Abstract

We present a simple method for the stimulated Brillouin scattering (SBS) gain bandwidth reduction in an optical fiber. We were able to reduce the natural bandwidth of 20MHz to around 3.4MHz by a superposition of the gain with two losses produced by the same source. This reduced bandwidth can drastically enhance the performance of many different applications which up to now were limited by the minimum of the natural SBS bandwidth.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–540 (1972).
    [CrossRef]
  2. T. Schneider, “Wavelength and line width measurement of optical sources with femtometre resolution,” Electron. Lett. 41, 1234–1235 (2005).
    [CrossRef]
  3. J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 855–857 (2005).
    [CrossRef]
  4. S. Preußler, K. Jamshidi, A. Wiatrek, R. Henker, C. Bunge, and T. Schneider, “Quasi-light-storage based on time-frequency coherence,” Opt. Express 17, 15790–15798 (2009).
    [CrossRef] [PubMed]
  5. T. Schneider, K. Jamshidi, and S. Preußler, “Quasi-Light Storage: A method for the tunable storage of optical packets with a potential delay-bandwidth product of several thousand bits,” J. Lightwave Technol. 28, 2586–2592 (2010).
    [CrossRef]
  6. A. R. Chraplyvy and R. W. Tkach, “Narrowband tunable optical filter for channel selection in densely packed WDM systems,” Electron. Lett. 22, 1084–1085 (1986).
    [CrossRef]
  7. T. Tanemura, Y. Takushima, and K. Kikuchi, “Narrowband optical filter, with a variable transmission spectrum, using stimulated Brillouin scattering in optical fiber,” Opt. Lett. 27, 1552–1554 (2002).
    [CrossRef]
  8. A. Loayssa and J. Capmany, “Incoherent microwave photonic filters with complex coefficients using stimulated brillouin scattering,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OFB2.
    [CrossRef]
  9. X. S. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photon. Technol. Lett. 10, 138–140 (1998).
    [CrossRef]
  10. R. Boyd, Nonlinear Optics (Academic Press, 2003).
  11. A. Yeniay, J. Delavaux, and J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” J. Lightwave Technol. 20, 1425–1432 (2002).
    [CrossRef]
  12. R. Esman and K. Williams, “Brillouin scattering: beyond threshold,” in Optical Fiber Communication Conference , Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, 1996), paper ThF5.
  13. A. Fotiadi, R. Kiyan, O. Deparis, P. Mgret, and M. Blondel, “Statistical properties of stimulated Brillouin scattering in single-mode optical fibers above threshold,” Opt. Lett. 27, 83–85 (2002).
    [CrossRef]
  14. T. Schneider, R. Henker, K. Lauterbach, and M. Junker, “Distortion reduction in Slow Light systems based on stimulated Brillouin scattering,” Opt. Express 16, 8280–8285 (2008).
    [CrossRef] [PubMed]
  15. T. Schneider, “Time delay limits of stimulated-Brillouin-scattering-based slow light systems,” Opt. Lett. 33, 1398–1400 (2008).
    [CrossRef] [PubMed]
  16. C. C. Lee and S. Chi, “Measurement of stimulated-Brillouin-scattering threshold for various types of fibers using Brillouin optical-time-domain reflectometer,” IEEE Photon. Technol. Lett. 12, 672–674 (2000).
    [CrossRef]

2010

2009

2008

2005

T. Schneider, “Wavelength and line width measurement of optical sources with femtometre resolution,” Electron. Lett. 41, 1234–1235 (2005).
[CrossRef]

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 855–857 (2005).
[CrossRef]

2002

2000

C. C. Lee and S. Chi, “Measurement of stimulated-Brillouin-scattering threshold for various types of fibers using Brillouin optical-time-domain reflectometer,” IEEE Photon. Technol. Lett. 12, 672–674 (2000).
[CrossRef]

1998

X. S. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photon. Technol. Lett. 10, 138–140 (1998).
[CrossRef]

1986

A. R. Chraplyvy and R. W. Tkach, “Narrowband tunable optical filter for channel selection in densely packed WDM systems,” Electron. Lett. 22, 1084–1085 (1986).
[CrossRef]

1972

E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–540 (1972).
[CrossRef]

Blondel, M.

Boyd, R.

R. Boyd, Nonlinear Optics (Academic Press, 2003).

Bunge, C.

Capmany, J.

A. Loayssa and J. Capmany, “Incoherent microwave photonic filters with complex coefficients using stimulated brillouin scattering,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OFB2.
[CrossRef]

Chi, S.

C. C. Lee and S. Chi, “Measurement of stimulated-Brillouin-scattering threshold for various types of fibers using Brillouin optical-time-domain reflectometer,” IEEE Photon. Technol. Lett. 12, 672–674 (2000).
[CrossRef]

Chraplyvy, A. R.

A. R. Chraplyvy and R. W. Tkach, “Narrowband tunable optical filter for channel selection in densely packed WDM systems,” Electron. Lett. 22, 1084–1085 (1986).
[CrossRef]

Delavaux, J.

Deparis, O.

Domingo, J. M. S.

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 855–857 (2005).
[CrossRef]

Esman, R.

R. Esman and K. Williams, “Brillouin scattering: beyond threshold,” in Optical Fiber Communication Conference , Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, 1996), paper ThF5.

Fotiadi, A.

Henker, R.

Heras, C. D.

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 855–857 (2005).
[CrossRef]

Ippen, E. P.

E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–540 (1972).
[CrossRef]

Jamshidi, K.

Junker, M.

Kikuchi, K.

Kiyan, R.

Lauterbach, K.

Lee, C. C.

C. C. Lee and S. Chi, “Measurement of stimulated-Brillouin-scattering threshold for various types of fibers using Brillouin optical-time-domain reflectometer,” IEEE Photon. Technol. Lett. 12, 672–674 (2000).
[CrossRef]

Loayssa, A.

A. Loayssa and J. Capmany, “Incoherent microwave photonic filters with complex coefficients using stimulated brillouin scattering,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OFB2.
[CrossRef]

Mgret, P.

Pelayo, J.

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 855–857 (2005).
[CrossRef]

Pellejer, E.

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 855–857 (2005).
[CrossRef]

Preußler, S.

Schneider, T.

Stolen, R. H.

E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–540 (1972).
[CrossRef]

Takushima, Y.

Tanemura, T.

Tkach, R. W.

A. R. Chraplyvy and R. W. Tkach, “Narrowband tunable optical filter for channel selection in densely packed WDM systems,” Electron. Lett. 22, 1084–1085 (1986).
[CrossRef]

Toulouse, J.

Villuendas, F.

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 855–857 (2005).
[CrossRef]

Wiatrek, A.

Williams, K.

R. Esman and K. Williams, “Brillouin scattering: beyond threshold,” in Optical Fiber Communication Conference , Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, 1996), paper ThF5.

Yao, X. S.

X. S. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photon. Technol. Lett. 10, 138–140 (1998).
[CrossRef]

Yeniay, A.

Appl. Phys. Lett.

E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–540 (1972).
[CrossRef]

Electron. Lett.

T. Schneider, “Wavelength and line width measurement of optical sources with femtometre resolution,” Electron. Lett. 41, 1234–1235 (2005).
[CrossRef]

A. R. Chraplyvy and R. W. Tkach, “Narrowband tunable optical filter for channel selection in densely packed WDM systems,” Electron. Lett. 22, 1084–1085 (1986).
[CrossRef]

IEEE Photon. Technol. Lett.

X. S. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photon. Technol. Lett. 10, 138–140 (1998).
[CrossRef]

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 855–857 (2005).
[CrossRef]

C. C. Lee and S. Chi, “Measurement of stimulated-Brillouin-scattering threshold for various types of fibers using Brillouin optical-time-domain reflectometer,” IEEE Photon. Technol. Lett. 12, 672–674 (2000).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Other

R. Esman and K. Williams, “Brillouin scattering: beyond threshold,” in Optical Fiber Communication Conference , Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, 1996), paper ThF5.

A. Loayssa and J. Capmany, “Incoherent microwave photonic filters with complex coefficients using stimulated brillouin scattering,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OFB2.
[CrossRef]

R. Boyd, Nonlinear Optics (Academic Press, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Ratio of the gain bandwidths as a function of frequency separation for 19 gain/loss ratios (a) and reduced gain due to the superposition with the losses normalized to a pure gain in dependence of the frequency separation between the losses (b).

Fig. 2
Fig. 2

Reduced single Brillouin gain (green) in comparison to the superposed gain (red). The parameters are d = 0.6 and m = 0.45 on the left side and d = 0.4 and m = 0.55 for the right side. This corresponds to the yellow dots 1 and 2 in Fig. 1.

Fig. 3
Fig. 3

Experimental Setup for the bandwidth measurement of the gain superimposed with two losses. Koh: fiber laser, MZM: Mach-Zehnder modulator, PD: photo diode, OSA: optical spectrum analyzer, LD: laser diode, C: circulator.

Fig. 4
Fig. 4

Single Brillouin gain (green) in comparison to the measured superposed gain (red) with a bandwidth of 10MHz (a) and 8MHz (b).

Fig. 5
Fig. 5

Reduced Bandwidth of 3.4MHz (red) in comparison with the natural SBS gain (green).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

G ges = g 0 γ 0 2 ω 2 + γ 0 2 g 1 γ 0 2 ( ω + δ ) 2 + γ 0 2 g 1 γ 0 2 ( ω δ ) 2 + γ 0 2
G ges = g 0 ( 1 Ω 2 + 1 m ( Ω + d ) 2 + 1 m ( Ω d ) 2 + 1 )
g SBS = g p P p L eff / A eff .

Metrics