Abstract

A novel kind of superimposed fiber Bragg gratings (SI-FBGs) named SI-sampled FBGs (SI-SFBGs) is proposed to control the phase relationship among SI sub-gratings by modulating the sampling periods. The realization of such phase-controlled SI-SFBGs just needs a single uniform phase mask and sub-micrometer precision moving stage. The success of phase-controll is expected to encourage SI-SFBGs’ applications in more sophisticated fields. As a demonstration, their applications in spectral-phase en/decoding are testified by both simulation and experiment. The spectral-phase encoded (SPE) encoders with the longest code-length that FBG-based SPE encoders can achieve, i.e., 64-frequency bins, are experimentally fabricated for the first time. The results show the advantages accompanying the SI-SFBGs-based SPE encoders compared with the traditional methods.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Slavik and S. LaRochelle, “Large-band periodic filters for DWDM using multiple-superimposed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 14(12), 1704–1706 (2002).
    [CrossRef]
  2. Q.-J. Wang, Y. Zhang, and Y.-C. Soh, “Efficient structure for optical interleavers using superimposed chirped fiber Bragg graings,” IEEE Photon. Technol. Lett. 17(2), 387–389 (2005).
    [CrossRef]
  3. Y.-G. Han, X.-Y. Dong, C.-S. Kim, M.-Y. Jeong, and J.-H. Lee, “Flexible all fiber Fabry-Perot filters based on superimposed chirped fiber Bragg gratings with continuous FSR tunability and its application to a multiwavelength fiber laser,” Opt. Express 15(6), 2921–2926 (2007).
    [CrossRef] [PubMed]
  4. Y.-G. Han, J.-H. Lee, S.-B. Lee, L. Potì, and A. Bogoni, “Novel multiwavelength Erbium-doped fiber and Raman fiber ring lasers with continuous wavelength spacing tunability at room temperature,” J. Lightwave Technol. 25(8), 2219–2225 (2007).
    [CrossRef]
  5. J. Azaña, R. Slavík, P. Kockaert, L.-R. Chen, and S. LaRochelle, “Generation of customized ultrahigh repetition rate pulse sequences using superimposed fiber Bragg gratings,” J. Lightwave Technol. 21(6), 1490–1498 (2003).
    [CrossRef]
  6. J. Magné, J. Bolger, M. Rochette, S. LaRochelle, L.-R. Chen, B.-J. Eggleton, and J. Azaña, “Generation of a 4×100 GHz pulse-train from a single-wavelength 10-GHz mode-locked laser using superimposed fiber Bragg gratings and nonlinear conversion,” J. Lightwave Technol. 24(5), 2091–2099 (2006).
    [CrossRef]
  7. D.-M. Meghavoryan and A.-V. Daryan, “Superimposed fiber Bragg grating simulation by the method of single expression for optical CDMA systems,” IEEE Photon. Technol. Lett. 15(11), 1546–1548 (2003).
    [CrossRef]
  8. S. Ayotte, M. Rochette, J. Magné, L.-A. Rusch, and S. LaRochelle, “Experimental verification and capacity prediction of FE-OCDMA using superimposed FBG,” J. Lightwave Technol. 23(2), 724–731 (2005).
    [CrossRef]
  9. F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31(11), 899–901 (1995).
    [CrossRef]
  10. X.-F. Chen, Y. Luo, C.-C. Fan, T. Wu, and S.-Z. Xie, “Analytical expression of sampled Bragg gratings with chirp in the sampling period and its applicationin dispersion management design in a WDM system,” IEEE Photon. Technol. Lett. 12(8), 1013–1015 (2000).
    [CrossRef]
  11. Y.-T. Dai, X.-F. Chen, D.-J. Jiang, S.-Z. Xie, and C.-C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16(10), 2284–2286 (2004).
    [CrossRef]
  12. Y.-T. Dai, X.-F. Chen, L. Xia, Y.-J. Zhang, and S.-Z. Xie, “Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp,” Opt. Lett. 29(12), 1333–1335 (2004).
    [CrossRef] [PubMed]
  13. J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, “Dammann fiber Bragg gratings and phase-only sampling for high channel counts,” IEEE Photon. Technol. Lett. 14(9), 1309–1311 (2002).
    [CrossRef]
  14. H.-P. Li, Y.-L. Sheng, Y. Li, and J. E. Rothenberg, “Phased-only sampled fiber Bragg gratings for high-channel-count chromatic dispersion compensation,” J. Lightwave Technol. 21(9), 2074–2083 (2003).
    [CrossRef]
  15. Y.-L. Sheng, J. E. Rothenberg, H.-P. Li, Y. Wang, and J. Zweiback, “Split of phase shifts in a phase mask for fiber Bragg gratings,” IEEE Photon. Technol. Lett. 16(5), 1316–1318 (2004).
    [CrossRef]
  16. Y. Painchaud, M. Poulin, M. Morin, and M. Guy, “Fiber Bragg grating based dispersion compensator slope-matched for LEAF fiber,” OFC2006, paper OThe2 (2006).
  17. A. V. Buryak, K. Y. Kolossovski, and D. Y. Stepanov, “Optimization of refractive index sampling for multichannel fiber Bragg gratings,” J. Quantum Electron. 39(1), 91–98 (2003).
    [CrossRef]
  18. A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, and J. N. Sweetser, “Fiber Bragg grating based spectral encoder/ decoder for lightwave CDMA,” Electron. Lett. 35(13), 1096–1097 (1999).
    [CrossRef]
  19. M. Yan, M. Yao, H. Zhang, L. Xia, and Y. Zhang, “En/decoder for spectral phase-coded OCDMA system based on amplitude sampled FBG,” IEEE Photon. Technol. Lett. 20(10), 788–790 (2008).
    [CrossRef]
  20. R. Omrani and P.-V Kumar, “Spreading sequence for asynchronous spectrally phase encoded optical CDMA,” ISIT2006, 2642–2646 (2006).

2008 (1)

M. Yan, M. Yao, H. Zhang, L. Xia, and Y. Zhang, “En/decoder for spectral phase-coded OCDMA system based on amplitude sampled FBG,” IEEE Photon. Technol. Lett. 20(10), 788–790 (2008).
[CrossRef]

2007 (2)

2006 (1)

2005 (2)

S. Ayotte, M. Rochette, J. Magné, L.-A. Rusch, and S. LaRochelle, “Experimental verification and capacity prediction of FE-OCDMA using superimposed FBG,” J. Lightwave Technol. 23(2), 724–731 (2005).
[CrossRef]

Q.-J. Wang, Y. Zhang, and Y.-C. Soh, “Efficient structure for optical interleavers using superimposed chirped fiber Bragg graings,” IEEE Photon. Technol. Lett. 17(2), 387–389 (2005).
[CrossRef]

2004 (3)

Y.-T. Dai, X.-F. Chen, D.-J. Jiang, S.-Z. Xie, and C.-C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16(10), 2284–2286 (2004).
[CrossRef]

Y.-L. Sheng, J. E. Rothenberg, H.-P. Li, Y. Wang, and J. Zweiback, “Split of phase shifts in a phase mask for fiber Bragg gratings,” IEEE Photon. Technol. Lett. 16(5), 1316–1318 (2004).
[CrossRef]

Y.-T. Dai, X.-F. Chen, L. Xia, Y.-J. Zhang, and S.-Z. Xie, “Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp,” Opt. Lett. 29(12), 1333–1335 (2004).
[CrossRef] [PubMed]

2003 (4)

J. Azaña, R. Slavík, P. Kockaert, L.-R. Chen, and S. LaRochelle, “Generation of customized ultrahigh repetition rate pulse sequences using superimposed fiber Bragg gratings,” J. Lightwave Technol. 21(6), 1490–1498 (2003).
[CrossRef]

H.-P. Li, Y.-L. Sheng, Y. Li, and J. E. Rothenberg, “Phased-only sampled fiber Bragg gratings for high-channel-count chromatic dispersion compensation,” J. Lightwave Technol. 21(9), 2074–2083 (2003).
[CrossRef]

A. V. Buryak, K. Y. Kolossovski, and D. Y. Stepanov, “Optimization of refractive index sampling for multichannel fiber Bragg gratings,” J. Quantum Electron. 39(1), 91–98 (2003).
[CrossRef]

D.-M. Meghavoryan and A.-V. Daryan, “Superimposed fiber Bragg grating simulation by the method of single expression for optical CDMA systems,” IEEE Photon. Technol. Lett. 15(11), 1546–1548 (2003).
[CrossRef]

2002 (2)

R. Slavik and S. LaRochelle, “Large-band periodic filters for DWDM using multiple-superimposed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 14(12), 1704–1706 (2002).
[CrossRef]

J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, “Dammann fiber Bragg gratings and phase-only sampling for high channel counts,” IEEE Photon. Technol. Lett. 14(9), 1309–1311 (2002).
[CrossRef]

2000 (1)

X.-F. Chen, Y. Luo, C.-C. Fan, T. Wu, and S.-Z. Xie, “Analytical expression of sampled Bragg gratings with chirp in the sampling period and its applicationin dispersion management design in a WDM system,” IEEE Photon. Technol. Lett. 12(8), 1013–1015 (2000).
[CrossRef]

1999 (1)

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, and J. N. Sweetser, “Fiber Bragg grating based spectral encoder/ decoder for lightwave CDMA,” Electron. Lett. 35(13), 1096–1097 (1999).
[CrossRef]

1995 (1)

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31(11), 899–901 (1995).
[CrossRef]

Ayotte, S.

Azaña, J.

Bogoni, A.

Bolger, J.

Buryak, A. V.

A. V. Buryak, K. Y. Kolossovski, and D. Y. Stepanov, “Optimization of refractive index sampling for multichannel fiber Bragg gratings,” J. Quantum Electron. 39(1), 91–98 (2003).
[CrossRef]

Chen, L.-R.

Chen, X.-F.

Y.-T. Dai, X.-F. Chen, L. Xia, Y.-J. Zhang, and S.-Z. Xie, “Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp,” Opt. Lett. 29(12), 1333–1335 (2004).
[CrossRef] [PubMed]

Y.-T. Dai, X.-F. Chen, D.-J. Jiang, S.-Z. Xie, and C.-C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16(10), 2284–2286 (2004).
[CrossRef]

X.-F. Chen, Y. Luo, C.-C. Fan, T. Wu, and S.-Z. Xie, “Analytical expression of sampled Bragg gratings with chirp in the sampling period and its applicationin dispersion management design in a WDM system,” IEEE Photon. Technol. Lett. 12(8), 1013–1015 (2000).
[CrossRef]

Dai, Y.-T.

Y.-T. Dai, X.-F. Chen, L. Xia, Y.-J. Zhang, and S.-Z. Xie, “Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp,” Opt. Lett. 29(12), 1333–1335 (2004).
[CrossRef] [PubMed]

Y.-T. Dai, X.-F. Chen, D.-J. Jiang, S.-Z. Xie, and C.-C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16(10), 2284–2286 (2004).
[CrossRef]

Daryan, A.-V.

D.-M. Meghavoryan and A.-V. Daryan, “Superimposed fiber Bragg grating simulation by the method of single expression for optical CDMA systems,” IEEE Photon. Technol. Lett. 15(11), 1546–1548 (2003).
[CrossRef]

Dhosi, G.

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31(11), 899–901 (1995).
[CrossRef]

Dong, X.-Y.

Eggleton, B.

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31(11), 899–901 (1995).
[CrossRef]

Eggleton, B.-J.

Fan, C.-C.

Y.-T. Dai, X.-F. Chen, D.-J. Jiang, S.-Z. Xie, and C.-C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16(10), 2284–2286 (2004).
[CrossRef]

X.-F. Chen, Y. Luo, C.-C. Fan, T. Wu, and S.-Z. Xie, “Analytical expression of sampled Bragg gratings with chirp in the sampling period and its applicationin dispersion management design in a WDM system,” IEEE Photon. Technol. Lett. 12(8), 1013–1015 (2000).
[CrossRef]

Grunnet-Jepsen, A.

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, and J. N. Sweetser, “Fiber Bragg grating based spectral encoder/ decoder for lightwave CDMA,” Electron. Lett. 35(13), 1096–1097 (1999).
[CrossRef]

Han, Y.-G.

Jeong, M.-Y.

Jiang, D.-J.

Y.-T. Dai, X.-F. Chen, D.-J. Jiang, S.-Z. Xie, and C.-C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16(10), 2284–2286 (2004).
[CrossRef]

Johnson, A. E.

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, and J. N. Sweetser, “Fiber Bragg grating based spectral encoder/ decoder for lightwave CDMA,” Electron. Lett. 35(13), 1096–1097 (1999).
[CrossRef]

Kim, C.-S.

Kockaert, P.

Kolossovski, K. Y.

A. V. Buryak, K. Y. Kolossovski, and D. Y. Stepanov, “Optimization of refractive index sampling for multichannel fiber Bragg gratings,” J. Quantum Electron. 39(1), 91–98 (2003).
[CrossRef]

Krug, P. A.

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31(11), 899–901 (1995).
[CrossRef]

LaRochelle, S.

Lee, J.-H.

Lee, S.-B.

Li, H.

J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, “Dammann fiber Bragg gratings and phase-only sampling for high channel counts,” IEEE Photon. Technol. Lett. 14(9), 1309–1311 (2002).
[CrossRef]

Li, H.-P.

Y.-L. Sheng, J. E. Rothenberg, H.-P. Li, Y. Wang, and J. Zweiback, “Split of phase shifts in a phase mask for fiber Bragg gratings,” IEEE Photon. Technol. Lett. 16(5), 1316–1318 (2004).
[CrossRef]

H.-P. Li, Y.-L. Sheng, Y. Li, and J. E. Rothenberg, “Phased-only sampled fiber Bragg gratings for high-channel-count chromatic dispersion compensation,” J. Lightwave Technol. 21(9), 2074–2083 (2003).
[CrossRef]

Li, Y.

H.-P. Li, Y.-L. Sheng, Y. Li, and J. E. Rothenberg, “Phased-only sampled fiber Bragg gratings for high-channel-count chromatic dispersion compensation,” J. Lightwave Technol. 21(9), 2074–2083 (2003).
[CrossRef]

J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, “Dammann fiber Bragg gratings and phase-only sampling for high channel counts,” IEEE Photon. Technol. Lett. 14(9), 1309–1311 (2002).
[CrossRef]

Luo, Y.

X.-F. Chen, Y. Luo, C.-C. Fan, T. Wu, and S.-Z. Xie, “Analytical expression of sampled Bragg gratings with chirp in the sampling period and its applicationin dispersion management design in a WDM system,” IEEE Photon. Technol. Lett. 12(8), 1013–1015 (2000).
[CrossRef]

Magné, J.

Maniloff, E. S.

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, and J. N. Sweetser, “Fiber Bragg grating based spectral encoder/ decoder for lightwave CDMA,” Electron. Lett. 35(13), 1096–1097 (1999).
[CrossRef]

Meghavoryan, D.-M.

D.-M. Meghavoryan and A.-V. Daryan, “Superimposed fiber Bragg grating simulation by the method of single expression for optical CDMA systems,” IEEE Photon. Technol. Lett. 15(11), 1546–1548 (2003).
[CrossRef]

Mossberg, T. W.

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, and J. N. Sweetser, “Fiber Bragg grating based spectral encoder/ decoder for lightwave CDMA,” Electron. Lett. 35(13), 1096–1097 (1999).
[CrossRef]

Munroe, M. J.

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, and J. N. Sweetser, “Fiber Bragg grating based spectral encoder/ decoder for lightwave CDMA,” Electron. Lett. 35(13), 1096–1097 (1999).
[CrossRef]

Ouellette, F.

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31(11), 899–901 (1995).
[CrossRef]

Popelek, J.

J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, “Dammann fiber Bragg gratings and phase-only sampling for high channel counts,” IEEE Photon. Technol. Lett. 14(9), 1309–1311 (2002).
[CrossRef]

Potì, L.

Rochette, M.

Rothenberg, J. E.

Y.-L. Sheng, J. E. Rothenberg, H.-P. Li, Y. Wang, and J. Zweiback, “Split of phase shifts in a phase mask for fiber Bragg gratings,” IEEE Photon. Technol. Lett. 16(5), 1316–1318 (2004).
[CrossRef]

H.-P. Li, Y.-L. Sheng, Y. Li, and J. E. Rothenberg, “Phased-only sampled fiber Bragg gratings for high-channel-count chromatic dispersion compensation,” J. Lightwave Technol. 21(9), 2074–2083 (2003).
[CrossRef]

J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, “Dammann fiber Bragg gratings and phase-only sampling for high channel counts,” IEEE Photon. Technol. Lett. 14(9), 1309–1311 (2002).
[CrossRef]

Rusch, L.-A.

Sheng, Y.

J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, “Dammann fiber Bragg gratings and phase-only sampling for high channel counts,” IEEE Photon. Technol. Lett. 14(9), 1309–1311 (2002).
[CrossRef]

Sheng, Y.-L.

Y.-L. Sheng, J. E. Rothenberg, H.-P. Li, Y. Wang, and J. Zweiback, “Split of phase shifts in a phase mask for fiber Bragg gratings,” IEEE Photon. Technol. Lett. 16(5), 1316–1318 (2004).
[CrossRef]

H.-P. Li, Y.-L. Sheng, Y. Li, and J. E. Rothenberg, “Phased-only sampled fiber Bragg gratings for high-channel-count chromatic dispersion compensation,” J. Lightwave Technol. 21(9), 2074–2083 (2003).
[CrossRef]

Slavik, R.

R. Slavik and S. LaRochelle, “Large-band periodic filters for DWDM using multiple-superimposed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 14(12), 1704–1706 (2002).
[CrossRef]

Slavík, R.

Soh, Y.-C.

Q.-J. Wang, Y. Zhang, and Y.-C. Soh, “Efficient structure for optical interleavers using superimposed chirped fiber Bragg graings,” IEEE Photon. Technol. Lett. 17(2), 387–389 (2005).
[CrossRef]

Stepanov, D. Y.

A. V. Buryak, K. Y. Kolossovski, and D. Y. Stepanov, “Optimization of refractive index sampling for multichannel fiber Bragg gratings,” J. Quantum Electron. 39(1), 91–98 (2003).
[CrossRef]

Stephens, T.

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31(11), 899–901 (1995).
[CrossRef]

Sweetser, J. N.

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, and J. N. Sweetser, “Fiber Bragg grating based spectral encoder/ decoder for lightwave CDMA,” Electron. Lett. 35(13), 1096–1097 (1999).
[CrossRef]

Wang, Q.-J.

Q.-J. Wang, Y. Zhang, and Y.-C. Soh, “Efficient structure for optical interleavers using superimposed chirped fiber Bragg graings,” IEEE Photon. Technol. Lett. 17(2), 387–389 (2005).
[CrossRef]

Wang, Y.

Y.-L. Sheng, J. E. Rothenberg, H.-P. Li, Y. Wang, and J. Zweiback, “Split of phase shifts in a phase mask for fiber Bragg gratings,” IEEE Photon. Technol. Lett. 16(5), 1316–1318 (2004).
[CrossRef]

J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, “Dammann fiber Bragg gratings and phase-only sampling for high channel counts,” IEEE Photon. Technol. Lett. 14(9), 1309–1311 (2002).
[CrossRef]

Wilcox, R. B.

J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, “Dammann fiber Bragg gratings and phase-only sampling for high channel counts,” IEEE Photon. Technol. Lett. 14(9), 1309–1311 (2002).
[CrossRef]

Wu, T.

X.-F. Chen, Y. Luo, C.-C. Fan, T. Wu, and S.-Z. Xie, “Analytical expression of sampled Bragg gratings with chirp in the sampling period and its applicationin dispersion management design in a WDM system,” IEEE Photon. Technol. Lett. 12(8), 1013–1015 (2000).
[CrossRef]

Xia, L.

M. Yan, M. Yao, H. Zhang, L. Xia, and Y. Zhang, “En/decoder for spectral phase-coded OCDMA system based on amplitude sampled FBG,” IEEE Photon. Technol. Lett. 20(10), 788–790 (2008).
[CrossRef]

Y.-T. Dai, X.-F. Chen, L. Xia, Y.-J. Zhang, and S.-Z. Xie, “Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp,” Opt. Lett. 29(12), 1333–1335 (2004).
[CrossRef] [PubMed]

Xie, S.-Z.

Y.-T. Dai, X.-F. Chen, L. Xia, Y.-J. Zhang, and S.-Z. Xie, “Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp,” Opt. Lett. 29(12), 1333–1335 (2004).
[CrossRef] [PubMed]

Y.-T. Dai, X.-F. Chen, D.-J. Jiang, S.-Z. Xie, and C.-C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16(10), 2284–2286 (2004).
[CrossRef]

X.-F. Chen, Y. Luo, C.-C. Fan, T. Wu, and S.-Z. Xie, “Analytical expression of sampled Bragg gratings with chirp in the sampling period and its applicationin dispersion management design in a WDM system,” IEEE Photon. Technol. Lett. 12(8), 1013–1015 (2000).
[CrossRef]

Yan, M.

M. Yan, M. Yao, H. Zhang, L. Xia, and Y. Zhang, “En/decoder for spectral phase-coded OCDMA system based on amplitude sampled FBG,” IEEE Photon. Technol. Lett. 20(10), 788–790 (2008).
[CrossRef]

Yao, M.

M. Yan, M. Yao, H. Zhang, L. Xia, and Y. Zhang, “En/decoder for spectral phase-coded OCDMA system based on amplitude sampled FBG,” IEEE Photon. Technol. Lett. 20(10), 788–790 (2008).
[CrossRef]

Zhang, H.

M. Yan, M. Yao, H. Zhang, L. Xia, and Y. Zhang, “En/decoder for spectral phase-coded OCDMA system based on amplitude sampled FBG,” IEEE Photon. Technol. Lett. 20(10), 788–790 (2008).
[CrossRef]

Zhang, Y.

M. Yan, M. Yao, H. Zhang, L. Xia, and Y. Zhang, “En/decoder for spectral phase-coded OCDMA system based on amplitude sampled FBG,” IEEE Photon. Technol. Lett. 20(10), 788–790 (2008).
[CrossRef]

Q.-J. Wang, Y. Zhang, and Y.-C. Soh, “Efficient structure for optical interleavers using superimposed chirped fiber Bragg graings,” IEEE Photon. Technol. Lett. 17(2), 387–389 (2005).
[CrossRef]

Zhang, Y.-J.

Zweiback, J.

Y.-L. Sheng, J. E. Rothenberg, H.-P. Li, Y. Wang, and J. Zweiback, “Split of phase shifts in a phase mask for fiber Bragg gratings,” IEEE Photon. Technol. Lett. 16(5), 1316–1318 (2004).
[CrossRef]

J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, “Dammann fiber Bragg gratings and phase-only sampling for high channel counts,” IEEE Photon. Technol. Lett. 14(9), 1309–1311 (2002).
[CrossRef]

Electron. Lett. (2)

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31(11), 899–901 (1995).
[CrossRef]

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, and J. N. Sweetser, “Fiber Bragg grating based spectral encoder/ decoder for lightwave CDMA,” Electron. Lett. 35(13), 1096–1097 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (8)

M. Yan, M. Yao, H. Zhang, L. Xia, and Y. Zhang, “En/decoder for spectral phase-coded OCDMA system based on amplitude sampled FBG,” IEEE Photon. Technol. Lett. 20(10), 788–790 (2008).
[CrossRef]

R. Slavik and S. LaRochelle, “Large-band periodic filters for DWDM using multiple-superimposed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 14(12), 1704–1706 (2002).
[CrossRef]

Q.-J. Wang, Y. Zhang, and Y.-C. Soh, “Efficient structure for optical interleavers using superimposed chirped fiber Bragg graings,” IEEE Photon. Technol. Lett. 17(2), 387–389 (2005).
[CrossRef]

D.-M. Meghavoryan and A.-V. Daryan, “Superimposed fiber Bragg grating simulation by the method of single expression for optical CDMA systems,” IEEE Photon. Technol. Lett. 15(11), 1546–1548 (2003).
[CrossRef]

X.-F. Chen, Y. Luo, C.-C. Fan, T. Wu, and S.-Z. Xie, “Analytical expression of sampled Bragg gratings with chirp in the sampling period and its applicationin dispersion management design in a WDM system,” IEEE Photon. Technol. Lett. 12(8), 1013–1015 (2000).
[CrossRef]

Y.-T. Dai, X.-F. Chen, D.-J. Jiang, S.-Z. Xie, and C.-C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16(10), 2284–2286 (2004).
[CrossRef]

Y.-L. Sheng, J. E. Rothenberg, H.-P. Li, Y. Wang, and J. Zweiback, “Split of phase shifts in a phase mask for fiber Bragg gratings,” IEEE Photon. Technol. Lett. 16(5), 1316–1318 (2004).
[CrossRef]

J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, “Dammann fiber Bragg gratings and phase-only sampling for high channel counts,” IEEE Photon. Technol. Lett. 14(9), 1309–1311 (2002).
[CrossRef]

J. Lightwave Technol. (5)

J. Quantum Electron. (1)

A. V. Buryak, K. Y. Kolossovski, and D. Y. Stepanov, “Optimization of refractive index sampling for multichannel fiber Bragg gratings,” J. Quantum Electron. 39(1), 91–98 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Other (2)

Y. Painchaud, M. Poulin, M. Morin, and M. Guy, “Fiber Bragg grating based dispersion compensator slope-matched for LEAF fiber,” OFC2006, paper OThe2 (2006).

R. Omrani and P.-V Kumar, “Spreading sequence for asynchronous spectrally phase encoded optical CDMA,” ISIT2006, 2642–2646 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

Illustration of SI-SFBGs with two −1st-wavelengths.

Fig. 2
Fig. 2

The simulation result: (a) Amplitude spectrum of SI-SFBGs; (b) Detailed property of the 4 −1st channels.

Fig. 3
Fig. 3

Phase-controlled SI-SFBGs and corresponding reflective property.

Fig. 4
Fig. 4

The comparison between SI-SFBGs with the phases of (0,0,0,0) (marked with “No phase shift”) and (0,π,π,0) (marked with “Phase shift”): (a) Amplitude; (b) Group time delay.

Fig. 5
Fig. 5

The comparison of phases in passband: (a) Phases, “A” represents the SI-SFBGs with (0,π,π,0), while “B” represents the SI-SFBGs with (0,0,0,0); (b) The phases of “A-B”.

Fig. 6
Fig. 6

Simulation result: (a) Amplitude spectrum of three different encoders, “Code#2” and “Code#3” use the left Y-coordinate, while the “No phase shift” uses the right Y-coordinate; (b) Group time delay.

Fig. 7
Fig. 7

The wavelengths’ initial phases and corresponding address codes: (a) Code#2; (b) Code#3.

Fig. 8
Fig. 8

Performance of SPE encoders with 16-frequency bins and 16 superimpositions: (a) Encoded waveforms; (b) Decoded waveforms.

Fig. 9
Fig. 9

Phase-controlled SI-SFBGs with 2 superimpositions and 2 series connections.

Fig. 10
Fig. 10

The refractive index modulation of SI-SFBGs with 2 superimpositions and 2 series connections.

Fig. 11
Fig. 11

The comparison between SI-SFBGs (2 superimpositions and 2 series connections) with the phases of (0,0,0,0) (marked with“No phase shift”) and (0,π,π,0) (marked with “Phase shift”): (a) Amplitude; (b) Group time delay.

Fig. 12
Fig. 12

The comparison of phases in passband (SI-SFBGs with 2 superimpositions and 2 series connections): (a) Phases, “A” represents the SI-SFBGs with (0,π,π,0), while “B” represents the SI-SFBGs with (0,0,0,0); (b) The phases of “A-B”.

Fig. 13
Fig. 13

Simulated spectrum of 64-frequency bins SI-SFBGs-based SPE en/decoders with 16 superimpositions and 4 series connections.

Fig. 14
Fig. 14

The initial phases of SPE encoder with Walsh code#5.

Fig. 15
Fig. 15

Performance of 64-frequency bins SPE en/decoders with 16 superimpositions and 4 series connections: (a) Encoded waveforms; (b) Decoded waveforms.

Fig. 16
Fig. 16

Measured spectrum of 64-frequency bins SPE en/decoders with 16 superimpositions and 4 series connections, the solid line represents the amplitude, the dashed line represents the group delay: (a) Encoding spectrum with Walsh code#5; (b) Decoding spectrum with Walsh code#5; (c) Encoding spectrum with Walsh code#6.

Fig. 17
Fig. 17

Calculated result based on the measured spectrum: (a) Encoded waveforms; (b) Decoded waveforms.

Fig. 18
Fig. 18

Measured spectrum of 32-frequency bins SPE en/decoders with 4 superimpositions and 8 series connections, the solid line represents the amplitue, the dashed line represents the group delay: (a) Encoding spectrum with Walsh code#2; (b) Decoding spectrum with Walsh code#2; (c) Encoding spectrum with Walsh code#3.

Fig. 19
Fig. 19

The proof-of-principle experiment: (a) Setup; (b) Measured spectrum of laser source.

Fig. 20
Fig. 20

Experimental result: (a) Correctly decoded waveforms; (b) Incorrectly decoded waveforms.

Tables (4)

Tables Icon

Table 1 Parameters for SI-SFBGs with 4 Superimpositions and 4 Wavelengths

Tables Icon

Table 2 Parameters for SI-SFBGs-Based SPE Encoders with 16-Frequency Bins and 16 Superimpositions

Tables Icon

Table 3 Parameters for Phase-Controlled 4-Wavelength SI-SFBGs with 2 Superimpositions and 2 Series Connections

Tables Icon

Table 4 Parameters for 64-Frequency Bins SI-SFBGs-Based SPE Encoders with 16 Superimpositions and 4 Series Connections

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

δ n ( z ) = i = 1 N δ n ¯ eff, i ( z ) { 1 + 1 2 ν i ( z ) S i ( z ) { exp ( j 2 π z Λ + j ϕ i ( z ) ) + c . c } }
S i ( z ) = m F i , m exp ( j 2 m π P i z )                        m = 0 , 1 ,
δ n ( z ) = i = 1 N δ n ¯ eff, i ( z ) { 1 + 1 2 ν i ( z ) m F i , m { exp ( j 2 m π P i z ) exp ( j 2 π z Λ ) + c . c } }               = i = 1 N δ n ¯ eff, i ( z ) + 1 2 i = 1 N m δ n ¯ eff, i ( z ) ν i ( z ) F i , m exp ( j ( 2 π z 1 / ( 1 / Λ + m / P i ) ghost grating period ) ) + c . c
δ n 1 ( z ) = i = 1 N δ n ¯ eff, i ( z ) + 1 2 i = 1 N δ n ¯ eff, i ( z ) ν i ( z ) F i , 1 exp ( j ( 2 π z 1 / ( 1 / Λ 1 / P i ) ) ) + c . c
S i ( z ) = m F i , m exp ( j 2 m π P i f i ( z ) )                        m = 0 , 1 ,
δ n 1 ( z ) = i = 1 N δ n ¯ eff, i ( z ) + 1 2 i = 1 N δ n ¯ eff, i ( z ) ν i ( z ) F i , 1 exp ( j ( 2 π z Λ 2 π P i f i ( z ) ) ) + c . c
δ n 1 ( z ) = i = 1 N δ n ¯ eff, i ( z ) + 1 2 i = 1 N δ n ¯ eff, i ( z ) ν i ( z ) F i , 1 exp ( j ( 2 π z Λ 2 π P i ( z φ i ( z ) 2 π P i ) ) ) + c . c              = i = 1 N δ n ¯ eff, i ( z ) + 1 2 i = 1 N δ n ¯ eff, i ( z ) ν i ( z ) F i , 1 exp ( j ( 2 π z 1 / ( 1 / Λ 1 / P i ) + φ i ( z )      phase  modulation ) ) + c . c
i = 1 N δ n ¯ eff, i Δ n max
N Δ n max δ n ¯ eff, i
S = [ M / N ]

Metrics