Abstract

Recently proposed binary defocusing techniques have led to ultrafast speed 3D shape measurement, but they are generally limited to measurement of a single object at a time. Introducing additional gray coded patterns for point-by-point phase unwrapping could permit simultaneous multiple-object measurement. However, when the objects are moving rapidly, the displacement between the first captured pattern and the last can be significant, and pose challenges related to the precisely designed gray codes. This paper presents a new phase unwrapping strategy that combines the conventional spatial phase unwrapping with the gray code to resolve motion related phase unwrapping problems. A system with a speed of 5,000 Hz was developed to verify the performance of the proposed technique.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Laser. Eng. 48, 133–140 (2010).
    [CrossRef]
  2. S. Zhang, “Recent progresses on real-time 3-D shape measurement using digital fringe projection techniques,” Opt. Laser Eng. 48(2), 149–158 (2010).
    [CrossRef]
  3. S. Lei and S. Zhang, “Flexible 3-D shape measurement using projector defocusing,” Opt. Lett. 34(20), 3080–3082 (2009).
    [CrossRef] [PubMed]
  4. S. Zhang, D. van der Weide, and J. Olvier, “Superfast phase-shifting method for 3-D shape measurement,” Opt. Express 18(9), 9684–9689 (2010).
    [CrossRef] [PubMed]
  5. G. Sansoni, M. Carocci, and R. Rodella, “Three-dimensional vision based on a combination of gray-code and phase-shift light projection: analysis and compensation of the systematic errors,” Appl. Opt. 38(31), 6565–6573 (1999).
    [CrossRef]
  6. S. Zhang, “Flexible 3-D shape measurement using projector defocusing: Extended measurement range,” Opt. Lett. 35(7), 931–933 (2010).
  7. J. Pan, P. S. Huang, and F. Chiang, “Color-coded binary fringe projection technique for 3D shape measurement,” Opt. Eng. 44(2), 023606 (2005).
    [CrossRef]
  8. D. Malacara, ed., Optical Shop Testing , 3rd ed. (John Wiley and Sons, 2007).
    [CrossRef]
  9. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (John Wiley and Sons, 1998).
  10. C. Zhang, P. S. Huang, and F.-P. Chiang, “Microscopic phase-shifting profilometry based on digital micromirror device technology,” Appl. Opt. 41, 5896–5904 (2002).
    [CrossRef] [PubMed]

2010 (4)

S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Laser. Eng. 48, 133–140 (2010).
[CrossRef]

S. Zhang, “Recent progresses on real-time 3-D shape measurement using digital fringe projection techniques,” Opt. Laser Eng. 48(2), 149–158 (2010).
[CrossRef]

S. Zhang, “Flexible 3-D shape measurement using projector defocusing: Extended measurement range,” Opt. Lett. 35(7), 931–933 (2010).

S. Zhang, D. van der Weide, and J. Olvier, “Superfast phase-shifting method for 3-D shape measurement,” Opt. Express 18(9), 9684–9689 (2010).
[CrossRef] [PubMed]

2009 (1)

2005 (1)

J. Pan, P. S. Huang, and F. Chiang, “Color-coded binary fringe projection technique for 3D shape measurement,” Opt. Eng. 44(2), 023606 (2005).
[CrossRef]

2002 (1)

1999 (1)

Carocci, M.

Chiang, F.

J. Pan, P. S. Huang, and F. Chiang, “Color-coded binary fringe projection technique for 3D shape measurement,” Opt. Eng. 44(2), 023606 (2005).
[CrossRef]

Chiang, F.-P.

Ghiglia, D. C.

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (John Wiley and Sons, 1998).

Gorthi, S.

S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Laser. Eng. 48, 133–140 (2010).
[CrossRef]

Huang, P. S.

J. Pan, P. S. Huang, and F. Chiang, “Color-coded binary fringe projection technique for 3D shape measurement,” Opt. Eng. 44(2), 023606 (2005).
[CrossRef]

C. Zhang, P. S. Huang, and F.-P. Chiang, “Microscopic phase-shifting profilometry based on digital micromirror device technology,” Appl. Opt. 41, 5896–5904 (2002).
[CrossRef] [PubMed]

Lei, S.

Olvier, J.

Pan, J.

J. Pan, P. S. Huang, and F. Chiang, “Color-coded binary fringe projection technique for 3D shape measurement,” Opt. Eng. 44(2), 023606 (2005).
[CrossRef]

Pritt, M. D.

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (John Wiley and Sons, 1998).

Rastogi, P.

S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Laser. Eng. 48, 133–140 (2010).
[CrossRef]

Rodella, R.

Sansoni, G.

van der Weide, D.

Zhang, C.

Zhang, S.

Appl. Opt. (2)

Opt. Eng. (1)

J. Pan, P. S. Huang, and F. Chiang, “Color-coded binary fringe projection technique for 3D shape measurement,” Opt. Eng. 44(2), 023606 (2005).
[CrossRef]

Opt. Express (1)

Opt. Laser Eng. (1)

S. Zhang, “Recent progresses on real-time 3-D shape measurement using digital fringe projection techniques,” Opt. Laser Eng. 48(2), 149–158 (2010).
[CrossRef]

Opt. Laser. Eng. (1)

S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Laser. Eng. 48, 133–140 (2010).
[CrossRef]

Opt. Lett. (2)

Other (2)

D. Malacara, ed., Optical Shop Testing , 3rd ed. (John Wiley and Sons, 2007).
[CrossRef]

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (John Wiley and Sons, 1998).

Supplementary Material (4)

» Media 1: MOV (489 KB)     
» Media 2: MOV (340 KB)     
» Media 3: MOV (341 KB)     
» Media 4: MOV (318 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Gray Vs non-gray coding for point-by-point phase unwrapping.

Fig. 2
Fig. 2

(a) One fringe pattern; (b) One binary pattern; (c) Fringe order k(x,y) extracted from four coded patterns; (d) Wrapped phase ϕ(x,y) extracted from three phase-shifted fringe patterns; (e) Absolute phase Φ0(x,y); (f) Zoom-in view of the area within the white window of (e); (g) Codeword change map; (h) Unwrapped phase for one region by a conventional unwrapping algorithm; (i) Unwrapped relative phase of all regions Φ r (x,y); (j) Difference between relative phase map in (i) and absolute phase map obtained traditionally (e); (k) Absolute phase Φ(x,y) after Step 3; (l) The corresponding area shown in (f).

Fig. 3
Fig. 3

(a) Photograph of one frame;(b) 3D result using the conventional method; (c) 3D result by the proposed phase unwrapping framework. (Media 1, Media 2, Media 3, and Media 4).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I 1 ( x , y ) = I ( x , y ) + I ( x , y ) cos ( ϕ 2 π / 3 ) ,
I 2 ( x , y ) = I ( x , y ) + I ( x , y ) cos ( ϕ ) ,
I 3 ( x , y ) = I ( x , y ) + I ( x , y ) cos ( ϕ + 2 π / 3 ) .
ϕ ( x , y ) = tan 1 [ 3 ( I 1 I 3 ) / ( 2 I 2 I 1 I 3 ) ] .
Φ ( x , y ) = ϕ ( x , y ) + k ( x , y ) × 2 π .
Δ z Δ Φ ( x , y ) = Φ ( x , y ) Φ r p ( x , y ) .
z ( x , y ) = z 0 + c 0 × [ Φ ( x , y ) Φ r p ( x , y ) ] = c 0 × [ Φ ( x , y ) Φ r p ( x , y ) ] ,

Metrics