Abstract

We numerically investigated the enhanced optical transmission through sub-wavelength centered-polygonal hole arrays (CPHA) in a thin Ag film deposited on the silica substrate. In octagonal and decagonal-CPHAs, we observed new hybrid transmission characteristics that were inherited from both crystalline and quasi-crystalline hole arrays. This peculiar nature was attributed to the unique arrangement of CPHAs which can be covered with copies of a single unit cell as in crystalline arrays, and their rotational symmetry as observed in quasi-crystalline arrays. Hybrid natures in CPHAs were further investigated in the transmission spectra and Fourier space representations of the arrays. Contributions from the nearest neighbor hole-to-hole distance to enhanced transmission were analyzed in order to quantify the plasmonic contributions from the Air/Ag interface and Silica/Ag interface. We also investigated the impact of layer structure, Air/Ag/Air versus Air/Ag/Silica in the transmissions and found that in CPHAs in Air/Ag/Silica structures, contributions from the Air/Ag interface became dominant in contrast to crystalline hole arrays with lower fold symmetry.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Yin, V. Vlasov, A. Rydh, J. Pearson, U. Welp, S. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nano holes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
    [CrossRef]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  3. F. I. Baida and D. Van Labeke, “Three-dimensional structures for enhanced transmission through a metallic film: annular aperture arrays,” Phys. Rev. B 67(15), 155314 (2003).
    [CrossRef]
  4. S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77(7), 075401.1–075401.8 (2008).
    [CrossRef]
  5. F. Leon-Perez, G. Brucoli, F. Garcia-Vidal, and L. Martin-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” N. J. Phys. 10, 1–22 (2008).
  6. J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett. 93(22), 227401 (2004).
    [CrossRef] [PubMed]
  7. F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Leon-Perez, J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16(13), 9571–9579 (2008).
    [CrossRef] [PubMed]
  8. G. Ctistis, P. Patoka, X. Wang, K. Kempa, and M. Giersig, “Optical transmission through hexagonal arrays of subwavelength holes in thin metal films,” Nano Lett. 7(9), 2926–2930 (2007).
    [CrossRef] [PubMed]
  9. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004).
    [CrossRef] [PubMed]
  10. J. H. Kim and P. J. Moyer, “Thickness effects on the optical transmission characteristics of small hole arrays on thin gold films,” Opt. Express 14(15), 6595–6603 (2006).
    [CrossRef] [PubMed]
  11. A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327–4329 (2002).
    [CrossRef]
  12. F. Przybilla, C. Genet, and T. W. Ebbesen, “Enhanced transmission through penrose subwavelength hole arrays,” Appl. Phys. Lett. 89(12), 121115.1–121115, 3 (2006).
    [CrossRef]
  13. D. T. Roper, D. M. Beggs, M. A. Kaliteevski, S. Brand, and R. A. Abram, “Properties of two-dimensional photonic crystals with octagonal quasicrystalline unit cell,” J. Mod. Opt. 53(3), 407–416 (2006).
    [CrossRef]
  14. A. Agrawal, T. Matsui, Z. V. Vardeny, and A. Nahata, “Terahertz transmission properties of quasiperiodic and aperiodic aperture arrays,” J. Opt. Soc. Am. B 24(9), 2545–2554 (2007).
    [CrossRef]
  15. M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. Dela Rau, and P. Miller, “Two dimensional penrose-tiled photonic quasicrystals: from diffraction pattern to band structure,” Nanotechnology 11(4), 274–280 (2000).
    [CrossRef]
  16. J. Xue, W. Zhou, B. Dong, X. Wang, Y. Chen, E. Huq, W. Zeng, X. Qu, and R. Liu, “Surface Plasmon enhanced transmission through planar gold quasicrystals fabricated by focused ion beam technique,” Microelectronic Engineering. http://homepage.fudan.edu.cn/~fdnil/paper/Surface%20plasmon%20enhanced%20transmission%20through%20planar%20gold.PDF .
  17. M. Sun, J. Tian, Z-Y. Li, B-Y. Cheng, D-Z. Zhang, A-Z. Jin, and H-F. Yang, “The role of periodicity in enhanced transmission through subwavelength hole arrays,” Chin. Phys. Lett. 23(2), 486–488 (2006).
    [CrossRef]
  18. A. Dhawan and J. F. Muth, “Engineering surface Plasmon based fiber-optics sensors,” Mater. Sci. Eng. B 149(3), 237–241 (2008).
    [CrossRef]
  19. L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86(6), 1110–1113 (2001).
    [CrossRef] [PubMed]
  20. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [CrossRef] [PubMed]
  21. S. H. Chang, S. K. Gray, and G. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express 13(8), 3150–3165 (2005).
    [CrossRef] [PubMed]
  22. T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett. 24(4), 256–258 (1999).
    [CrossRef]
  23. R. Komrska, “Finite crystal lattice and its Fourier transform. lattice amplitude and shape amplitude”. http://physics.fme.vutbr.cz/~komrska/Eng/KapF17.pdf .
  24. D. W. Lynch, and W. R. Hunter, Handbook of Optical Constants of Solids (E. D. Palick, Ed. Orlando, FL Academic, 1985).
  25. FDTD Lumerical Solutions Inc, www.lumerical.com .
  26. M. Bai and N. García, “Transmission of light by a single subwavelength cylindrical hole in metallic films,” Appl. Phys. Lett. 89(14), 141110.1–1411110, 3 (2006).
    [CrossRef]
  27. C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
    [CrossRef]
  28. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
    [CrossRef]

2008

S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77(7), 075401.1–075401.8 (2008).
[CrossRef]

F. Leon-Perez, G. Brucoli, F. Garcia-Vidal, and L. Martin-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” N. J. Phys. 10, 1–22 (2008).

A. Dhawan and J. F. Muth, “Engineering surface Plasmon based fiber-optics sensors,” Mater. Sci. Eng. B 149(3), 237–241 (2008).
[CrossRef]

F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Leon-Perez, J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16(13), 9571–9579 (2008).
[CrossRef] [PubMed]

2007

A. Agrawal, T. Matsui, Z. V. Vardeny, and A. Nahata, “Terahertz transmission properties of quasiperiodic and aperiodic aperture arrays,” J. Opt. Soc. Am. B 24(9), 2545–2554 (2007).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

G. Ctistis, P. Patoka, X. Wang, K. Kempa, and M. Giersig, “Optical transmission through hexagonal arrays of subwavelength holes in thin metal films,” Nano Lett. 7(9), 2926–2930 (2007).
[CrossRef] [PubMed]

2006

M. Bai and N. García, “Transmission of light by a single subwavelength cylindrical hole in metallic films,” Appl. Phys. Lett. 89(14), 141110.1–1411110, 3 (2006).
[CrossRef]

M. Sun, J. Tian, Z-Y. Li, B-Y. Cheng, D-Z. Zhang, A-Z. Jin, and H-F. Yang, “The role of periodicity in enhanced transmission through subwavelength hole arrays,” Chin. Phys. Lett. 23(2), 486–488 (2006).
[CrossRef]

F. Przybilla, C. Genet, and T. W. Ebbesen, “Enhanced transmission through penrose subwavelength hole arrays,” Appl. Phys. Lett. 89(12), 121115.1–121115, 3 (2006).
[CrossRef]

D. T. Roper, D. M. Beggs, M. A. Kaliteevski, S. Brand, and R. A. Abram, “Properties of two-dimensional photonic crystals with octagonal quasicrystalline unit cell,” J. Mod. Opt. 53(3), 407–416 (2006).
[CrossRef]

J. H. Kim and P. J. Moyer, “Thickness effects on the optical transmission characteristics of small hole arrays on thin gold films,” Opt. Express 14(15), 6595–6603 (2006).
[CrossRef] [PubMed]

2005

2004

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004).
[CrossRef] [PubMed]

L. Yin, V. Vlasov, A. Rydh, J. Pearson, U. Welp, S. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nano holes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett. 93(22), 227401 (2004).
[CrossRef] [PubMed]

2003

F. I. Baida and D. Van Labeke, “Three-dimensional structures for enhanced transmission through a metallic film: annular aperture arrays,” Phys. Rev. B 67(15), 155314 (2003).
[CrossRef]

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[CrossRef]

2002

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327–4329 (2002).
[CrossRef]

2001

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86(6), 1110–1113 (2001).
[CrossRef] [PubMed]

2000

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. Dela Rau, and P. Miller, “Two dimensional penrose-tiled photonic quasicrystals: from diffraction pattern to band structure,” Nanotechnology 11(4), 274–280 (2000).
[CrossRef]

1999

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Abram, R. A.

D. T. Roper, D. M. Beggs, M. A. Kaliteevski, S. Brand, and R. A. Abram, “Properties of two-dimensional photonic crystals with octagonal quasicrystalline unit cell,” J. Mod. Opt. 53(3), 407–416 (2006).
[CrossRef]

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. Dela Rau, and P. Miller, “Two dimensional penrose-tiled photonic quasicrystals: from diffraction pattern to band structure,” Nanotechnology 11(4), 274–280 (2000).
[CrossRef]

Agrawal, A.

Bai, M.

M. Bai and N. García, “Transmission of light by a single subwavelength cylindrical hole in metallic films,” Appl. Phys. Lett. 89(14), 141110.1–1411110, 3 (2006).
[CrossRef]

Baida, F. I.

F. I. Baida and D. Van Labeke, “Three-dimensional structures for enhanced transmission through a metallic film: annular aperture arrays,” Phys. Rev. B 67(15), 155314 (2003).
[CrossRef]

Barnes, W. L.

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327–4329 (2002).
[CrossRef]

Beggs, D. M.

D. T. Roper, D. M. Beggs, M. A. Kaliteevski, S. Brand, and R. A. Abram, “Properties of two-dimensional photonic crystals with octagonal quasicrystalline unit cell,” J. Mod. Opt. 53(3), 407–416 (2006).
[CrossRef]

Brand, S.

D. T. Roper, D. M. Beggs, M. A. Kaliteevski, S. Brand, and R. A. Abram, “Properties of two-dimensional photonic crystals with octagonal quasicrystalline unit cell,” J. Mod. Opt. 53(3), 407–416 (2006).
[CrossRef]

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. Dela Rau, and P. Miller, “Two dimensional penrose-tiled photonic quasicrystals: from diffraction pattern to band structure,” Nanotechnology 11(4), 274–280 (2000).
[CrossRef]

Bravo-Abad, J.

Brown, D. B.

L. Yin, V. Vlasov, A. Rydh, J. Pearson, U. Welp, S. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nano holes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

Brucoli, G.

F. Leon-Perez, G. Brucoli, F. Garcia-Vidal, and L. Martin-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” N. J. Phys. 10, 1–22 (2008).

Chang, S.

L. Yin, V. Vlasov, A. Rydh, J. Pearson, U. Welp, S. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nano holes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

Chang, S. H.

Cheng, Bing-Ying

M. Sun, J. Tian, Z-Y. Li, B-Y. Cheng, D-Z. Zhang, A-Z. Jin, and H-F. Yang, “The role of periodicity in enhanced transmission through subwavelength hole arrays,” Chin. Phys. Lett. 23(2), 486–488 (2006).
[CrossRef]

Ctistis, G.

G. Ctistis, P. Patoka, X. Wang, K. Kempa, and M. Giersig, “Optical transmission through hexagonal arrays of subwavelength holes in thin metal films,” Nano Lett. 7(9), 2926–2930 (2007).
[CrossRef] [PubMed]

de Fornel, F.

L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86(6), 1110–1113 (2001).
[CrossRef] [PubMed]

de Leon-Perez, F.

Degiron, A.

F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Leon-Perez, J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16(13), 9571–9579 (2008).
[CrossRef] [PubMed]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327–4329 (2002).
[CrossRef]

Dela Rau, R.

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. Dela Rau, and P. Miller, “Two dimensional penrose-tiled photonic quasicrystals: from diffraction pattern to band structure,” Nanotechnology 11(4), 274–280 (2000).
[CrossRef]

Dhawan, A.

A. Dhawan and J. F. Muth, “Engineering surface Plasmon based fiber-optics sensors,” Mater. Sci. Eng. B 149(3), 237–241 (2008).
[CrossRef]

Ebbesen, T. W.

F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Leon-Perez, J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16(13), 9571–9579 (2008).
[CrossRef] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

F. Przybilla, C. Genet, and T. W. Ebbesen, “Enhanced transmission through penrose subwavelength hole arrays,” Appl. Phys. Lett. 89(12), 121115.1–121115, 3 (2006).
[CrossRef]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327–4329 (2002).
[CrossRef]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett. 24(4), 256–258 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

García, N.

M. Bai and N. García, “Transmission of light by a single subwavelength cylindrical hole in metallic films,” Appl. Phys. Lett. 89(14), 141110.1–1411110, 3 (2006).
[CrossRef]

Garcia-Vidal, F.

F. Leon-Perez, G. Brucoli, F. Garcia-Vidal, and L. Martin-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” N. J. Phys. 10, 1–22 (2008).

Garcia-Vidal, F. J.

S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77(7), 075401.1–075401.8 (2008).
[CrossRef]

F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Leon-Perez, J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16(13), 9571–9579 (2008).
[CrossRef] [PubMed]

J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett. 93(22), 227401 (2004).
[CrossRef] [PubMed]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Genet, C.

F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Leon-Perez, J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16(13), 9571–9579 (2008).
[CrossRef] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

F. Przybilla, C. Genet, and T. W. Ebbesen, “Enhanced transmission through penrose subwavelength hole arrays,” Appl. Phys. Lett. 89(12), 121115.1–121115, 3 (2006).
[CrossRef]

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Giersig, M.

G. Ctistis, P. Patoka, X. Wang, K. Kempa, and M. Giersig, “Optical transmission through hexagonal arrays of subwavelength holes in thin metal films,” Nano Lett. 7(9), 2926–2930 (2007).
[CrossRef] [PubMed]

Gray, S. K.

S. H. Chang, S. K. Gray, and G. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express 13(8), 3150–3165 (2005).
[CrossRef] [PubMed]

L. Yin, V. Vlasov, A. Rydh, J. Pearson, U. Welp, S. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nano holes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

Grillot, F.

L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86(6), 1110–1113 (2001).
[CrossRef] [PubMed]

Grupp, D. E.

Jin, Ai-Zi

M. Sun, J. Tian, Z-Y. Li, B-Y. Cheng, D-Z. Zhang, A-Z. Jin, and H-F. Yang, “The role of periodicity in enhanced transmission through subwavelength hole arrays,” Chin. Phys. Lett. 23(2), 486–488 (2006).
[CrossRef]

Kaliteevski, M. A.

D. T. Roper, D. M. Beggs, M. A. Kaliteevski, S. Brand, and R. A. Abram, “Properties of two-dimensional photonic crystals with octagonal quasicrystalline unit cell,” J. Mod. Opt. 53(3), 407–416 (2006).
[CrossRef]

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. Dela Rau, and P. Miller, “Two dimensional penrose-tiled photonic quasicrystals: from diffraction pattern to band structure,” Nanotechnology 11(4), 274–280 (2000).
[CrossRef]

Kempa, K.

G. Ctistis, P. Patoka, X. Wang, K. Kempa, and M. Giersig, “Optical transmission through hexagonal arrays of subwavelength holes in thin metal films,” Nano Lett. 7(9), 2926–2930 (2007).
[CrossRef] [PubMed]

Kim, J. H.

Kim, T. J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett. 24(4), 256–258 (1999).
[CrossRef]

Kimball, C. W.

L. Yin, V. Vlasov, A. Rydh, J. Pearson, U. Welp, S. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nano holes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

Krauss, T. F.

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. Dela Rau, and P. Miller, “Two dimensional penrose-tiled photonic quasicrystals: from diffraction pattern to band structure,” Nanotechnology 11(4), 274–280 (2000).
[CrossRef]

Krishnan, A.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Leon-Perez, F.

F. Leon-Perez, G. Brucoli, F. Garcia-Vidal, and L. Martin-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” N. J. Phys. 10, 1–22 (2008).

Lezec, H. J.

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004).
[CrossRef] [PubMed]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327–4329 (2002).
[CrossRef]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett. 24(4), 256–258 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Martin-Moreno, L.

F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Leon-Perez, J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16(13), 9571–9579 (2008).
[CrossRef] [PubMed]

F. Leon-Perez, G. Brucoli, F. Garcia-Vidal, and L. Martin-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” N. J. Phys. 10, 1–22 (2008).

S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77(7), 075401.1–075401.8 (2008).
[CrossRef]

J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett. 93(22), 227401 (2004).
[CrossRef] [PubMed]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Matsui, T.

Miller, P.

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. Dela Rau, and P. Miller, “Two dimensional penrose-tiled photonic quasicrystals: from diffraction pattern to band structure,” Nanotechnology 11(4), 274–280 (2000).
[CrossRef]

Moyer, P. J.

Muth, J. F.

A. Dhawan and J. F. Muth, “Engineering surface Plasmon based fiber-optics sensors,” Mater. Sci. Eng. B 149(3), 237–241 (2008).
[CrossRef]

Nahata, A.

Patoka, P.

G. Ctistis, P. Patoka, X. Wang, K. Kempa, and M. Giersig, “Optical transmission through hexagonal arrays of subwavelength holes in thin metal films,” Nano Lett. 7(9), 2926–2930 (2007).
[CrossRef] [PubMed]

Pearson, J.

L. Yin, V. Vlasov, A. Rydh, J. Pearson, U. Welp, S. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nano holes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

Pendry, J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Przybilla, F.

Rodrigo, S. G.

S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77(7), 075401.1–075401.8 (2008).
[CrossRef]

Roper, D. T.

D. T. Roper, D. M. Beggs, M. A. Kaliteevski, S. Brand, and R. A. Abram, “Properties of two-dimensional photonic crystals with octagonal quasicrystalline unit cell,” J. Mod. Opt. 53(3), 407–416 (2006).
[CrossRef]

Rydh, A.

L. Yin, V. Vlasov, A. Rydh, J. Pearson, U. Welp, S. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nano holes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

Salomon, L.

L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86(6), 1110–1113 (2001).
[CrossRef] [PubMed]

Schatz, G.

Schatz, G. C.

L. Yin, V. Vlasov, A. Rydh, J. Pearson, U. Welp, S. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nano holes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

Sun, Mei

M. Sun, J. Tian, Z-Y. Li, B-Y. Cheng, D-Z. Zhang, A-Z. Jin, and H-F. Yang, “The role of periodicity in enhanced transmission through subwavelength hole arrays,” Chin. Phys. Lett. 23(2), 486–488 (2006).
[CrossRef]

Thio, T.

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004).
[CrossRef] [PubMed]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett. 24(4), 256–258 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Tian, Jie

M. Sun, J. Tian, Z-Y. Li, B-Y. Cheng, D-Z. Zhang, A-Z. Jin, and H-F. Yang, “The role of periodicity in enhanced transmission through subwavelength hole arrays,” Chin. Phys. Lett. 23(2), 486–488 (2006).
[CrossRef]

van Exter, M. P.

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[CrossRef]

Van Labeke, D.

F. I. Baida and D. Van Labeke, “Three-dimensional structures for enhanced transmission through a metallic film: annular aperture arrays,” Phys. Rev. B 67(15), 155314 (2003).
[CrossRef]

Vardeny, Z. V.

Vlasov, V.

L. Yin, V. Vlasov, A. Rydh, J. Pearson, U. Welp, S. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nano holes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

Wang, X.

G. Ctistis, P. Patoka, X. Wang, K. Kempa, and M. Giersig, “Optical transmission through hexagonal arrays of subwavelength holes in thin metal films,” Nano Lett. 7(9), 2926–2930 (2007).
[CrossRef] [PubMed]

Welp, U.

L. Yin, V. Vlasov, A. Rydh, J. Pearson, U. Welp, S. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nano holes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

Woerdman, J. P.

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[CrossRef]

Wolf, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Wolff, P. A.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Yang, Hai-Fang

M. Sun, J. Tian, Z-Y. Li, B-Y. Cheng, D-Z. Zhang, A-Z. Jin, and H-F. Yang, “The role of periodicity in enhanced transmission through subwavelength hole arrays,” Chin. Phys. Lett. 23(2), 486–488 (2006).
[CrossRef]

Yin, L.

L. Yin, V. Vlasov, A. Rydh, J. Pearson, U. Welp, S. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nano holes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

Zayats, A. V.

L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86(6), 1110–1113 (2001).
[CrossRef] [PubMed]

Zhang, Dao-Zhong

M. Sun, J. Tian, Z-Y. Li, B-Y. Cheng, D-Z. Zhang, A-Z. Jin, and H-F. Yang, “The role of periodicity in enhanced transmission through subwavelength hole arrays,” Chin. Phys. Lett. 23(2), 486–488 (2006).
[CrossRef]

Zhi-Yuan, Li

M. Sun, J. Tian, Z-Y. Li, B-Y. Cheng, D-Z. Zhang, A-Z. Jin, and H-F. Yang, “The role of periodicity in enhanced transmission through subwavelength hole arrays,” Chin. Phys. Lett. 23(2), 486–488 (2006).
[CrossRef]

Appl. Phys. Lett.

L. Yin, V. Vlasov, A. Rydh, J. Pearson, U. Welp, S. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nano holes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327–4329 (2002).
[CrossRef]

F. Przybilla, C. Genet, and T. W. Ebbesen, “Enhanced transmission through penrose subwavelength hole arrays,” Appl. Phys. Lett. 89(12), 121115.1–121115, 3 (2006).
[CrossRef]

M. Bai and N. García, “Transmission of light by a single subwavelength cylindrical hole in metallic films,” Appl. Phys. Lett. 89(14), 141110.1–1411110, 3 (2006).
[CrossRef]

Chin. Phys. Lett.

M. Sun, J. Tian, Z-Y. Li, B-Y. Cheng, D-Z. Zhang, A-Z. Jin, and H-F. Yang, “The role of periodicity in enhanced transmission through subwavelength hole arrays,” Chin. Phys. Lett. 23(2), 486–488 (2006).
[CrossRef]

J. Mod. Opt.

D. T. Roper, D. M. Beggs, M. A. Kaliteevski, S. Brand, and R. A. Abram, “Properties of two-dimensional photonic crystals with octagonal quasicrystalline unit cell,” J. Mod. Opt. 53(3), 407–416 (2006).
[CrossRef]

J. Opt. Soc. Am. B

Mater. Sci. Eng. B

A. Dhawan and J. F. Muth, “Engineering surface Plasmon based fiber-optics sensors,” Mater. Sci. Eng. B 149(3), 237–241 (2008).
[CrossRef]

N. J. Phys.

F. Leon-Perez, G. Brucoli, F. Garcia-Vidal, and L. Martin-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” N. J. Phys. 10, 1–22 (2008).

Nano Lett.

G. Ctistis, P. Patoka, X. Wang, K. Kempa, and M. Giersig, “Optical transmission through hexagonal arrays of subwavelength holes in thin metal films,” Nano Lett. 7(9), 2926–2930 (2007).
[CrossRef] [PubMed]

Nanotechnology

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. Dela Rau, and P. Miller, “Two dimensional penrose-tiled photonic quasicrystals: from diffraction pattern to band structure,” Nanotechnology 11(4), 274–280 (2000).
[CrossRef]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Opt. Commun.

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[CrossRef]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

F. I. Baida and D. Van Labeke, “Three-dimensional structures for enhanced transmission through a metallic film: annular aperture arrays,” Phys. Rev. B 67(15), 155314 (2003).
[CrossRef]

S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77(7), 075401.1–075401.8 (2008).
[CrossRef]

Phys. Rev. Lett.

J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett. 93(22), 227401 (2004).
[CrossRef] [PubMed]

L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86(6), 1110–1113 (2001).
[CrossRef] [PubMed]

Other

R. Komrska, “Finite crystal lattice and its Fourier transform. lattice amplitude and shape amplitude”. http://physics.fme.vutbr.cz/~komrska/Eng/KapF17.pdf .

D. W. Lynch, and W. R. Hunter, Handbook of Optical Constants of Solids (E. D. Palick, Ed. Orlando, FL Academic, 1985).

FDTD Lumerical Solutions Inc, www.lumerical.com .

J. Xue, W. Zhou, B. Dong, X. Wang, Y. Chen, E. Huq, W. Zeng, X. Qu, and R. Liu, “Surface Plasmon enhanced transmission through planar gold quasicrystals fabricated by focused ion beam technique,” Microelectronic Engineering. http://homepage.fudan.edu.cn/~fdnil/paper/Surface%20plasmon%20enhanced%20transmission%20through%20planar%20gold.PDF .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic illustration of (a) Octagonal CPHA, (b) Decagonal CPHA, (c) Square array, and (d) Hexagonal array. Note the unit rhombic cells marked in red lines in (a), (b)

Fig. 2
Fig. 2

(a) Structural parameters of the D-film, and hole arrangements over D-film of (b)Octagonal CPHA, (c)Decagonal CPHA, (d)Hexagonal array,(f) Square array.

Fig. 3
Fig. 3

Illustration of basic reciprocal vectors, G1 and G2, and their corresponding hole-to-hole distance, a1 and a2 for (a) Squre array, and (b) Hexagonal array. a1 and a2 are the distance between two adjacent holes.

Fig. 4
Fig. 4

Reciprocal vectors in Fourier representation for (a) Octagonal CPHA, (b) Decagonal CPHA, (c) Penrose array. Basic reciprocal vectors denoted by Fi s . The insets are real space representations.

Fig. 5
Fig. 5

Transmission of (a) Square and (b) Hexagonal arrays in F-film and D-film at d= 200nm, Λ= 600 nm, and h=340 nm. Numbers 1~7 referred to spectral position of SPP-BWs and their assignments are summarized in Table1.

Fig. 6
Fig. 6

Illustration of octagonal CPHA (a) in real space with the nearest-neighbor hole-to-hole distances, (b) in reciprocal space. Reciprocal vectors related with Λ. a, c, d, Λ and their fractions are shown in concentric circles in the reciprocal space: Ga, Ga/2 (orange); Gc, Gc/2, Gc/3(red), Gd,Gd/2(green);and GΛ (light blue), and Ge, Ge/2(dark blue).

Fig. 7
Fig. 7

Illustration of decagonal CPHA (a) in real space with the nearest-neighbor hole-to-hole distances (b) in reciprocal space. Reciprocal vectors related with a’, c’, d’, Λ and their fractions in real space are shown in concentric circles in the reciprocal space: Ga’,Ga’/2,Ga’/3 (orange); Gc’,Gc’/2, Gc’/3, Gc’/4 (red), Gd’ (green);and GΛ (light blue).

Fig. 8
Fig. 8

Transmission spectra of (a) Octagonal, and (b) Decagonal CPHAs for d=200nm, Λ = 600 nm, and h=340 nm. Roman numbers are resonant wavelengths calculated by FDTD and the assignments are summarized in Table 2, 3. Vertical scales are different for D-film on the left y-axis, and F-film on the right y-axis that is ~5 times larger.

Fig. 9
Fig. 9

Optical transmission of (a) Square array,(b) Hexagonal array, (c) Octagonal CPHA and (d) Decagonal CPHA for various values of hole size (d), hole pitch(Λ),and film thickness (h).

Fig. 10
Fig. 10

Averaged spectral transmission (AST) of square array, hexagonal array, octagonal CPHA, and decagonal CPHA against hole fraction(d/Λ) for Λ=600nm and h=340 nm.

Fig. 11
Fig. 11

Transmission variation of (a) EOT peaks: iii, iv, v, and vi in octagonal CPHA and (b) EOT peaks: iii', iv', vi', and vii’ in decagonal CPHA versus variation of film thickness.

Tables (3)

Tables Icon

Table1 Spectral Positions of SPP-BW (λr) and Wood’s Anomalies (λW), in Square and Hexagonal Arrays in D-film.

Tables Icon

Table 2 Assignment of EOT Peaks in the Octagonal CPHA in D-film Structure for Fig. 8(a)

Tables Icon

Table 3 Assignment of EOT Peaks in the Decagonal CPHA in D-film Structure for Fig. 8(b)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

λ r = α Λ ε d ( ω ) ε m ( ω ) ( ε d ( ω ) + ε m ( ω ) ) ( i 2 + j 2 + η i j )
G = i G 1 + j G 2
λ r = 2 π | G S P P | ε d ( ω ) ε m ( ω ) ε d ( ω ) + ε m ( ω )
G = j = 1 , 0 , 1 { i = 1 N j F i }

Metrics