. Kämpfe, E.-B. Kley, and A. Tünnermann, “Multi-phase-level diffractive elements realized by binary effective medium patterns,” Proc. SPIE 7591, 75910Z, 75910Z-7 (2010).
    [CrossRef]
  19. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 227–246 (1972).
  20. F. Wyrowski and O. Bryngdahl, “Digital holography as part of diffractive optics,” Rep. Prog. Phys. 54(12), 1481–1571 (1991).
    [CrossRef]
  21. F. Hudelist, A. J. Waddie, and M. R. Taghizadeh, “Analysis of crossed gratings with large periods and small feature sizes by stitching of the electromagnetic field,” J. Opt. Soc. Am. A 26(12), 2648–2653 (2009).
    [CrossRef]

2011

W. Freese, T. Kämpfe, E.-B. Kley, and A. Tünnermann, “Design and fabrication of a highly off-axis binary multi-phase level computer-generated hologram based on an effective medium approach,” Proc. SPIE 7927, 792710, 792710-7 (2011).
[CrossRef]

2010

2009

2007

2001

2000

1999

1997

E.-B. Kley, “Continuous profile writing by electron and optical lithography,” Microeltron. Eng. 34(3-4), 261–298 (1997).
[CrossRef]

L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14(10), 2758–2767 (1997).
[CrossRef]

1995

1994

1993

1991

F. Wyrowski and O. Bryngdahl, “Digital holography as part of diffractive optics,” Rep. Prog. Phys. 54(12), 1481–1571 (1991).
[CrossRef]

1972

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 227–246 (1972).

Astilean, S.

Blair, P.

Bryngdahl, O.

F. Wyrowski and O. Bryngdahl, “Digital holography as part of diffractive optics,” Rep. Prog. Phys. 54(12), 1481–1571 (1991).
[CrossRef]

Cambril, E.

Chavel, P.

Cumme, M.

E.-B. Kley, L.-C. Wittig, M. Cumme, U. D. Zeitner, and P. Dannberg, “Fabrication and properties of refractive micro-optical beam-shaping elements,” Proc. SPIE 3879, 20–31 (1999).
[CrossRef]

Dannberg, P.

E.-B. Kley, L.-C. Wittig, M. Cumme, U. D. Zeitner, and P. Dannberg, “Fabrication and properties of refractive micro-optical beam-shaping elements,” Proc. SPIE 3879, 20–31 (1999).
[CrossRef]

Freese, W.

W. Freese, T. Kämpfe, E.-B. Kley, and A. Tünnermann, “Design and fabrication of a highly off-axis binary multi-phase level computer-generated hologram based on an effective medium approach,” Proc. SPIE 7927, 792710, 792710-7 (2011).
[CrossRef]

W. Freese, T. Kämpfe, E.-B. Kley, and A. Tünnermann, “Design of binary subwavelength multi-phase level computer generated holograms,” Opt. Lett. 35(5), 676–678 (2010).
[CrossRef] [PubMed]

W. Freese, T. Kämpfe, E.-B. Kley, and A. Tünnermann, “Multi-phase-level diffractive elements realized by binary effective medium patterns,” Proc. SPIE 7591, 75910Z, 75910Z-7 (2010).
[CrossRef]

Gaylord, T. K.

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 227–246 (1972).

Grann, E. B.

Herzig, H. P.

Hudelist, F.

Huignard, J. P.

Hyvärinen, H. J.

Ichioka, Y.

Kämpfe, T.

W. Freese, T. Kämpfe, E.-B. Kley, and A. Tünnermann, “Design and fabrication of a highly off-axis binary multi-phase level computer-generated hologram based on an effective medium approach,” Proc. SPIE 7927, 792710, 792710-7 (2011).
[CrossRef]

W. Freese, T. Kämpfe, E.-B. Kley, and A. Tünnermann, “Design of binary subwavelength multi-phase level computer generated holograms,” Opt. Lett. 35(5), 676–678 (2010).
[CrossRef] [PubMed]

W. Freese, T. Kämpfe, E.-B. Kley, and A. Tünnermann, “Multi-phase-level diffractive elements realized by binary effective medium patterns,” Proc. SPIE 7591, 75910Z, 75910Z-7 (2010).
[CrossRef]

Karvinen, P.

Kley, E.-B.

W. Freese, T. Kämpfe, E.-B. Kley, and A. Tünnermann, “Design and fabrication of a highly off-axis binary multi-phase level computer-generated hologram based on an effective medium approach,” Proc. SPIE 7927, 792710, 792710-7 (2011).
[CrossRef]

W. Freese, T. Kämpfe, E.-B. Kley, and A. Tünnermann, “Design of binary subwavelength multi-phase level computer generated holograms,” Opt. Lett. 35(5), 676–678 (2010).
[CrossRef] [PubMed]

W. Freese, T. Kämpfe, E.-B. Kley, and A. Tünnermann, “Multi-phase-level diffractive elements realized by binary effective medium patterns,” Proc. SPIE 7591, 75910Z, 75910Z-7 (2010).
[CrossRef]

E.-B. Kley, L.-C. Wittig, M. Cumme, U. D. Zeitner, and P. Dannberg, “Fabrication and properties of refractive micro-optical beam-shaping elements,” Proc. SPIE 3879, 20–31 (1999).
[CrossRef]

E.-B. Kley, “Continuous profile writing by electron and optical lithography,” Microeltron. Eng. 34(3-4), 261–298 (1997).
[CrossRef]

Konishi, T.

Lalanne, P.

Launois, H.

Lee, M. S.

Li, L.

Loiseaux, B.

Mait, J.

Miller, J. M.

Mirotznik, M.

Moharam, M. G.

Noponen, E.

Parkes, W.

Pommet, D. A.

Prather, D.

Ribot, C.

Ross, N.

Rossi, M.

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 227–246 (1972).

Schilling, A.

Stauffer, L.

Taghizadeh, M. R.

Takahara, K.

Tünnermann, A.

W. Freese, T. Kämpfe, E.-B. Kley, and A. Tünnermann, “Design and fabrication of a highly off-axis binary multi-phase level computer-generated hologram based on an effective medium approach,” Proc. SPIE 7927, 792710, 792710-7 (2011).
[CrossRef]

W. Freese, T. Kämpfe, E.-B. Kley, and A. Tünnermann, “Design of binary subwavelength multi-phase level computer generated holograms,” Opt. Lett. 35(5), 676–678 (2010).
[CrossRef] [PubMed]

W. Freese, T. Kämpfe, E.-B. Kley, and A. Tünnermann, “Multi-phase-level diffractive elements realized by binary effective medium patterns,” Proc. SPIE 7591, 75910Z, 75910Z-7 (2010).
[CrossRef]

Turunen, J.

Vokinger, U.

Waddie, A. J.

Wilkinson, C. D. W.

Wittig, L.-C.

E.-B. Kley, L.-C. Wittig, M. Cumme, U. D. Zeitner, and P. Dannberg, “Fabrication and properties of refractive micro-optical beam-shaping elements,” Proc. SPIE 3879, 20–31 (1999).
[CrossRef]

Wyrowski, F.

F. Wyrowski and O. Bryngdahl, “Digital holography as part of diffractive optics,” Rep. Prog. Phys. 54(12), 1481–1571 (1991).
[CrossRef]

Yotsuya, T.

Yu, W.

Zeitner, U. D.

E.-B. Kley, L.-C. Wittig, M. Cumme, U. D. Zeitner, and P. Dannberg, “Fabrication and properties of refractive micro-optical beam-shaping elements,” Proc. SPIE 3879, 20–31 (1999).
[CrossRef]

Appl. Opt.

J. Opt. Soc. Am. A

Microeltron. Eng.

E.-B. Kley, “Continuous profile writing by electron and optical lithography,” Microeltron. Eng. 34(3-4), 261–298 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Optik (Stuttg.)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 227–246 (1972).

Proc. SPIE

W. Freese, T. Kämpfe, E.-B. Kley, and A. Tünnermann, “Design and fabrication of a highly off-axis binary multi-phase level computer-generated hologram based on an effective medium approach,” Proc. SPIE 7927, 792710, 792710-7 (2011).
[CrossRef]

E.-B. Kley, L.-C. Wittig, M. Cumme, U. D. Zeitner, and P. Dannberg, “Fabrication and properties of refractive micro-optical beam-shaping elements,” Proc. SPIE 3879, 20–31 (1999).
[CrossRef]

W. Freese, T. Kämpfe, E.-B. Kley, and A. Tünnermann, “Multi-phase-level diffractive elements realized by binary effective medium patterns,” Proc. SPIE 7591, 75910Z, 75910Z-7 (2010).
[CrossRef]

Rep. Prog. Phys.

F. Wyrowski and O. Bryngdahl, “Digital holography as part of diffractive optics,” Rep. Prog. Phys. 54(12), 1481–1571 (1991).
[CrossRef]

Other

E.-B. Kley, W. Freese, T. Kämpfe, A. Tünnermann, U. D. Zeitner, D. Michaelis, and M. Erdmann, “Large-scale application of binary subwavelength structures”, Proc. IEEE/LEOS, 148–149 (2009).

M. Banasch, L.-C. Wittig, and E.-B. Kley, “Fabrication tolerances of binary and multilevel Computer Generated Holograms (CGHs) with submicron Pixel Size,” MOC´04–10th Microoptics Conference, Germany (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

An arbitrary phase function can be transferred into a BSWS pattern using an appropriate RCWA calibration curve.

Fig. 2
Fig. 2

With the help of two apertures, the electron beam can be shaped into a rectangular geometry with a maximum feature size of 2.5 µm.

Fig. 3
Fig. 3

Visualization of several exposure strategies using different BSWS patterns for a three-phase level discretization, illustrating the unification of separate areas which are exposed by a single electron beam shot (contours).

Fig. 4
Fig. 4

(a) Section of the three-phase level CGH function and (b) the corresponding off-axis intensity distribution in the Fourier plane.

Fig. 5
Fig. 5

(a) The illustrated RCWA calibration curves are calculated for a layer system consisting of a structured resist layer on top of a sputtered Cr layer on a standard Si wafer, here shown for a 1D grating. (b) Considering different BSWS, the phase delay depends almost linearly on the 2D filling factor.

Fig. 6
Fig. 6

(a) Scanning-electron micrograph of the binary subwavelength CGH phase pattern with an enlarged section (b) which shows the line edge roughness of the resist structure.

Fig. 7
Fig. 7

(a) Intensity distributions as theoretically predicted by TEA compared with (b) photographs of the measured intensity distributions for TE and TM polarized light.

Tables (3)

Tables Icon

Table 1 2D Filling Factor and Minimal Feature Size a

Tables Icon

Table 2 Calculated Writing Time a

Tables Icon

Table 3 Measured and theoretical Efficiency a

Metrics