Abstract

For the scalable optical packet transport networks, an innovative design of add-drop Benes network (ADBN) is presented where the cost and energy consumption can be considerably reduced by element savings in the architecture. In a WDM optical packet transport switching node, the ADBNs are interconnected to achieve buffer sharing among multiple ADBNs. A corresponding switch configuration algorithm and architecture rules for the single ADBN and shared ADBN are proposed to mitigate the limited connection capability of the proposed ADBN designs. Switch scalability is verified in consideration of a crosstalk noise performance and element counts.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-K. K. Rhee and ., “Power and cost reduction by hybrid optical packet switching with shared memory buffering,” IEEE Commun. Mag. (to be published).
  2. G. Shen and R. Tucker, “Energy-minimized design for IP over WDM networks,” IEEE J. Opt. Commun. Netw. 1(1), 176–186 (2009).
    [CrossRef]
  3. V. W. S. Chan, G. Weichenberg, and M. Médard, “Optical flow switching,” in Workshop on Optical Burst Switching (IEEE, San Jose, 2006), pp. 1–12.
  4. K. Nashimoto, “PLZT Waveguide devices for high speed switching and filtering,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, (Optical Society of America, San Diego, 2008), paper OThE4, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OThE4 .
  5. V. E. Benes, Mathematical theory of connecting networks and telephone traffic (Academic Press, New York, 1965).
  6. H. S. Hinton, J. R. Erickson, T. J. Cloonan, F. A. P. Tooley, F. B. McCormick, and A. L. Lentine, An Introduction to Photonic Switching Fabrics (Plenum Press, 1993), Chap. 3.
  7. S. Yao, B. Mukherjee, and S. Dixit, “Advances in photonic packet switching: an overview,” IEEE Commun. Mag. 38(2), 84–94 (2000).
    [CrossRef]
  8. T. Zhang, K. Lu, and J. P. Jue, “Shared fiber delay line buffers in asynchronous optical packet switches,” IEEE J. Sel. Areas Comm. 24(4), 118–127 (2006).
    [CrossRef]
  9. J. H. Kim, J. Y. Choi, M. H. Kang, and J.-K. K. Rhee, “Design of novel passive optical switching system using shared wavelength conversion with electrical buffer,” IEICE Electron. Express 3(24), 546–551 (2006).
    [CrossRef]
  10. K. Padmanabhan and A. Netravali, “Dilated networks for photonic switching,” IEEE Trans. Commun. 35(12), 1357–1365 (1987).
    [CrossRef]
  11. W. Kabacinski, “Modified dilated Benes networks for photonic switching,” IEEE Trans. Commun. 47(8), 1253–1259 (1999).
    [CrossRef]
  12. D. C. Opferman and N. T. Tsao-Wu, “On a class of rearrangeable switching networks part I: Control algorithm,” Bell Syst. Tech. J. 50, 1579–1600 (1971).
  13. C. K. Lee and J.-K. K. Rhee, “Analysis of PLR for shared switch fabrics,” ETRI J. 33, 136–139 (2011).
    [CrossRef]

2011 (1)

C. K. Lee and J.-K. K. Rhee, “Analysis of PLR for shared switch fabrics,” ETRI J. 33, 136–139 (2011).
[CrossRef]

2009 (1)

G. Shen and R. Tucker, “Energy-minimized design for IP over WDM networks,” IEEE J. Opt. Commun. Netw. 1(1), 176–186 (2009).
[CrossRef]

2006 (2)

T. Zhang, K. Lu, and J. P. Jue, “Shared fiber delay line buffers in asynchronous optical packet switches,” IEEE J. Sel. Areas Comm. 24(4), 118–127 (2006).
[CrossRef]

J. H. Kim, J. Y. Choi, M. H. Kang, and J.-K. K. Rhee, “Design of novel passive optical switching system using shared wavelength conversion with electrical buffer,” IEICE Electron. Express 3(24), 546–551 (2006).
[CrossRef]

2000 (1)

S. Yao, B. Mukherjee, and S. Dixit, “Advances in photonic packet switching: an overview,” IEEE Commun. Mag. 38(2), 84–94 (2000).
[CrossRef]

1999 (1)

W. Kabacinski, “Modified dilated Benes networks for photonic switching,” IEEE Trans. Commun. 47(8), 1253–1259 (1999).
[CrossRef]

1987 (1)

K. Padmanabhan and A. Netravali, “Dilated networks for photonic switching,” IEEE Trans. Commun. 35(12), 1357–1365 (1987).
[CrossRef]

1971 (1)

D. C. Opferman and N. T. Tsao-Wu, “On a class of rearrangeable switching networks part I: Control algorithm,” Bell Syst. Tech. J. 50, 1579–1600 (1971).

Choi, J. Y.

J. H. Kim, J. Y. Choi, M. H. Kang, and J.-K. K. Rhee, “Design of novel passive optical switching system using shared wavelength conversion with electrical buffer,” IEICE Electron. Express 3(24), 546–551 (2006).
[CrossRef]

Dixit, S.

S. Yao, B. Mukherjee, and S. Dixit, “Advances in photonic packet switching: an overview,” IEEE Commun. Mag. 38(2), 84–94 (2000).
[CrossRef]

Jue, J. P.

T. Zhang, K. Lu, and J. P. Jue, “Shared fiber delay line buffers in asynchronous optical packet switches,” IEEE J. Sel. Areas Comm. 24(4), 118–127 (2006).
[CrossRef]

Kabacinski, W.

W. Kabacinski, “Modified dilated Benes networks for photonic switching,” IEEE Trans. Commun. 47(8), 1253–1259 (1999).
[CrossRef]

Kang, M. H.

J. H. Kim, J. Y. Choi, M. H. Kang, and J.-K. K. Rhee, “Design of novel passive optical switching system using shared wavelength conversion with electrical buffer,” IEICE Electron. Express 3(24), 546–551 (2006).
[CrossRef]

Kim, J. H.

J. H. Kim, J. Y. Choi, M. H. Kang, and J.-K. K. Rhee, “Design of novel passive optical switching system using shared wavelength conversion with electrical buffer,” IEICE Electron. Express 3(24), 546–551 (2006).
[CrossRef]

Lee, C. K.

C. K. Lee and J.-K. K. Rhee, “Analysis of PLR for shared switch fabrics,” ETRI J. 33, 136–139 (2011).
[CrossRef]

Lu, K.

T. Zhang, K. Lu, and J. P. Jue, “Shared fiber delay line buffers in asynchronous optical packet switches,” IEEE J. Sel. Areas Comm. 24(4), 118–127 (2006).
[CrossRef]

Mukherjee, B.

S. Yao, B. Mukherjee, and S. Dixit, “Advances in photonic packet switching: an overview,” IEEE Commun. Mag. 38(2), 84–94 (2000).
[CrossRef]

Netravali, A.

K. Padmanabhan and A. Netravali, “Dilated networks for photonic switching,” IEEE Trans. Commun. 35(12), 1357–1365 (1987).
[CrossRef]

Opferman, D. C.

D. C. Opferman and N. T. Tsao-Wu, “On a class of rearrangeable switching networks part I: Control algorithm,” Bell Syst. Tech. J. 50, 1579–1600 (1971).

Padmanabhan, K.

K. Padmanabhan and A. Netravali, “Dilated networks for photonic switching,” IEEE Trans. Commun. 35(12), 1357–1365 (1987).
[CrossRef]

Rhee, J.-K. K.

C. K. Lee and J.-K. K. Rhee, “Analysis of PLR for shared switch fabrics,” ETRI J. 33, 136–139 (2011).
[CrossRef]

J. H. Kim, J. Y. Choi, M. H. Kang, and J.-K. K. Rhee, “Design of novel passive optical switching system using shared wavelength conversion with electrical buffer,” IEICE Electron. Express 3(24), 546–551 (2006).
[CrossRef]

J.-K. K. Rhee and ., “Power and cost reduction by hybrid optical packet switching with shared memory buffering,” IEEE Commun. Mag. (to be published).

Shen, G.

G. Shen and R. Tucker, “Energy-minimized design for IP over WDM networks,” IEEE J. Opt. Commun. Netw. 1(1), 176–186 (2009).
[CrossRef]

Tsao-Wu, N. T.

D. C. Opferman and N. T. Tsao-Wu, “On a class of rearrangeable switching networks part I: Control algorithm,” Bell Syst. Tech. J. 50, 1579–1600 (1971).

Tucker, R.

G. Shen and R. Tucker, “Energy-minimized design for IP over WDM networks,” IEEE J. Opt. Commun. Netw. 1(1), 176–186 (2009).
[CrossRef]

Yao, S.

S. Yao, B. Mukherjee, and S. Dixit, “Advances in photonic packet switching: an overview,” IEEE Commun. Mag. 38(2), 84–94 (2000).
[CrossRef]

Zhang, T.

T. Zhang, K. Lu, and J. P. Jue, “Shared fiber delay line buffers in asynchronous optical packet switches,” IEEE J. Sel. Areas Comm. 24(4), 118–127 (2006).
[CrossRef]

Bell Syst. Tech. J. (1)

D. C. Opferman and N. T. Tsao-Wu, “On a class of rearrangeable switching networks part I: Control algorithm,” Bell Syst. Tech. J. 50, 1579–1600 (1971).

ETRI J. (1)

C. K. Lee and J.-K. K. Rhee, “Analysis of PLR for shared switch fabrics,” ETRI J. 33, 136–139 (2011).
[CrossRef]

IEEE Commun. Mag. (2)

J.-K. K. Rhee and ., “Power and cost reduction by hybrid optical packet switching with shared memory buffering,” IEEE Commun. Mag. (to be published).

S. Yao, B. Mukherjee, and S. Dixit, “Advances in photonic packet switching: an overview,” IEEE Commun. Mag. 38(2), 84–94 (2000).
[CrossRef]

IEEE J. Opt. Commun. Netw. (1)

G. Shen and R. Tucker, “Energy-minimized design for IP over WDM networks,” IEEE J. Opt. Commun. Netw. 1(1), 176–186 (2009).
[CrossRef]

IEEE J. Sel. Areas Comm. (1)

T. Zhang, K. Lu, and J. P. Jue, “Shared fiber delay line buffers in asynchronous optical packet switches,” IEEE J. Sel. Areas Comm. 24(4), 118–127 (2006).
[CrossRef]

IEEE Trans. Commun. (2)

K. Padmanabhan and A. Netravali, “Dilated networks for photonic switching,” IEEE Trans. Commun. 35(12), 1357–1365 (1987).
[CrossRef]

W. Kabacinski, “Modified dilated Benes networks for photonic switching,” IEEE Trans. Commun. 47(8), 1253–1259 (1999).
[CrossRef]

IEICE Electron. Express (1)

J. H. Kim, J. Y. Choi, M. H. Kang, and J.-K. K. Rhee, “Design of novel passive optical switching system using shared wavelength conversion with electrical buffer,” IEICE Electron. Express 3(24), 546–551 (2006).
[CrossRef]

Other (4)

V. W. S. Chan, G. Weichenberg, and M. Médard, “Optical flow switching,” in Workshop on Optical Burst Switching (IEEE, San Jose, 2006), pp. 1–12.

K. Nashimoto, “PLZT Waveguide devices for high speed switching and filtering,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, (Optical Society of America, San Diego, 2008), paper OThE4, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OThE4 .

V. E. Benes, Mathematical theory of connecting networks and telephone traffic (Academic Press, New York, 1965).

H. S. Hinton, J. R. Erickson, T. J. Cloonan, F. A. P. Tooley, F. B. McCormick, and A. L. Lentine, An Introduction to Photonic Switching Fabrics (Plenum Press, 1993), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Architecture of an 8 × 8 ADBN. Add-drop ports are realized at the middle stage of a conventional Benes network for contention resolution. Colored thick lines indicate the traces of packet schedulings for the example in section 2.2. Here, a limited number of buffers are installed at selected add and drop ports, with a pre-designated buffer installation sequence according to a reconfiguration algorithm.

Fig. 2
Fig. 2

Architecture schematic of the shared N × N ADBN in W wavelengths channel system. The controller checks the header information of ingress packets. Based on ADLA, the controller determines the configurations of each ADBN and electrical switch.

Fig. 3
Fig. 3

Comparisons of SINR (a) and insertion loss (b) among ADBN, Benes network, and Dilated Benes networks are plotted as a function of the port counts N. As an example, we use the insertion loss L of 1dB, coupling loss C of 1dB, and extinction ratio X of 35 dB. The required number of 2 × 2 switch elements is shown in (c).

Tables (2)

Tables Icon

Table 1 SINR, Insertion Loss, and the Number of Required 2 × 2 Switch Elements for Various Types of Degree-N Add-Drop-Capable Benes Networks ( k = log 2 M )

Tables Icon

Table 2 Minimum Number of Required Buffer-Drop Ports to Achieve 10−6 PLR with Various Offered Load for Shared 8 × 8 ADBN*

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

P=( 0 1 2 3 4 5 6 7 1 1 0 1 7 4 7 6 )   and   P add =( 0 5).
P = ( 0 2 5 6 7 I O           1             3             4     I D     a d d     A O 1     0 4 7 6     d r o p d r o p d r o p         5 ) .
P = ( [ 0         2     1     3 1           0 d r o p     d r o p ] l o o p 1 [ 5         4       a d d 4         d r o p           5 ] l o o p 2 [ 6         7 7         6 ] l o o p 3 ) ,
P = ( [ 0         2     1     3 1           0 d r o p     d r o p a _         c _ ] l o o p 1 [ 5         4       a d d 4         d r o p           5 b _ ] l o o p 2 [ 6         7 7         6 d _       a _ ] l o o p 3 ) .
P = ( [ 0         2     1     3 1           0 d r o p     d r o p a         c             d _             b _ ] l o o p 1 [ 5         4       a d d 4         d r o p           5 b         c _ ] l o o p 2 [ 6         7 7         6 d       a ] l o o p 3 ) .
P = ( [ 0         2     1     3 1           0 d r o p     d r o p a         c             d             b ] l o o p 1 [ 5         4       a d d 4         d r o p           5 b         c           c _ ] l o o p 2 [ 6         7 7         6 d       a ] l o o p 3 ) .
P L R N , B , k s h a r e d A D B N = λ l o s s i ( k ) N ρ     f o r k < W ,
λ l o s s i ( k ) = x i = 0 N 1 P ( X = x i ) x i 1 = 0 N 1 P ( X = x i 1 ) x i k = 0 N 1 P ( X = x i k ) ψ l o s s ( i , k ) ( x i , , x i k ) ,
χ A D ( i , k ) = [ χ I D i 1 + χ A D ( i 1 , k ) ψ l o s s ( i 1 , k ) ( x i 1 , , x i 1 k ) B ] + ,
ψ m i d _ s t a g e ( i , k ) = { 0                                       χ I D i N / 2 a n d χ A D ( i , k ) N / 2 χ I D i N / 2 + χ A D ( i , k ) N / 2                   χ I D i > N / 2 a n d χ A D ( i , k ) > N / 2 min [ χ I D i mod ( N / 2 ) , χ A D ( i , k ) mod ( N / 2 ) ]     otherwise .

Metrics