Abstract

This study proposes a simple cost-effective method of optical interconnection between a planar lightwave circuit (PLC) device chip and an optical fiber. It was conducted to minimize and overcome the coupling loss caused by lateral offset which is due to the process tolerance and the dimensional limitation existing between PLC device chips and fiber array blocks with groove structures. A PLC device chip and a fiber array block were simultaneously fabricated in a series of polymer replication processes using the original master. The dimensions (i.e., width and thickness) of the under-clad of the PLC device chip were identical to those of the fiber array block. The PLC device chip and optical fiber were aligned by simple positional control for the vertical direction of the PLC device chip under a particular condition. The insertion loss of the proposed 1 x 2 multimode optical splitter device interconnection was 4.0 dB at 850 nm and the coupling loss was below 0.1 dB compared with single-fiber based active alignment.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Kim, S. H. Ahn, I. K. Cho, D. M. Im, S. M. Shorab Muslim, and H. H. Park, “Fabrication of thermally stable and cost-effective polymeric waveguide for optical printed-circuit board,” Opt. Express 16(21), 16798–16805 (2008).
    [CrossRef] [PubMed]
  2. J. H. Ryu, T. H. Lee, S. H. Oh, S. U. Cho, C. S. Kim, and M. Y. Jeong, “Imprinted optical device and its reliability,” Curr. Appl. Phys. 9(2), e7–e11 (2009).
    [CrossRef]
  3. J. H. Ryu, T. H. Lee, I. K. Cho, C. S. Kim, and M. Y. Jeong, “Simple fabrication of a double-layer multi-channel optical waveguide using passive alignment,” Opt. Express 19(2), 1183–1190 (2011).
    [CrossRef] [PubMed]
  4. J. T. Kim, K. B. Yoon, and C. G. Choi, “Passive alignment method of polymer PLC devices by using a hot embossing technique,” IEEE Photon. Technol. Lett. 16(7), 1664–1666 (2004).
    [CrossRef]
  5. W.-J. Lee, S. H. Hwang, J. W. Lim, and B. S. Rho, “Polymeric waveguide film with embedded mirror for multilayer optical circuits,” IEEE Photon. Technol. Lett. 21(1), 12–14 (2009).
    [CrossRef]
  6. I. K. Cho, W. J. Lee, M. Y. Jeong, and H. H. Park, “Optical module using polymer waveguide with integrated reflector mirrors,” IEEE Photon. Technol. Lett. 20(6), 410–412 (2008).
    [CrossRef]
  7. I.-B. Sohn, M.-S. Lee, and J.-Y. Chung, “Fabrication of optical splitter and passive alignment technique with a femtosecond laser,” IEEE Photon. Technol. Lett. 17(11), 2349–2351 (2005).
    [CrossRef]
  8. J. T. Kim, B. C. Kim, M. Y. Jeong, and M. S. Lee, “Fabrication of a micro-optical coupling structure by laser ablation,” J. Mater. Process. Technol. 146(2), 163–166 (2004).
    [CrossRef]
  9. A. Neyer, B. Wittmann, and M. Johnck, “Plastic-optical-fiber-based parallel optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 5(2), 193–200 (1999).
    [CrossRef]
  10. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
    [CrossRef]

2011 (1)

2009 (2)

J. H. Ryu, T. H. Lee, S. H. Oh, S. U. Cho, C. S. Kim, and M. Y. Jeong, “Imprinted optical device and its reliability,” Curr. Appl. Phys. 9(2), e7–e11 (2009).
[CrossRef]

W.-J. Lee, S. H. Hwang, J. W. Lim, and B. S. Rho, “Polymeric waveguide film with embedded mirror for multilayer optical circuits,” IEEE Photon. Technol. Lett. 21(1), 12–14 (2009).
[CrossRef]

2008 (2)

I. K. Cho, W. J. Lee, M. Y. Jeong, and H. H. Park, “Optical module using polymer waveguide with integrated reflector mirrors,” IEEE Photon. Technol. Lett. 20(6), 410–412 (2008).
[CrossRef]

D. W. Kim, S. H. Ahn, I. K. Cho, D. M. Im, S. M. Shorab Muslim, and H. H. Park, “Fabrication of thermally stable and cost-effective polymeric waveguide for optical printed-circuit board,” Opt. Express 16(21), 16798–16805 (2008).
[CrossRef] [PubMed]

2005 (1)

I.-B. Sohn, M.-S. Lee, and J.-Y. Chung, “Fabrication of optical splitter and passive alignment technique with a femtosecond laser,” IEEE Photon. Technol. Lett. 17(11), 2349–2351 (2005).
[CrossRef]

2004 (2)

J. T. Kim, B. C. Kim, M. Y. Jeong, and M. S. Lee, “Fabrication of a micro-optical coupling structure by laser ablation,” J. Mater. Process. Technol. 146(2), 163–166 (2004).
[CrossRef]

J. T. Kim, K. B. Yoon, and C. G. Choi, “Passive alignment method of polymer PLC devices by using a hot embossing technique,” IEEE Photon. Technol. Lett. 16(7), 1664–1666 (2004).
[CrossRef]

1999 (1)

A. Neyer, B. Wittmann, and M. Johnck, “Plastic-optical-fiber-based parallel optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 5(2), 193–200 (1999).
[CrossRef]

1996 (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[CrossRef]

Ahn, S. H.

Cho, I. K.

Cho, S. U.

J. H. Ryu, T. H. Lee, S. H. Oh, S. U. Cho, C. S. Kim, and M. Y. Jeong, “Imprinted optical device and its reliability,” Curr. Appl. Phys. 9(2), e7–e11 (2009).
[CrossRef]

Choi, C. G.

J. T. Kim, K. B. Yoon, and C. G. Choi, “Passive alignment method of polymer PLC devices by using a hot embossing technique,” IEEE Photon. Technol. Lett. 16(7), 1664–1666 (2004).
[CrossRef]

Chou, S. Y.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[CrossRef]

Chung, J.-Y.

I.-B. Sohn, M.-S. Lee, and J.-Y. Chung, “Fabrication of optical splitter and passive alignment technique with a femtosecond laser,” IEEE Photon. Technol. Lett. 17(11), 2349–2351 (2005).
[CrossRef]

Hwang, S. H.

W.-J. Lee, S. H. Hwang, J. W. Lim, and B. S. Rho, “Polymeric waveguide film with embedded mirror for multilayer optical circuits,” IEEE Photon. Technol. Lett. 21(1), 12–14 (2009).
[CrossRef]

Im, D. M.

Jeong, M. Y.

J. H. Ryu, T. H. Lee, I. K. Cho, C. S. Kim, and M. Y. Jeong, “Simple fabrication of a double-layer multi-channel optical waveguide using passive alignment,” Opt. Express 19(2), 1183–1190 (2011).
[CrossRef] [PubMed]

J. H. Ryu, T. H. Lee, S. H. Oh, S. U. Cho, C. S. Kim, and M. Y. Jeong, “Imprinted optical device and its reliability,” Curr. Appl. Phys. 9(2), e7–e11 (2009).
[CrossRef]

I. K. Cho, W. J. Lee, M. Y. Jeong, and H. H. Park, “Optical module using polymer waveguide with integrated reflector mirrors,” IEEE Photon. Technol. Lett. 20(6), 410–412 (2008).
[CrossRef]

J. T. Kim, B. C. Kim, M. Y. Jeong, and M. S. Lee, “Fabrication of a micro-optical coupling structure by laser ablation,” J. Mater. Process. Technol. 146(2), 163–166 (2004).
[CrossRef]

Johnck, M.

A. Neyer, B. Wittmann, and M. Johnck, “Plastic-optical-fiber-based parallel optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 5(2), 193–200 (1999).
[CrossRef]

Kim, B. C.

J. T. Kim, B. C. Kim, M. Y. Jeong, and M. S. Lee, “Fabrication of a micro-optical coupling structure by laser ablation,” J. Mater. Process. Technol. 146(2), 163–166 (2004).
[CrossRef]

Kim, C. S.

J. H. Ryu, T. H. Lee, I. K. Cho, C. S. Kim, and M. Y. Jeong, “Simple fabrication of a double-layer multi-channel optical waveguide using passive alignment,” Opt. Express 19(2), 1183–1190 (2011).
[CrossRef] [PubMed]

J. H. Ryu, T. H. Lee, S. H. Oh, S. U. Cho, C. S. Kim, and M. Y. Jeong, “Imprinted optical device and its reliability,” Curr. Appl. Phys. 9(2), e7–e11 (2009).
[CrossRef]

Kim, D. W.

Kim, J. T.

J. T. Kim, B. C. Kim, M. Y. Jeong, and M. S. Lee, “Fabrication of a micro-optical coupling structure by laser ablation,” J. Mater. Process. Technol. 146(2), 163–166 (2004).
[CrossRef]

J. T. Kim, K. B. Yoon, and C. G. Choi, “Passive alignment method of polymer PLC devices by using a hot embossing technique,” IEEE Photon. Technol. Lett. 16(7), 1664–1666 (2004).
[CrossRef]

Krauss, P. R.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[CrossRef]

Lee, M. S.

J. T. Kim, B. C. Kim, M. Y. Jeong, and M. S. Lee, “Fabrication of a micro-optical coupling structure by laser ablation,” J. Mater. Process. Technol. 146(2), 163–166 (2004).
[CrossRef]

Lee, M.-S.

I.-B. Sohn, M.-S. Lee, and J.-Y. Chung, “Fabrication of optical splitter and passive alignment technique with a femtosecond laser,” IEEE Photon. Technol. Lett. 17(11), 2349–2351 (2005).
[CrossRef]

Lee, T. H.

J. H. Ryu, T. H. Lee, I. K. Cho, C. S. Kim, and M. Y. Jeong, “Simple fabrication of a double-layer multi-channel optical waveguide using passive alignment,” Opt. Express 19(2), 1183–1190 (2011).
[CrossRef] [PubMed]

J. H. Ryu, T. H. Lee, S. H. Oh, S. U. Cho, C. S. Kim, and M. Y. Jeong, “Imprinted optical device and its reliability,” Curr. Appl. Phys. 9(2), e7–e11 (2009).
[CrossRef]

Lee, W. J.

I. K. Cho, W. J. Lee, M. Y. Jeong, and H. H. Park, “Optical module using polymer waveguide with integrated reflector mirrors,” IEEE Photon. Technol. Lett. 20(6), 410–412 (2008).
[CrossRef]

Lee, W.-J.

W.-J. Lee, S. H. Hwang, J. W. Lim, and B. S. Rho, “Polymeric waveguide film with embedded mirror for multilayer optical circuits,” IEEE Photon. Technol. Lett. 21(1), 12–14 (2009).
[CrossRef]

Lim, J. W.

W.-J. Lee, S. H. Hwang, J. W. Lim, and B. S. Rho, “Polymeric waveguide film with embedded mirror for multilayer optical circuits,” IEEE Photon. Technol. Lett. 21(1), 12–14 (2009).
[CrossRef]

Neyer, A.

A. Neyer, B. Wittmann, and M. Johnck, “Plastic-optical-fiber-based parallel optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 5(2), 193–200 (1999).
[CrossRef]

Oh, S. H.

J. H. Ryu, T. H. Lee, S. H. Oh, S. U. Cho, C. S. Kim, and M. Y. Jeong, “Imprinted optical device and its reliability,” Curr. Appl. Phys. 9(2), e7–e11 (2009).
[CrossRef]

Park, H. H.

I. K. Cho, W. J. Lee, M. Y. Jeong, and H. H. Park, “Optical module using polymer waveguide with integrated reflector mirrors,” IEEE Photon. Technol. Lett. 20(6), 410–412 (2008).
[CrossRef]

D. W. Kim, S. H. Ahn, I. K. Cho, D. M. Im, S. M. Shorab Muslim, and H. H. Park, “Fabrication of thermally stable and cost-effective polymeric waveguide for optical printed-circuit board,” Opt. Express 16(21), 16798–16805 (2008).
[CrossRef] [PubMed]

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[CrossRef]

Rho, B. S.

W.-J. Lee, S. H. Hwang, J. W. Lim, and B. S. Rho, “Polymeric waveguide film with embedded mirror for multilayer optical circuits,” IEEE Photon. Technol. Lett. 21(1), 12–14 (2009).
[CrossRef]

Ryu, J. H.

J. H. Ryu, T. H. Lee, I. K. Cho, C. S. Kim, and M. Y. Jeong, “Simple fabrication of a double-layer multi-channel optical waveguide using passive alignment,” Opt. Express 19(2), 1183–1190 (2011).
[CrossRef] [PubMed]

J. H. Ryu, T. H. Lee, S. H. Oh, S. U. Cho, C. S. Kim, and M. Y. Jeong, “Imprinted optical device and its reliability,” Curr. Appl. Phys. 9(2), e7–e11 (2009).
[CrossRef]

Shorab Muslim, S. M.

Sohn, I.-B.

I.-B. Sohn, M.-S. Lee, and J.-Y. Chung, “Fabrication of optical splitter and passive alignment technique with a femtosecond laser,” IEEE Photon. Technol. Lett. 17(11), 2349–2351 (2005).
[CrossRef]

Wittmann, B.

A. Neyer, B. Wittmann, and M. Johnck, “Plastic-optical-fiber-based parallel optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 5(2), 193–200 (1999).
[CrossRef]

Yoon, K. B.

J. T. Kim, K. B. Yoon, and C. G. Choi, “Passive alignment method of polymer PLC devices by using a hot embossing technique,” IEEE Photon. Technol. Lett. 16(7), 1664–1666 (2004).
[CrossRef]

Curr. Appl. Phys. (1)

J. H. Ryu, T. H. Lee, S. H. Oh, S. U. Cho, C. S. Kim, and M. Y. Jeong, “Imprinted optical device and its reliability,” Curr. Appl. Phys. 9(2), e7–e11 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Neyer, B. Wittmann, and M. Johnck, “Plastic-optical-fiber-based parallel optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 5(2), 193–200 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

J. T. Kim, K. B. Yoon, and C. G. Choi, “Passive alignment method of polymer PLC devices by using a hot embossing technique,” IEEE Photon. Technol. Lett. 16(7), 1664–1666 (2004).
[CrossRef]

W.-J. Lee, S. H. Hwang, J. W. Lim, and B. S. Rho, “Polymeric waveguide film with embedded mirror for multilayer optical circuits,” IEEE Photon. Technol. Lett. 21(1), 12–14 (2009).
[CrossRef]

I. K. Cho, W. J. Lee, M. Y. Jeong, and H. H. Park, “Optical module using polymer waveguide with integrated reflector mirrors,” IEEE Photon. Technol. Lett. 20(6), 410–412 (2008).
[CrossRef]

I.-B. Sohn, M.-S. Lee, and J.-Y. Chung, “Fabrication of optical splitter and passive alignment technique with a femtosecond laser,” IEEE Photon. Technol. Lett. 17(11), 2349–2351 (2005).
[CrossRef]

J. Mater. Process. Technol. (1)

J. T. Kim, B. C. Kim, M. Y. Jeong, and M. S. Lee, “Fabrication of a micro-optical coupling structure by laser ablation,” J. Mater. Process. Technol. 146(2), 163–166 (2004).
[CrossRef]

J. Vac. Sci. Technol. B (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[CrossRef]

Opt. Express (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Dimensional accuracy between the PLC device chip and the optical fiber; (b) schematic configuration of the optical interconnected PLC device.

Fig. 2
Fig. 2

Schematic diagram of the optical interconnection between the PLC device chip and the optical fiber.

Fig. 3
Fig. 3

SEM images of structures according to the replication procedure: (a) the original Si master in step I; (b) the hot-embossed structure in step I; (c) the PDMS mold in step II-I; (d) the under-clad structure in step II-I; (e) the hot-embossed straight channel used as the groove structure in step II-II; and (f) the under-clad straight channel used in step II-I.

Fig. 4
Fig. 4

Cross-sectional images of the optical device chip and the fiber mounted fiber array block: (a) the 1 x 2 optical splitter chip; (b) the fiber mounted fiber block for the optical splitter; (c) the 12-channel straight waveguide chip; and (d) the fiber mounted fiber array block for the straight channel waveguide.

Fig. 5
Fig. 5

Optical characteristics of the optical device according to optical interconnection: (a) 1 x 2 optical splitter; (b) 12-channel straight waveguide.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L o s s L a t e r a l   m i s a l i g n m e n t ( d B ) = 10 log ( 1 2 x π R ) .

Metrics