Abstract

Imaging ultracold atomic gases close to surfaces is an important tool for the detailed analysis of experiments carried out using atom chips. We describe the critical factors that need be considered, especially when the imaging beam is purposely reflected from the surface. In particular we present methods to measure the atom-surface distance, which is a prerequisite for magnetic field imaging and studies of atom surface-interactions.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Atom Chips , J. Reichel and V. Vuletic, eds. (Wiley VCH, 2011).
    [CrossRef]
  2. J. Fortágh and C. Zimmermann, “Magnetic microtraps for ultracold atoms,” Rev. Mod. Phys. 79, 235 (2007).
    [CrossRef]
  3. R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At. Mol. Opt. Phys. 48, 263–356 (2002).
  4. J. Schmiedmayer, “A wire trap for neutral atoms,” Appl. Phys. B 60, 169–179 (1995).
    [CrossRef]
  5. J. Reichel, W. Hänsel, and T. W. Hänsch, “Atomic Micromanipulation with Magnetic Surface Traps,” Phys. Rev. Lett. 83, 3398 (1999).
    [CrossRef]
  6. D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, “Guiding neutral atoms around curves with lithographically patterned current-carrying wires,” Phys. Rev. Lett. 83, 5194 (1999).
    [CrossRef]
  7. R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: atom chips,” Phys. Rev. Lett. 84, 4749 (2000).
    [CrossRef] [PubMed]
  8. N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndić, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124 (2000).
    [CrossRef] [PubMed]
  9. D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam splitter for guided atoms,” Phys. Rev. Lett. 85, 5483–5487 (2000).
    [CrossRef]
  10. W. Hänsel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86, 608 (2001).
    [CrossRef] [PubMed]
  11. J. Denschlag, G. Umshaus, and J. Schmiedmayer, “Probing a singular potential with cold atoms: A neutral atom and a charged wire,” Phys. Rev. Lett. , 81, 737, (1998)
    [CrossRef]
  12. P. Krüger, X. Luo, M. W. Klein, K. Brugger, A. Haase, S. Wildermuth, S. Groth, I. Bar-Joseph, R. Folman, and J. Schmiedmayer, “Trapping and manipulating neutral atoms with electrostatic fields,” Phys. Rev. Lett. 91, 233201 (2003).
    [CrossRef] [PubMed]
  13. H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401 (2001).
    [CrossRef] [PubMed]
  14. W. Hänsel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498 (2001).
    [CrossRef] [PubMed]
  15. A. E. Leanhardt, A. P. Chikkatur, D. Kielpinski, Y. Shin, T. L. Gustavson, W. Ketterle, and D. E. Pritchard, “Propagation of Bose-Einstein condensates in a magnetic waveguide,” Phys. Rev. Lett. 89, 40401 (2002).
    [CrossRef]
  16. C. D. J. Sinclair, E. A. Curtis, I. L. Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein condensation on a permanent-magnet atom chip,” Phys. Rev. A 72, 031603 (2005).
    [CrossRef]
  17. Y. Lin, I. Teper, C. Chin, and V. Vuletić, “Impact of the Casimir-Polder potential and Johnson noise on Bose-Einstein condensate stability near surfaces,” Phys. Rev. Lett. 92, 50404 (2004).
    [CrossRef]
  18. J. Fortagh, H. Ott, S. Kraft, A. Gunther, and C. Zimmermann, “Surface effects in magnetic microtraps,” Phys. Rev. A 66, 041604 (2002).
    [CrossRef]
  19. A. E. Leanhardt, Y. Shin, A. P. Chikkatur, D. Kielpinski, W. Ketterle, and D. E. Pritchard, “Bose-Einstein condensates near a microfabricated surface,” Phys. Rev. Lett. 90, 100404 (2003).
    [CrossRef] [PubMed]
  20. M. Jones, C. Vale, D. Sahagun, B. Hall, C. Eberlein, B. Sauer, K. Furusawa, D. Richardson, and E. Hinds, “Cold atoms probe the magnetic field near a wire,” J. Phys. B 37, L15–L20 (2004)
    [CrossRef]
  21. J. Esteve, C. Aussibal, T. Schumm, C. Figl, D. Mailly, I. Bouchoule, C. Westbrook, and A. Aspect, “Role of wire imperfections in micromagnetic traps for atoms,” Phys. Rev. A 70042629 (2004)
    [CrossRef]
  22. S. Wildermuth, S. Hofferberth, I. Lesanovsky, E. Haller, L. M. Andersson, S. Groth, I. Bar-Joseph, P. Krüger, and J. Schmiedmayer, “Microscopic magnetic-field imaging,” Nature 435, 440 (2005).
    [CrossRef] [PubMed]
  23. A. Günther, M. Kemmler, S. Kraft, C. J. Vale, C. Zimmermann, and J. Fortagh, “Combined chips for atom-optics,” Phys. Rev. A 71, 63619 (2005).
    [CrossRef]
  24. S. Aigner, L. Della Pietra, Y. Japha, O. Entin-Wohlman, T. David, R. Salem, R. Folman, and J. Schmiedmayer, “Long-range order in electronic transport through disordered metal films,” Science 319, 1226–1229 (2008).
    [CrossRef] [PubMed]
  25. P. Treutlein, P. Hommelhoff, T. Steinmetz, T. W. Hänsch, and J. Reichel, “Coherence in Microchip Traps,” Phys. Rev. Lett. 92, 203005 (2004).
    [CrossRef] [PubMed]
  26. S. Hofferberth, I. Lesanovsky, B. Fischer, J. Verdú, and J. Schmiedmayer, “Radio-frequency dressed state potentials for neutral atoms,” Nat. Phys. 2, 710–716 (2006).
    [CrossRef]
  27. T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Krüger, “Matter wave interferometry in a double well on an atom chip,” Nat. Phys. 1, 57–62 (2005).
    [CrossRef]
  28. Y. Wang, D. Anderson, V. Bright, E. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. Saravanan, S. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005)
    [CrossRef] [PubMed]
  29. P. Böhi, M. F. Riedel, J. Hoffrogge, J. Reichel, T. W. Hänsch, and P. Treutlein, “Coherent manipulation of Bose-Einstein condensates with state-dependent microwave potentials on an atom chip,” Nat. Phys. 5, 592 (2009).
    [CrossRef]
  30. T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 22304 (2000).
    [CrossRef]
  31. P. Treutlein, T. W. Hänsch, J. Reichel, A. Negretti, M. A. Cirone, and T. Calarco, “Microwave potentials and optimal control for robust quantum gates on an atom chip,” Phys. Rev. A 74, 22312 (2006).
    [CrossRef]
  32. S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm, and J. Schmiedmayer, “Non-equilibrium coherence dynamics in one-dimensional Bose gases,” Nature 449, 324–327 (2007).
    [CrossRef] [PubMed]
  33. J. Armijo, T. Jacqmin, K. Kheruntsyan, and I. Bouchoule, “Probing three-body correlations in a quantum gas using the measurement of the third moment of density fluctuations,” Phys. Rev. Lett. 105, 3–6 (2010).
    [CrossRef]
  34. A. van Amerongen, J. van Es, P. Wicke, K. Kheruntsyan, and N. van Druten, “Yang-Yang thermodynamics on an atom chip,” Phys. Rev. Lett. 100, 13–15 (2008).
    [CrossRef]
  35. W. Ketterle, D. S. Durfee, and D. M. Stamper-Kurn, “Making, probing and understanding Bose-Einstein condensates,” in “Bose-Einstein condensation in atomic gases ,”, M. Inguscio, S. Stringari, and C. E. Wieman, eds. (IOS Press, Amsterdam, 1999), Proceedings of the International School of Physics Enrico Fermi, Course CXL, pp. 67–176.
  36. S. Schneider, A. Kasper, C. vom Hagen, M. Bartenstein, B. Engeser, T. Schumm, I. Bar-Joseph, R. Folman, L. Feenstra, and J. Schmiedmayer, “Bose-Einstein condensation in a simple microtrap,” Phys. Rev. A 67, 23612 (2003).
    [CrossRef]
  37. R. Bücker, A. Perrin, S. Manz, T. Betz, C. Koller, T. Plisson, J. Rottmann, T. Schumm, and J. Schmiedmayer, “Single-particle-sensitive imaging of freely propagating ultracold atoms,” N. J. Phys. 11, 103039 (2009).
    [CrossRef]
  38. S. Groth, P. Krüger, S. Wildermuth, R. Folman, T. Fernholz, J. Schmiedmayer, D. Mahalu, and I. Bar-Joseph, “Atom chips: fabrication and thermal properties,” Appl. Phys. Lett. 85, 2980 (2004).
    [CrossRef]
  39. M. Trinker, S. Groth, S. Haslinger, S. Manz, T. Betz, S. Schneider, I. Bar-Joseph, T. Schumm, and J. Schmiedmayer, “Multilayer atom chips for versatile atom micromanipulation,” Appl. Phys. Lett. 92, 254102 (2008).
    [CrossRef]
  40. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).
  41. B. E. A. Saleh and M. C. Teich, Fundamentals Of Photonics (John Wiley & Sons, 1991).
    [CrossRef]
  42. C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and S. Whitlock, “Detection of small atom numbers through image processing,” Phys. Rev. A 82, 061606 (2010).
    [CrossRef]
  43. P. Krüger, L. M. Andersson, S. Wildermuth, S. Hofferberth, E. Haller, S. Aigner, S. Groth, I. Bar-Joseph, and J. Schmiedmayer, “Potential roughness near lithographically fabricated atom chips,” Phys. Rev. A 76, 063621 (2007).
    [CrossRef]
  44. M. Wilzbach, A. Haase, M. Schwarz, D. Heine, K. Wicker, X. Liu, K.-H. Brenner, S. Groth, T. Fernholz, B. Hessmo, and J. Schmiedmayer, “Detecting neutral atoms on an atom chip,” Fortschr. Phys. 54, 746 (2006).
    [CrossRef]
  45. D. A. Steck, “Rubidium 87 D Line Data,” (2001), http://steck.us/alkalidata/rubidium87numbers.pdf .
  46. D. Heine, W. Rohringer, D. Fischer, M. Wilzbach, T. Raub, S. Loziczky, X. Liu, S. Groth, B. Hessmo, and J. Schmiedmayer, “A single-atom detector integrated on an atom chip: fabrication, characterization and application,” N. J. Phys. 12, 095005 (2010).
    [CrossRef]
  47. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272 (2007).
    [CrossRef] [PubMed]
  48. S. Kraft, A. Günther, J. Fortágh, and C. Zimmermann, “Spatially resolved photoionization of ultracold atoms on an atom chip,” Phys. Rev. A 75, 1–5 (2007).
    [CrossRef]

2010 (3)

J. Armijo, T. Jacqmin, K. Kheruntsyan, and I. Bouchoule, “Probing three-body correlations in a quantum gas using the measurement of the third moment of density fluctuations,” Phys. Rev. Lett. 105, 3–6 (2010).
[CrossRef]

C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and S. Whitlock, “Detection of small atom numbers through image processing,” Phys. Rev. A 82, 061606 (2010).
[CrossRef]

D. Heine, W. Rohringer, D. Fischer, M. Wilzbach, T. Raub, S. Loziczky, X. Liu, S. Groth, B. Hessmo, and J. Schmiedmayer, “A single-atom detector integrated on an atom chip: fabrication, characterization and application,” N. J. Phys. 12, 095005 (2010).
[CrossRef]

2009 (2)

R. Bücker, A. Perrin, S. Manz, T. Betz, C. Koller, T. Plisson, J. Rottmann, T. Schumm, and J. Schmiedmayer, “Single-particle-sensitive imaging of freely propagating ultracold atoms,” N. J. Phys. 11, 103039 (2009).
[CrossRef]

P. Böhi, M. F. Riedel, J. Hoffrogge, J. Reichel, T. W. Hänsch, and P. Treutlein, “Coherent manipulation of Bose-Einstein condensates with state-dependent microwave potentials on an atom chip,” Nat. Phys. 5, 592 (2009).
[CrossRef]

2008 (3)

S. Aigner, L. Della Pietra, Y. Japha, O. Entin-Wohlman, T. David, R. Salem, R. Folman, and J. Schmiedmayer, “Long-range order in electronic transport through disordered metal films,” Science 319, 1226–1229 (2008).
[CrossRef] [PubMed]

A. van Amerongen, J. van Es, P. Wicke, K. Kheruntsyan, and N. van Druten, “Yang-Yang thermodynamics on an atom chip,” Phys. Rev. Lett. 100, 13–15 (2008).
[CrossRef]

M. Trinker, S. Groth, S. Haslinger, S. Manz, T. Betz, S. Schneider, I. Bar-Joseph, T. Schumm, and J. Schmiedmayer, “Multilayer atom chips for versatile atom micromanipulation,” Appl. Phys. Lett. 92, 254102 (2008).
[CrossRef]

2007 (5)

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272 (2007).
[CrossRef] [PubMed]

S. Kraft, A. Günther, J. Fortágh, and C. Zimmermann, “Spatially resolved photoionization of ultracold atoms on an atom chip,” Phys. Rev. A 75, 1–5 (2007).
[CrossRef]

S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm, and J. Schmiedmayer, “Non-equilibrium coherence dynamics in one-dimensional Bose gases,” Nature 449, 324–327 (2007).
[CrossRef] [PubMed]

P. Krüger, L. M. Andersson, S. Wildermuth, S. Hofferberth, E. Haller, S. Aigner, S. Groth, I. Bar-Joseph, and J. Schmiedmayer, “Potential roughness near lithographically fabricated atom chips,” Phys. Rev. A 76, 063621 (2007).
[CrossRef]

J. Fortágh and C. Zimmermann, “Magnetic microtraps for ultracold atoms,” Rev. Mod. Phys. 79, 235 (2007).
[CrossRef]

2006 (3)

M. Wilzbach, A. Haase, M. Schwarz, D. Heine, K. Wicker, X. Liu, K.-H. Brenner, S. Groth, T. Fernholz, B. Hessmo, and J. Schmiedmayer, “Detecting neutral atoms on an atom chip,” Fortschr. Phys. 54, 746 (2006).
[CrossRef]

P. Treutlein, T. W. Hänsch, J. Reichel, A. Negretti, M. A. Cirone, and T. Calarco, “Microwave potentials and optimal control for robust quantum gates on an atom chip,” Phys. Rev. A 74, 22312 (2006).
[CrossRef]

S. Hofferberth, I. Lesanovsky, B. Fischer, J. Verdú, and J. Schmiedmayer, “Radio-frequency dressed state potentials for neutral atoms,” Nat. Phys. 2, 710–716 (2006).
[CrossRef]

2005 (5)

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Krüger, “Matter wave interferometry in a double well on an atom chip,” Nat. Phys. 1, 57–62 (2005).
[CrossRef]

Y. Wang, D. Anderson, V. Bright, E. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. Saravanan, S. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005)
[CrossRef] [PubMed]

S. Wildermuth, S. Hofferberth, I. Lesanovsky, E. Haller, L. M. Andersson, S. Groth, I. Bar-Joseph, P. Krüger, and J. Schmiedmayer, “Microscopic magnetic-field imaging,” Nature 435, 440 (2005).
[CrossRef] [PubMed]

A. Günther, M. Kemmler, S. Kraft, C. J. Vale, C. Zimmermann, and J. Fortagh, “Combined chips for atom-optics,” Phys. Rev. A 71, 63619 (2005).
[CrossRef]

C. D. J. Sinclair, E. A. Curtis, I. L. Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein condensation on a permanent-magnet atom chip,” Phys. Rev. A 72, 031603 (2005).
[CrossRef]

2004 (5)

Y. Lin, I. Teper, C. Chin, and V. Vuletić, “Impact of the Casimir-Polder potential and Johnson noise on Bose-Einstein condensate stability near surfaces,” Phys. Rev. Lett. 92, 50404 (2004).
[CrossRef]

M. Jones, C. Vale, D. Sahagun, B. Hall, C. Eberlein, B. Sauer, K. Furusawa, D. Richardson, and E. Hinds, “Cold atoms probe the magnetic field near a wire,” J. Phys. B 37, L15–L20 (2004)
[CrossRef]

J. Esteve, C. Aussibal, T. Schumm, C. Figl, D. Mailly, I. Bouchoule, C. Westbrook, and A. Aspect, “Role of wire imperfections in micromagnetic traps for atoms,” Phys. Rev. A 70042629 (2004)
[CrossRef]

P. Treutlein, P. Hommelhoff, T. Steinmetz, T. W. Hänsch, and J. Reichel, “Coherence in Microchip Traps,” Phys. Rev. Lett. 92, 203005 (2004).
[CrossRef] [PubMed]

S. Groth, P. Krüger, S. Wildermuth, R. Folman, T. Fernholz, J. Schmiedmayer, D. Mahalu, and I. Bar-Joseph, “Atom chips: fabrication and thermal properties,” Appl. Phys. Lett. 85, 2980 (2004).
[CrossRef]

2003 (3)

S. Schneider, A. Kasper, C. vom Hagen, M. Bartenstein, B. Engeser, T. Schumm, I. Bar-Joseph, R. Folman, L. Feenstra, and J. Schmiedmayer, “Bose-Einstein condensation in a simple microtrap,” Phys. Rev. A 67, 23612 (2003).
[CrossRef]

A. E. Leanhardt, Y. Shin, A. P. Chikkatur, D. Kielpinski, W. Ketterle, and D. E. Pritchard, “Bose-Einstein condensates near a microfabricated surface,” Phys. Rev. Lett. 90, 100404 (2003).
[CrossRef] [PubMed]

P. Krüger, X. Luo, M. W. Klein, K. Brugger, A. Haase, S. Wildermuth, S. Groth, I. Bar-Joseph, R. Folman, and J. Schmiedmayer, “Trapping and manipulating neutral atoms with electrostatic fields,” Phys. Rev. Lett. 91, 233201 (2003).
[CrossRef] [PubMed]

2002 (3)

J. Fortagh, H. Ott, S. Kraft, A. Gunther, and C. Zimmermann, “Surface effects in magnetic microtraps,” Phys. Rev. A 66, 041604 (2002).
[CrossRef]

A. E. Leanhardt, A. P. Chikkatur, D. Kielpinski, Y. Shin, T. L. Gustavson, W. Ketterle, and D. E. Pritchard, “Propagation of Bose-Einstein condensates in a magnetic waveguide,” Phys. Rev. Lett. 89, 40401 (2002).
[CrossRef]

R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At. Mol. Opt. Phys. 48, 263–356 (2002).

2001 (3)

W. Hänsel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86, 608 (2001).
[CrossRef] [PubMed]

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401 (2001).
[CrossRef] [PubMed]

W. Hänsel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498 (2001).
[CrossRef] [PubMed]

2000 (4)

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: atom chips,” Phys. Rev. Lett. 84, 4749 (2000).
[CrossRef] [PubMed]

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndić, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124 (2000).
[CrossRef] [PubMed]

D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam splitter for guided atoms,” Phys. Rev. Lett. 85, 5483–5487 (2000).
[CrossRef]

T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 22304 (2000).
[CrossRef]

1999 (2)

J. Reichel, W. Hänsel, and T. W. Hänsch, “Atomic Micromanipulation with Magnetic Surface Traps,” Phys. Rev. Lett. 83, 3398 (1999).
[CrossRef]

D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, “Guiding neutral atoms around curves with lithographically patterned current-carrying wires,” Phys. Rev. Lett. 83, 5194 (1999).
[CrossRef]

1998 (1)

J. Denschlag, G. Umshaus, and J. Schmiedmayer, “Probing a singular potential with cold atoms: A neutral atom and a charged wire,” Phys. Rev. Lett. , 81, 737, (1998)
[CrossRef]

1995 (1)

J. Schmiedmayer, “A wire trap for neutral atoms,” Appl. Phys. B 60, 169–179 (1995).
[CrossRef]

Aigner, S.

S. Aigner, L. Della Pietra, Y. Japha, O. Entin-Wohlman, T. David, R. Salem, R. Folman, and J. Schmiedmayer, “Long-range order in electronic transport through disordered metal films,” Science 319, 1226–1229 (2008).
[CrossRef] [PubMed]

P. Krüger, L. M. Andersson, S. Wildermuth, S. Hofferberth, E. Haller, S. Aigner, S. Groth, I. Bar-Joseph, and J. Schmiedmayer, “Potential roughness near lithographically fabricated atom chips,” Phys. Rev. A 76, 063621 (2007).
[CrossRef]

Anderson, D.

Y. Wang, D. Anderson, V. Bright, E. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. Saravanan, S. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005)
[CrossRef] [PubMed]

Anderson, D. Z.

D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, “Guiding neutral atoms around curves with lithographically patterned current-carrying wires,” Phys. Rev. Lett. 83, 5194 (1999).
[CrossRef]

Andersson, L. M.

P. Krüger, L. M. Andersson, S. Wildermuth, S. Hofferberth, E. Haller, S. Aigner, S. Groth, I. Bar-Joseph, and J. Schmiedmayer, “Potential roughness near lithographically fabricated atom chips,” Phys. Rev. A 76, 063621 (2007).
[CrossRef]

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Krüger, “Matter wave interferometry in a double well on an atom chip,” Nat. Phys. 1, 57–62 (2005).
[CrossRef]

S. Wildermuth, S. Hofferberth, I. Lesanovsky, E. Haller, L. M. Andersson, S. Groth, I. Bar-Joseph, P. Krüger, and J. Schmiedmayer, “Microscopic magnetic-field imaging,” Nature 435, 440 (2005).
[CrossRef] [PubMed]

Armijo, J.

J. Armijo, T. Jacqmin, K. Kheruntsyan, and I. Bouchoule, “Probing three-body correlations in a quantum gas using the measurement of the third moment of density fluctuations,” Phys. Rev. Lett. 105, 3–6 (2010).
[CrossRef]

Aspect, A.

J. Esteve, C. Aussibal, T. Schumm, C. Figl, D. Mailly, I. Bouchoule, C. Westbrook, and A. Aspect, “Role of wire imperfections in micromagnetic traps for atoms,” Phys. Rev. A 70042629 (2004)
[CrossRef]

Aussibal, C.

J. Esteve, C. Aussibal, T. Schumm, C. Figl, D. Mailly, I. Bouchoule, C. Westbrook, and A. Aspect, “Role of wire imperfections in micromagnetic traps for atoms,” Phys. Rev. A 70042629 (2004)
[CrossRef]

Bar-Joseph, I.

M. Trinker, S. Groth, S. Haslinger, S. Manz, T. Betz, S. Schneider, I. Bar-Joseph, T. Schumm, and J. Schmiedmayer, “Multilayer atom chips for versatile atom micromanipulation,” Appl. Phys. Lett. 92, 254102 (2008).
[CrossRef]

P. Krüger, L. M. Andersson, S. Wildermuth, S. Hofferberth, E. Haller, S. Aigner, S. Groth, I. Bar-Joseph, and J. Schmiedmayer, “Potential roughness near lithographically fabricated atom chips,” Phys. Rev. A 76, 063621 (2007).
[CrossRef]

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Krüger, “Matter wave interferometry in a double well on an atom chip,” Nat. Phys. 1, 57–62 (2005).
[CrossRef]

S. Wildermuth, S. Hofferberth, I. Lesanovsky, E. Haller, L. M. Andersson, S. Groth, I. Bar-Joseph, P. Krüger, and J. Schmiedmayer, “Microscopic magnetic-field imaging,” Nature 435, 440 (2005).
[CrossRef] [PubMed]

S. Groth, P. Krüger, S. Wildermuth, R. Folman, T. Fernholz, J. Schmiedmayer, D. Mahalu, and I. Bar-Joseph, “Atom chips: fabrication and thermal properties,” Appl. Phys. Lett. 85, 2980 (2004).
[CrossRef]

S. Schneider, A. Kasper, C. vom Hagen, M. Bartenstein, B. Engeser, T. Schumm, I. Bar-Joseph, R. Folman, L. Feenstra, and J. Schmiedmayer, “Bose-Einstein condensation in a simple microtrap,” Phys. Rev. A 67, 23612 (2003).
[CrossRef]

P. Krüger, X. Luo, M. W. Klein, K. Brugger, A. Haase, S. Wildermuth, S. Groth, I. Bar-Joseph, R. Folman, and J. Schmiedmayer, “Trapping and manipulating neutral atoms with electrostatic fields,” Phys. Rev. Lett. 91, 233201 (2003).
[CrossRef] [PubMed]

Bartenstein, M.

S. Schneider, A. Kasper, C. vom Hagen, M. Bartenstein, B. Engeser, T. Schumm, I. Bar-Joseph, R. Folman, L. Feenstra, and J. Schmiedmayer, “Bose-Einstein condensation in a simple microtrap,” Phys. Rev. A 67, 23612 (2003).
[CrossRef]

Betz, T.

R. Bücker, A. Perrin, S. Manz, T. Betz, C. Koller, T. Plisson, J. Rottmann, T. Schumm, and J. Schmiedmayer, “Single-particle-sensitive imaging of freely propagating ultracold atoms,” N. J. Phys. 11, 103039 (2009).
[CrossRef]

M. Trinker, S. Groth, S. Haslinger, S. Manz, T. Betz, S. Schneider, I. Bar-Joseph, T. Schumm, and J. Schmiedmayer, “Multilayer atom chips for versatile atom micromanipulation,” Appl. Phys. Lett. 92, 254102 (2008).
[CrossRef]

Böhi, P.

P. Böhi, M. F. Riedel, J. Hoffrogge, J. Reichel, T. W. Hänsch, and P. Treutlein, “Coherent manipulation of Bose-Einstein condensates with state-dependent microwave potentials on an atom chip,” Nat. Phys. 5, 592 (2009).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).

Bouchoule, I.

J. Armijo, T. Jacqmin, K. Kheruntsyan, and I. Bouchoule, “Probing three-body correlations in a quantum gas using the measurement of the third moment of density fluctuations,” Phys. Rev. Lett. 105, 3–6 (2010).
[CrossRef]

J. Esteve, C. Aussibal, T. Schumm, C. Figl, D. Mailly, I. Bouchoule, C. Westbrook, and A. Aspect, “Role of wire imperfections in micromagnetic traps for atoms,” Phys. Rev. A 70042629 (2004)
[CrossRef]

Brenner, K.-H.

M. Wilzbach, A. Haase, M. Schwarz, D. Heine, K. Wicker, X. Liu, K.-H. Brenner, S. Groth, T. Fernholz, B. Hessmo, and J. Schmiedmayer, “Detecting neutral atoms on an atom chip,” Fortschr. Phys. 54, 746 (2006).
[CrossRef]

Bright, V.

Y. Wang, D. Anderson, V. Bright, E. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. Saravanan, S. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005)
[CrossRef] [PubMed]

Brugger, K.

P. Krüger, X. Luo, M. W. Klein, K. Brugger, A. Haase, S. Wildermuth, S. Groth, I. Bar-Joseph, R. Folman, and J. Schmiedmayer, “Trapping and manipulating neutral atoms with electrostatic fields,” Phys. Rev. Lett. 91, 233201 (2003).
[CrossRef] [PubMed]

Bücker, R.

R. Bücker, A. Perrin, S. Manz, T. Betz, C. Koller, T. Plisson, J. Rottmann, T. Schumm, and J. Schmiedmayer, “Single-particle-sensitive imaging of freely propagating ultracold atoms,” N. J. Phys. 11, 103039 (2009).
[CrossRef]

Calarco, T.

P. Treutlein, T. W. Hänsch, J. Reichel, A. Negretti, M. A. Cirone, and T. Calarco, “Microwave potentials and optimal control for robust quantum gates on an atom chip,” Phys. Rev. A 74, 22312 (2006).
[CrossRef]

T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 22304 (2000).
[CrossRef]

Cassettari, D.

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: atom chips,” Phys. Rev. Lett. 84, 4749 (2000).
[CrossRef] [PubMed]

D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam splitter for guided atoms,” Phys. Rev. Lett. 85, 5483–5487 (2000).
[CrossRef]

Chikkatur, A. P.

A. E. Leanhardt, Y. Shin, A. P. Chikkatur, D. Kielpinski, W. Ketterle, and D. E. Pritchard, “Bose-Einstein condensates near a microfabricated surface,” Phys. Rev. Lett. 90, 100404 (2003).
[CrossRef] [PubMed]

A. E. Leanhardt, A. P. Chikkatur, D. Kielpinski, Y. Shin, T. L. Gustavson, W. Ketterle, and D. E. Pritchard, “Propagation of Bose-Einstein condensates in a magnetic waveguide,” Phys. Rev. Lett. 89, 40401 (2002).
[CrossRef]

Chin, C.

Y. Lin, I. Teper, C. Chin, and V. Vuletić, “Impact of the Casimir-Polder potential and Johnson noise on Bose-Einstein condensate stability near surfaces,” Phys. Rev. Lett. 92, 50404 (2004).
[CrossRef]

Cirac, J. I.

T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 22304 (2000).
[CrossRef]

Cirone, M. A.

P. Treutlein, T. W. Hänsch, J. Reichel, A. Negretti, M. A. Cirone, and T. Calarco, “Microwave potentials and optimal control for robust quantum gates on an atom chip,” Phys. Rev. A 74, 22312 (2006).
[CrossRef]

Colombe, Y.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272 (2007).
[CrossRef] [PubMed]

Cornell, E.

Y. Wang, D. Anderson, V. Bright, E. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. Saravanan, S. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005)
[CrossRef] [PubMed]

Cornell, E. A.

D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, “Guiding neutral atoms around curves with lithographically patterned current-carrying wires,” Phys. Rev. Lett. 83, 5194 (1999).
[CrossRef]

Curtis, E. A.

C. D. J. Sinclair, E. A. Curtis, I. L. Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein condensation on a permanent-magnet atom chip,” Phys. Rev. A 72, 031603 (2005).
[CrossRef]

David, T.

S. Aigner, L. Della Pietra, Y. Japha, O. Entin-Wohlman, T. David, R. Salem, R. Folman, and J. Schmiedmayer, “Long-range order in electronic transport through disordered metal films,” Science 319, 1226–1229 (2008).
[CrossRef] [PubMed]

Dekker, N. H.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndić, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124 (2000).
[CrossRef] [PubMed]

Della Pietra, L.

S. Aigner, L. Della Pietra, Y. Japha, O. Entin-Wohlman, T. David, R. Salem, R. Folman, and J. Schmiedmayer, “Long-range order in electronic transport through disordered metal films,” Science 319, 1226–1229 (2008).
[CrossRef] [PubMed]

Denschlag, J.

R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At. Mol. Opt. Phys. 48, 263–356 (2002).

J. Denschlag, G. Umshaus, and J. Schmiedmayer, “Probing a singular potential with cold atoms: A neutral atom and a charged wire,” Phys. Rev. Lett. , 81, 737, (1998)
[CrossRef]

Diot, Q.

Y. Wang, D. Anderson, V. Bright, E. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. Saravanan, S. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005)
[CrossRef] [PubMed]

Drndic, M.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndić, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124 (2000).
[CrossRef] [PubMed]

Dubois, G.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272 (2007).
[CrossRef] [PubMed]

Durfee, D. S.

W. Ketterle, D. S. Durfee, and D. M. Stamper-Kurn, “Making, probing and understanding Bose-Einstein condensates,” in “Bose-Einstein condensation in atomic gases ,”, M. Inguscio, S. Stringari, and C. E. Wieman, eds. (IOS Press, Amsterdam, 1999), Proceedings of the International School of Physics Enrico Fermi, Course CXL, pp. 67–176.

Eberlein, C.

M. Jones, C. Vale, D. Sahagun, B. Hall, C. Eberlein, B. Sauer, K. Furusawa, D. Richardson, and E. Hinds, “Cold atoms probe the magnetic field near a wire,” J. Phys. B 37, L15–L20 (2004)
[CrossRef]

Engeser, B.

S. Schneider, A. Kasper, C. vom Hagen, M. Bartenstein, B. Engeser, T. Schumm, I. Bar-Joseph, R. Folman, L. Feenstra, and J. Schmiedmayer, “Bose-Einstein condensation in a simple microtrap,” Phys. Rev. A 67, 23612 (2003).
[CrossRef]

Entin-Wohlman, O.

S. Aigner, L. Della Pietra, Y. Japha, O. Entin-Wohlman, T. David, R. Salem, R. Folman, and J. Schmiedmayer, “Long-range order in electronic transport through disordered metal films,” Science 319, 1226–1229 (2008).
[CrossRef] [PubMed]

Eriksson, S.

C. D. J. Sinclair, E. A. Curtis, I. L. Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein condensation on a permanent-magnet atom chip,” Phys. Rev. A 72, 031603 (2005).
[CrossRef]

Esteve, J.

J. Esteve, C. Aussibal, T. Schumm, C. Figl, D. Mailly, I. Bouchoule, C. Westbrook, and A. Aspect, “Role of wire imperfections in micromagnetic traps for atoms,” Phys. Rev. A 70042629 (2004)
[CrossRef]

Feenstra, L.

S. Schneider, A. Kasper, C. vom Hagen, M. Bartenstein, B. Engeser, T. Schumm, I. Bar-Joseph, R. Folman, L. Feenstra, and J. Schmiedmayer, “Bose-Einstein condensation in a simple microtrap,” Phys. Rev. A 67, 23612 (2003).
[CrossRef]

Fernholz, T.

M. Wilzbach, A. Haase, M. Schwarz, D. Heine, K. Wicker, X. Liu, K.-H. Brenner, S. Groth, T. Fernholz, B. Hessmo, and J. Schmiedmayer, “Detecting neutral atoms on an atom chip,” Fortschr. Phys. 54, 746 (2006).
[CrossRef]

S. Groth, P. Krüger, S. Wildermuth, R. Folman, T. Fernholz, J. Schmiedmayer, D. Mahalu, and I. Bar-Joseph, “Atom chips: fabrication and thermal properties,” Appl. Phys. Lett. 85, 2980 (2004).
[CrossRef]

Figl, C.

J. Esteve, C. Aussibal, T. Schumm, C. Figl, D. Mailly, I. Bouchoule, C. Westbrook, and A. Aspect, “Role of wire imperfections in micromagnetic traps for atoms,” Phys. Rev. A 70042629 (2004)
[CrossRef]

Fischer, B.

S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm, and J. Schmiedmayer, “Non-equilibrium coherence dynamics in one-dimensional Bose gases,” Nature 449, 324–327 (2007).
[CrossRef] [PubMed]

S. Hofferberth, I. Lesanovsky, B. Fischer, J. Verdú, and J. Schmiedmayer, “Radio-frequency dressed state potentials for neutral atoms,” Nat. Phys. 2, 710–716 (2006).
[CrossRef]

Fischer, D.

D. Heine, W. Rohringer, D. Fischer, M. Wilzbach, T. Raub, S. Loziczky, X. Liu, S. Groth, B. Hessmo, and J. Schmiedmayer, “A single-atom detector integrated on an atom chip: fabrication, characterization and application,” N. J. Phys. 12, 095005 (2010).
[CrossRef]

Folman, R.

S. Aigner, L. Della Pietra, Y. Japha, O. Entin-Wohlman, T. David, R. Salem, R. Folman, and J. Schmiedmayer, “Long-range order in electronic transport through disordered metal films,” Science 319, 1226–1229 (2008).
[CrossRef] [PubMed]

S. Groth, P. Krüger, S. Wildermuth, R. Folman, T. Fernholz, J. Schmiedmayer, D. Mahalu, and I. Bar-Joseph, “Atom chips: fabrication and thermal properties,” Appl. Phys. Lett. 85, 2980 (2004).
[CrossRef]

S. Schneider, A. Kasper, C. vom Hagen, M. Bartenstein, B. Engeser, T. Schumm, I. Bar-Joseph, R. Folman, L. Feenstra, and J. Schmiedmayer, “Bose-Einstein condensation in a simple microtrap,” Phys. Rev. A 67, 23612 (2003).
[CrossRef]

P. Krüger, X. Luo, M. W. Klein, K. Brugger, A. Haase, S. Wildermuth, S. Groth, I. Bar-Joseph, R. Folman, and J. Schmiedmayer, “Trapping and manipulating neutral atoms with electrostatic fields,” Phys. Rev. Lett. 91, 233201 (2003).
[CrossRef] [PubMed]

R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At. Mol. Opt. Phys. 48, 263–356 (2002).

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: atom chips,” Phys. Rev. Lett. 84, 4749 (2000).
[CrossRef] [PubMed]

D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam splitter for guided atoms,” Phys. Rev. Lett. 85, 5483–5487 (2000).
[CrossRef]

Fortagh, J.

A. Günther, M. Kemmler, S. Kraft, C. J. Vale, C. Zimmermann, and J. Fortagh, “Combined chips for atom-optics,” Phys. Rev. A 71, 63619 (2005).
[CrossRef]

J. Fortagh, H. Ott, S. Kraft, A. Gunther, and C. Zimmermann, “Surface effects in magnetic microtraps,” Phys. Rev. A 66, 041604 (2002).
[CrossRef]

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401 (2001).
[CrossRef] [PubMed]

Fortágh, J.

J. Fortágh and C. Zimmermann, “Magnetic microtraps for ultracold atoms,” Rev. Mod. Phys. 79, 235 (2007).
[CrossRef]

S. Kraft, A. Günther, J. Fortágh, and C. Zimmermann, “Spatially resolved photoionization of ultracold atoms on an atom chip,” Phys. Rev. A 75, 1–5 (2007).
[CrossRef]

Furusawa, K.

M. Jones, C. Vale, D. Sahagun, B. Hall, C. Eberlein, B. Sauer, K. Furusawa, D. Richardson, and E. Hinds, “Cold atoms probe the magnetic field near a wire,” J. Phys. B 37, L15–L20 (2004)
[CrossRef]

Garcia, I. L.

C. D. J. Sinclair, E. A. Curtis, I. L. Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein condensation on a permanent-magnet atom chip,” Phys. Rev. A 72, 031603 (2005).
[CrossRef]

Grossmann, A.

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401 (2001).
[CrossRef] [PubMed]

Groth, S.

D. Heine, W. Rohringer, D. Fischer, M. Wilzbach, T. Raub, S. Loziczky, X. Liu, S. Groth, B. Hessmo, and J. Schmiedmayer, “A single-atom detector integrated on an atom chip: fabrication, characterization and application,” N. J. Phys. 12, 095005 (2010).
[CrossRef]

M. Trinker, S. Groth, S. Haslinger, S. Manz, T. Betz, S. Schneider, I. Bar-Joseph, T. Schumm, and J. Schmiedmayer, “Multilayer atom chips for versatile atom micromanipulation,” Appl. Phys. Lett. 92, 254102 (2008).
[CrossRef]

P. Krüger, L. M. Andersson, S. Wildermuth, S. Hofferberth, E. Haller, S. Aigner, S. Groth, I. Bar-Joseph, and J. Schmiedmayer, “Potential roughness near lithographically fabricated atom chips,” Phys. Rev. A 76, 063621 (2007).
[CrossRef]

M. Wilzbach, A. Haase, M. Schwarz, D. Heine, K. Wicker, X. Liu, K.-H. Brenner, S. Groth, T. Fernholz, B. Hessmo, and J. Schmiedmayer, “Detecting neutral atoms on an atom chip,” Fortschr. Phys. 54, 746 (2006).
[CrossRef]

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Krüger, “Matter wave interferometry in a double well on an atom chip,” Nat. Phys. 1, 57–62 (2005).
[CrossRef]

S. Wildermuth, S. Hofferberth, I. Lesanovsky, E. Haller, L. M. Andersson, S. Groth, I. Bar-Joseph, P. Krüger, and J. Schmiedmayer, “Microscopic magnetic-field imaging,” Nature 435, 440 (2005).
[CrossRef] [PubMed]

S. Groth, P. Krüger, S. Wildermuth, R. Folman, T. Fernholz, J. Schmiedmayer, D. Mahalu, and I. Bar-Joseph, “Atom chips: fabrication and thermal properties,” Appl. Phys. Lett. 85, 2980 (2004).
[CrossRef]

P. Krüger, X. Luo, M. W. Klein, K. Brugger, A. Haase, S. Wildermuth, S. Groth, I. Bar-Joseph, R. Folman, and J. Schmiedmayer, “Trapping and manipulating neutral atoms with electrostatic fields,” Phys. Rev. Lett. 91, 233201 (2003).
[CrossRef] [PubMed]

Grow, R. J.

D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, “Guiding neutral atoms around curves with lithographically patterned current-carrying wires,” Phys. Rev. Lett. 83, 5194 (1999).
[CrossRef]

Gunther, A.

J. Fortagh, H. Ott, S. Kraft, A. Gunther, and C. Zimmermann, “Surface effects in magnetic microtraps,” Phys. Rev. A 66, 041604 (2002).
[CrossRef]

Günther, A.

S. Kraft, A. Günther, J. Fortágh, and C. Zimmermann, “Spatially resolved photoionization of ultracold atoms on an atom chip,” Phys. Rev. A 75, 1–5 (2007).
[CrossRef]

A. Günther, M. Kemmler, S. Kraft, C. J. Vale, C. Zimmermann, and J. Fortagh, “Combined chips for atom-optics,” Phys. Rev. A 71, 63619 (2005).
[CrossRef]

Gustavson, T. L.

A. E. Leanhardt, A. P. Chikkatur, D. Kielpinski, Y. Shin, T. L. Gustavson, W. Ketterle, and D. E. Pritchard, “Propagation of Bose-Einstein condensates in a magnetic waveguide,” Phys. Rev. Lett. 89, 40401 (2002).
[CrossRef]

Haase, A.

M. Wilzbach, A. Haase, M. Schwarz, D. Heine, K. Wicker, X. Liu, K.-H. Brenner, S. Groth, T. Fernholz, B. Hessmo, and J. Schmiedmayer, “Detecting neutral atoms on an atom chip,” Fortschr. Phys. 54, 746 (2006).
[CrossRef]

P. Krüger, X. Luo, M. W. Klein, K. Brugger, A. Haase, S. Wildermuth, S. Groth, I. Bar-Joseph, R. Folman, and J. Schmiedmayer, “Trapping and manipulating neutral atoms with electrostatic fields,” Phys. Rev. Lett. 91, 233201 (2003).
[CrossRef] [PubMed]

Hall, B.

M. Jones, C. Vale, D. Sahagun, B. Hall, C. Eberlein, B. Sauer, K. Furusawa, D. Richardson, and E. Hinds, “Cold atoms probe the magnetic field near a wire,” J. Phys. B 37, L15–L20 (2004)
[CrossRef]

Hall, B. V.

C. D. J. Sinclair, E. A. Curtis, I. L. Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein condensation on a permanent-magnet atom chip,” Phys. Rev. A 72, 031603 (2005).
[CrossRef]

Haller, E.

P. Krüger, L. M. Andersson, S. Wildermuth, S. Hofferberth, E. Haller, S. Aigner, S. Groth, I. Bar-Joseph, and J. Schmiedmayer, “Potential roughness near lithographically fabricated atom chips,” Phys. Rev. A 76, 063621 (2007).
[CrossRef]

S. Wildermuth, S. Hofferberth, I. Lesanovsky, E. Haller, L. M. Andersson, S. Groth, I. Bar-Joseph, P. Krüger, and J. Schmiedmayer, “Microscopic magnetic-field imaging,” Nature 435, 440 (2005).
[CrossRef] [PubMed]

Hänsch, T. W.

P. Böhi, M. F. Riedel, J. Hoffrogge, J. Reichel, T. W. Hänsch, and P. Treutlein, “Coherent manipulation of Bose-Einstein condensates with state-dependent microwave potentials on an atom chip,” Nat. Phys. 5, 592 (2009).
[CrossRef]

P. Treutlein, T. W. Hänsch, J. Reichel, A. Negretti, M. A. Cirone, and T. Calarco, “Microwave potentials and optimal control for robust quantum gates on an atom chip,” Phys. Rev. A 74, 22312 (2006).
[CrossRef]

P. Treutlein, P. Hommelhoff, T. Steinmetz, T. W. Hänsch, and J. Reichel, “Coherence in Microchip Traps,” Phys. Rev. Lett. 92, 203005 (2004).
[CrossRef] [PubMed]

W. Hänsel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498 (2001).
[CrossRef] [PubMed]

W. Hänsel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86, 608 (2001).
[CrossRef] [PubMed]

J. Reichel, W. Hänsel, and T. W. Hänsch, “Atomic Micromanipulation with Magnetic Surface Traps,” Phys. Rev. Lett. 83, 3398 (1999).
[CrossRef]

Hänsel, W.

W. Hänsel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86, 608 (2001).
[CrossRef] [PubMed]

W. Hänsel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498 (2001).
[CrossRef] [PubMed]

J. Reichel, W. Hänsel, and T. W. Hänsch, “Atomic Micromanipulation with Magnetic Surface Traps,” Phys. Rev. Lett. 83, 3398 (1999).
[CrossRef]

Haslinger, S.

M. Trinker, S. Groth, S. Haslinger, S. Manz, T. Betz, S. Schneider, I. Bar-Joseph, T. Schumm, and J. Schmiedmayer, “Multilayer atom chips for versatile atom micromanipulation,” Appl. Phys. Lett. 92, 254102 (2008).
[CrossRef]

Heine, D.

D. Heine, W. Rohringer, D. Fischer, M. Wilzbach, T. Raub, S. Loziczky, X. Liu, S. Groth, B. Hessmo, and J. Schmiedmayer, “A single-atom detector integrated on an atom chip: fabrication, characterization and application,” N. J. Phys. 12, 095005 (2010).
[CrossRef]

M. Wilzbach, A. Haase, M. Schwarz, D. Heine, K. Wicker, X. Liu, K.-H. Brenner, S. Groth, T. Fernholz, B. Hessmo, and J. Schmiedmayer, “Detecting neutral atoms on an atom chip,” Fortschr. Phys. 54, 746 (2006).
[CrossRef]

Henkel, C.

R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At. Mol. Opt. Phys. 48, 263–356 (2002).

Hessmo, B.

D. Heine, W. Rohringer, D. Fischer, M. Wilzbach, T. Raub, S. Loziczky, X. Liu, S. Groth, B. Hessmo, and J. Schmiedmayer, “A single-atom detector integrated on an atom chip: fabrication, characterization and application,” N. J. Phys. 12, 095005 (2010).
[CrossRef]

M. Wilzbach, A. Haase, M. Schwarz, D. Heine, K. Wicker, X. Liu, K.-H. Brenner, S. Groth, T. Fernholz, B. Hessmo, and J. Schmiedmayer, “Detecting neutral atoms on an atom chip,” Fortschr. Phys. 54, 746 (2006).
[CrossRef]

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: atom chips,” Phys. Rev. Lett. 84, 4749 (2000).
[CrossRef] [PubMed]

D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam splitter for guided atoms,” Phys. Rev. Lett. 85, 5483–5487 (2000).
[CrossRef]

Hinds, E.

M. Jones, C. Vale, D. Sahagun, B. Hall, C. Eberlein, B. Sauer, K. Furusawa, D. Richardson, and E. Hinds, “Cold atoms probe the magnetic field near a wire,” J. Phys. B 37, L15–L20 (2004)
[CrossRef]

Hinds, E. A.

C. D. J. Sinclair, E. A. Curtis, I. L. Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein condensation on a permanent-magnet atom chip,” Phys. Rev. A 72, 031603 (2005).
[CrossRef]

T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 22304 (2000).
[CrossRef]

Hofferberth, S.

S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm, and J. Schmiedmayer, “Non-equilibrium coherence dynamics in one-dimensional Bose gases,” Nature 449, 324–327 (2007).
[CrossRef] [PubMed]

P. Krüger, L. M. Andersson, S. Wildermuth, S. Hofferberth, E. Haller, S. Aigner, S. Groth, I. Bar-Joseph, and J. Schmiedmayer, “Potential roughness near lithographically fabricated atom chips,” Phys. Rev. A 76, 063621 (2007).
[CrossRef]

S. Hofferberth, I. Lesanovsky, B. Fischer, J. Verdú, and J. Schmiedmayer, “Radio-frequency dressed state potentials for neutral atoms,” Nat. Phys. 2, 710–716 (2006).
[CrossRef]

S. Wildermuth, S. Hofferberth, I. Lesanovsky, E. Haller, L. M. Andersson, S. Groth, I. Bar-Joseph, P. Krüger, and J. Schmiedmayer, “Microscopic magnetic-field imaging,” Nature 435, 440 (2005).
[CrossRef] [PubMed]

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Krüger, “Matter wave interferometry in a double well on an atom chip,” Nat. Phys. 1, 57–62 (2005).
[CrossRef]

Hoffrogge, J.

P. Böhi, M. F. Riedel, J. Hoffrogge, J. Reichel, T. W. Hänsch, and P. Treutlein, “Coherent manipulation of Bose-Einstein condensates with state-dependent microwave potentials on an atom chip,” Nat. Phys. 5, 592 (2009).
[CrossRef]

Hommelhoff, P.

P. Treutlein, P. Hommelhoff, T. Steinmetz, T. W. Hänsch, and J. Reichel, “Coherence in Microchip Traps,” Phys. Rev. Lett. 92, 203005 (2004).
[CrossRef] [PubMed]

W. Hänsel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86, 608 (2001).
[CrossRef] [PubMed]

W. Hänsel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498 (2001).
[CrossRef] [PubMed]

Hunger, D.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272 (2007).
[CrossRef] [PubMed]

Jacqmin, T.

J. Armijo, T. Jacqmin, K. Kheruntsyan, and I. Bouchoule, “Probing three-body correlations in a quantum gas using the measurement of the third moment of density fluctuations,” Phys. Rev. Lett. 105, 3–6 (2010).
[CrossRef]

Jaksch, D.

T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 22304 (2000).
[CrossRef]

Japha, Y.

S. Aigner, L. Della Pietra, Y. Japha, O. Entin-Wohlman, T. David, R. Salem, R. Folman, and J. Schmiedmayer, “Long-range order in electronic transport through disordered metal films,” Science 319, 1226–1229 (2008).
[CrossRef] [PubMed]

Jones, M.

M. Jones, C. Vale, D. Sahagun, B. Hall, C. Eberlein, B. Sauer, K. Furusawa, D. Richardson, and E. Hinds, “Cold atoms probe the magnetic field near a wire,” J. Phys. B 37, L15–L20 (2004)
[CrossRef]

Kasper, A.

S. Schneider, A. Kasper, C. vom Hagen, M. Bartenstein, B. Engeser, T. Schumm, I. Bar-Joseph, R. Folman, L. Feenstra, and J. Schmiedmayer, “Bose-Einstein condensation in a simple microtrap,” Phys. Rev. A 67, 23612 (2003).
[CrossRef]

Kemmler, M.

A. Günther, M. Kemmler, S. Kraft, C. J. Vale, C. Zimmermann, and J. Fortagh, “Combined chips for atom-optics,” Phys. Rev. A 71, 63619 (2005).
[CrossRef]

Ketterle, W.

A. E. Leanhardt, Y. Shin, A. P. Chikkatur, D. Kielpinski, W. Ketterle, and D. E. Pritchard, “Bose-Einstein condensates near a microfabricated surface,” Phys. Rev. Lett. 90, 100404 (2003).
[CrossRef] [PubMed]

A. E. Leanhardt, A. P. Chikkatur, D. Kielpinski, Y. Shin, T. L. Gustavson, W. Ketterle, and D. E. Pritchard, “Propagation of Bose-Einstein condensates in a magnetic waveguide,” Phys. Rev. Lett. 89, 40401 (2002).
[CrossRef]

W. Ketterle, D. S. Durfee, and D. M. Stamper-Kurn, “Making, probing and understanding Bose-Einstein condensates,” in “Bose-Einstein condensation in atomic gases ,”, M. Inguscio, S. Stringari, and C. E. Wieman, eds. (IOS Press, Amsterdam, 1999), Proceedings of the International School of Physics Enrico Fermi, Course CXL, pp. 67–176.

Kheruntsyan, K.

J. Armijo, T. Jacqmin, K. Kheruntsyan, and I. Bouchoule, “Probing three-body correlations in a quantum gas using the measurement of the third moment of density fluctuations,” Phys. Rev. Lett. 105, 3–6 (2010).
[CrossRef]

A. van Amerongen, J. van Es, P. Wicke, K. Kheruntsyan, and N. van Druten, “Yang-Yang thermodynamics on an atom chip,” Phys. Rev. Lett. 100, 13–15 (2008).
[CrossRef]

Kielpinski, D.

A. E. Leanhardt, Y. Shin, A. P. Chikkatur, D. Kielpinski, W. Ketterle, and D. E. Pritchard, “Bose-Einstein condensates near a microfabricated surface,” Phys. Rev. Lett. 90, 100404 (2003).
[CrossRef] [PubMed]

A. E. Leanhardt, A. P. Chikkatur, D. Kielpinski, Y. Shin, T. L. Gustavson, W. Ketterle, and D. E. Pritchard, “Propagation of Bose-Einstein condensates in a magnetic waveguide,” Phys. Rev. Lett. 89, 40401 (2002).
[CrossRef]

Kishimoto, T.

Y. Wang, D. Anderson, V. Bright, E. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. Saravanan, S. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005)
[CrossRef] [PubMed]

Klein, M. W.

P. Krüger, X. Luo, M. W. Klein, K. Brugger, A. Haase, S. Wildermuth, S. Groth, I. Bar-Joseph, R. Folman, and J. Schmiedmayer, “Trapping and manipulating neutral atoms with electrostatic fields,” Phys. Rev. Lett. 91, 233201 (2003).
[CrossRef] [PubMed]

Koller, C.

R. Bücker, A. Perrin, S. Manz, T. Betz, C. Koller, T. Plisson, J. Rottmann, T. Schumm, and J. Schmiedmayer, “Single-particle-sensitive imaging of freely propagating ultracold atoms,” N. J. Phys. 11, 103039 (2009).
[CrossRef]

Kraft, S.

S. Kraft, A. Günther, J. Fortágh, and C. Zimmermann, “Spatially resolved photoionization of ultracold atoms on an atom chip,” Phys. Rev. A 75, 1–5 (2007).
[CrossRef]

A. Günther, M. Kemmler, S. Kraft, C. J. Vale, C. Zimmermann, and J. Fortagh, “Combined chips for atom-optics,” Phys. Rev. A 71, 63619 (2005).
[CrossRef]

J. Fortagh, H. Ott, S. Kraft, A. Gunther, and C. Zimmermann, “Surface effects in magnetic microtraps,” Phys. Rev. A 66, 041604 (2002).
[CrossRef]

Krüger, P.

P. Krüger, L. M. Andersson, S. Wildermuth, S. Hofferberth, E. Haller, S. Aigner, S. Groth, I. Bar-Joseph, and J. Schmiedmayer, “Potential roughness near lithographically fabricated atom chips,” Phys. Rev. A 76, 063621 (2007).
[CrossRef]

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Krüger, “Matter wave interferometry in a double well on an atom chip,” Nat. Phys. 1, 57–62 (2005).
[CrossRef]

S. Wildermuth, S. Hofferberth, I. Lesanovsky, E. Haller, L. M. Andersson, S. Groth, I. Bar-Joseph, P. Krüger, and J. Schmiedmayer, “Microscopic magnetic-field imaging,” Nature 435, 440 (2005).
[CrossRef] [PubMed]

S. Groth, P. Krüger, S. Wildermuth, R. Folman, T. Fernholz, J. Schmiedmayer, D. Mahalu, and I. Bar-Joseph, “Atom chips: fabrication and thermal properties,” Appl. Phys. Lett. 85, 2980 (2004).
[CrossRef]

P. Krüger, X. Luo, M. W. Klein, K. Brugger, A. Haase, S. Wildermuth, S. Groth, I. Bar-Joseph, R. Folman, and J. Schmiedmayer, “Trapping and manipulating neutral atoms with electrostatic fields,” Phys. Rev. Lett. 91, 233201 (2003).
[CrossRef] [PubMed]

R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At. Mol. Opt. Phys. 48, 263–356 (2002).

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: atom chips,” Phys. Rev. Lett. 84, 4749 (2000).
[CrossRef] [PubMed]

Leanhardt, A. E.

A. E. Leanhardt, Y. Shin, A. P. Chikkatur, D. Kielpinski, W. Ketterle, and D. E. Pritchard, “Bose-Einstein condensates near a microfabricated surface,” Phys. Rev. Lett. 90, 100404 (2003).
[CrossRef] [PubMed]

A. E. Leanhardt, A. P. Chikkatur, D. Kielpinski, Y. Shin, T. L. Gustavson, W. Ketterle, and D. E. Pritchard, “Propagation of Bose-Einstein condensates in a magnetic waveguide,” Phys. Rev. Lett. 89, 40401 (2002).
[CrossRef]

Lee, C. S.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndić, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124 (2000).
[CrossRef] [PubMed]

Lesanovsky, I.

S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm, and J. Schmiedmayer, “Non-equilibrium coherence dynamics in one-dimensional Bose gases,” Nature 449, 324–327 (2007).
[CrossRef] [PubMed]

S. Hofferberth, I. Lesanovsky, B. Fischer, J. Verdú, and J. Schmiedmayer, “Radio-frequency dressed state potentials for neutral atoms,” Nat. Phys. 2, 710–716 (2006).
[CrossRef]

S. Wildermuth, S. Hofferberth, I. Lesanovsky, E. Haller, L. M. Andersson, S. Groth, I. Bar-Joseph, P. Krüger, and J. Schmiedmayer, “Microscopic magnetic-field imaging,” Nature 435, 440 (2005).
[CrossRef] [PubMed]

Lin, Y.

Y. Lin, I. Teper, C. Chin, and V. Vuletić, “Impact of the Casimir-Polder potential and Johnson noise on Bose-Einstein condensate stability near surfaces,” Phys. Rev. Lett. 92, 50404 (2004).
[CrossRef]

Linke, F.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272 (2007).
[CrossRef] [PubMed]

Liu, X.

D. Heine, W. Rohringer, D. Fischer, M. Wilzbach, T. Raub, S. Loziczky, X. Liu, S. Groth, B. Hessmo, and J. Schmiedmayer, “A single-atom detector integrated on an atom chip: fabrication, characterization and application,” N. J. Phys. 12, 095005 (2010).
[CrossRef]

M. Wilzbach, A. Haase, M. Schwarz, D. Heine, K. Wicker, X. Liu, K.-H. Brenner, S. Groth, T. Fernholz, B. Hessmo, and J. Schmiedmayer, “Detecting neutral atoms on an atom chip,” Fortschr. Phys. 54, 746 (2006).
[CrossRef]

Lorent, V.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndić, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124 (2000).
[CrossRef] [PubMed]

Loziczky, S.

D. Heine, W. Rohringer, D. Fischer, M. Wilzbach, T. Raub, S. Loziczky, X. Liu, S. Groth, B. Hessmo, and J. Schmiedmayer, “A single-atom detector integrated on an atom chip: fabrication, characterization and application,” N. J. Phys. 12, 095005 (2010).
[CrossRef]

Luo, X.

P. Krüger, X. Luo, M. W. Klein, K. Brugger, A. Haase, S. Wildermuth, S. Groth, I. Bar-Joseph, R. Folman, and J. Schmiedmayer, “Trapping and manipulating neutral atoms with electrostatic fields,” Phys. Rev. Lett. 91, 233201 (2003).
[CrossRef] [PubMed]

Mahalu, D.

S. Groth, P. Krüger, S. Wildermuth, R. Folman, T. Fernholz, J. Schmiedmayer, D. Mahalu, and I. Bar-Joseph, “Atom chips: fabrication and thermal properties,” Appl. Phys. Lett. 85, 2980 (2004).
[CrossRef]

Maier, T.

D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam splitter for guided atoms,” Phys. Rev. Lett. 85, 5483–5487 (2000).
[CrossRef]

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: atom chips,” Phys. Rev. Lett. 84, 4749 (2000).
[CrossRef] [PubMed]

Mailly, D.

J. Esteve, C. Aussibal, T. Schumm, C. Figl, D. Mailly, I. Bouchoule, C. Westbrook, and A. Aspect, “Role of wire imperfections in micromagnetic traps for atoms,” Phys. Rev. A 70042629 (2004)
[CrossRef]

Manz, S.

R. Bücker, A. Perrin, S. Manz, T. Betz, C. Koller, T. Plisson, J. Rottmann, T. Schumm, and J. Schmiedmayer, “Single-particle-sensitive imaging of freely propagating ultracold atoms,” N. J. Phys. 11, 103039 (2009).
[CrossRef]

M. Trinker, S. Groth, S. Haslinger, S. Manz, T. Betz, S. Schneider, I. Bar-Joseph, T. Schumm, and J. Schmiedmayer, “Multilayer atom chips for versatile atom micromanipulation,” Appl. Phys. Lett. 92, 254102 (2008).
[CrossRef]

Müller, D.

D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, “Guiding neutral atoms around curves with lithographically patterned current-carrying wires,” Phys. Rev. Lett. 83, 5194 (1999).
[CrossRef]

Negretti, A.

P. Treutlein, T. W. Hänsch, J. Reichel, A. Negretti, M. A. Cirone, and T. Calarco, “Microwave potentials and optimal control for robust quantum gates on an atom chip,” Phys. Rev. A 74, 22312 (2006).
[CrossRef]

Ockeloen, C. F.

C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and S. Whitlock, “Detection of small atom numbers through image processing,” Phys. Rev. A 82, 061606 (2010).
[CrossRef]

Ott, H.

J. Fortagh, H. Ott, S. Kraft, A. Gunther, and C. Zimmermann, “Surface effects in magnetic microtraps,” Phys. Rev. A 66, 041604 (2002).
[CrossRef]

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401 (2001).
[CrossRef] [PubMed]

Perrin, A.

R. Bücker, A. Perrin, S. Manz, T. Betz, C. Koller, T. Plisson, J. Rottmann, T. Schumm, and J. Schmiedmayer, “Single-particle-sensitive imaging of freely propagating ultracold atoms,” N. J. Phys. 11, 103039 (2009).
[CrossRef]

Plisson, T.

R. Bücker, A. Perrin, S. Manz, T. Betz, C. Koller, T. Plisson, J. Rottmann, T. Schumm, and J. Schmiedmayer, “Single-particle-sensitive imaging of freely propagating ultracold atoms,” N. J. Phys. 11, 103039 (2009).
[CrossRef]

Prentiss, M.

Y. Wang, D. Anderson, V. Bright, E. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. Saravanan, S. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005)
[CrossRef] [PubMed]

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndić, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124 (2000).
[CrossRef] [PubMed]

Pritchard, D. E.

A. E. Leanhardt, Y. Shin, A. P. Chikkatur, D. Kielpinski, W. Ketterle, and D. E. Pritchard, “Bose-Einstein condensates near a microfabricated surface,” Phys. Rev. Lett. 90, 100404 (2003).
[CrossRef] [PubMed]

A. E. Leanhardt, A. P. Chikkatur, D. Kielpinski, Y. Shin, T. L. Gustavson, W. Ketterle, and D. E. Pritchard, “Propagation of Bose-Einstein condensates in a magnetic waveguide,” Phys. Rev. Lett. 89, 40401 (2002).
[CrossRef]

Raub, T.

D. Heine, W. Rohringer, D. Fischer, M. Wilzbach, T. Raub, S. Loziczky, X. Liu, S. Groth, B. Hessmo, and J. Schmiedmayer, “A single-atom detector integrated on an atom chip: fabrication, characterization and application,” N. J. Phys. 12, 095005 (2010).
[CrossRef]

Reichel, J.

P. Böhi, M. F. Riedel, J. Hoffrogge, J. Reichel, T. W. Hänsch, and P. Treutlein, “Coherent manipulation of Bose-Einstein condensates with state-dependent microwave potentials on an atom chip,” Nat. Phys. 5, 592 (2009).
[CrossRef]

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272 (2007).
[CrossRef] [PubMed]

P. Treutlein, T. W. Hänsch, J. Reichel, A. Negretti, M. A. Cirone, and T. Calarco, “Microwave potentials and optimal control for robust quantum gates on an atom chip,” Phys. Rev. A 74, 22312 (2006).
[CrossRef]

P. Treutlein, P. Hommelhoff, T. Steinmetz, T. W. Hänsch, and J. Reichel, “Coherence in Microchip Traps,” Phys. Rev. Lett. 92, 203005 (2004).
[CrossRef] [PubMed]

W. Hänsel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498 (2001).
[CrossRef] [PubMed]

W. Hänsel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86, 608 (2001).
[CrossRef] [PubMed]

J. Reichel, W. Hänsel, and T. W. Hänsch, “Atomic Micromanipulation with Magnetic Surface Traps,” Phys. Rev. Lett. 83, 3398 (1999).
[CrossRef]

Retter, J. A.

C. D. J. Sinclair, E. A. Curtis, I. L. Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein condensation on a permanent-magnet atom chip,” Phys. Rev. A 72, 031603 (2005).
[CrossRef]

Richardson, D.

M. Jones, C. Vale, D. Sahagun, B. Hall, C. Eberlein, B. Sauer, K. Furusawa, D. Richardson, and E. Hinds, “Cold atoms probe the magnetic field near a wire,” J. Phys. B 37, L15–L20 (2004)
[CrossRef]

Riedel, M. F.

P. Böhi, M. F. Riedel, J. Hoffrogge, J. Reichel, T. W. Hänsch, and P. Treutlein, “Coherent manipulation of Bose-Einstein condensates with state-dependent microwave potentials on an atom chip,” Nat. Phys. 5, 592 (2009).
[CrossRef]

Rohringer, W.

D. Heine, W. Rohringer, D. Fischer, M. Wilzbach, T. Raub, S. Loziczky, X. Liu, S. Groth, B. Hessmo, and J. Schmiedmayer, “A single-atom detector integrated on an atom chip: fabrication, characterization and application,” N. J. Phys. 12, 095005 (2010).
[CrossRef]

Rottmann, J.

R. Bücker, A. Perrin, S. Manz, T. Betz, C. Koller, T. Plisson, J. Rottmann, T. Schumm, and J. Schmiedmayer, “Single-particle-sensitive imaging of freely propagating ultracold atoms,” N. J. Phys. 11, 103039 (2009).
[CrossRef]

Sahagun, D.

M. Jones, C. Vale, D. Sahagun, B. Hall, C. Eberlein, B. Sauer, K. Furusawa, D. Richardson, and E. Hinds, “Cold atoms probe the magnetic field near a wire,” J. Phys. B 37, L15–L20 (2004)
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals Of Photonics (John Wiley & Sons, 1991).
[CrossRef]

Salem, R.

S. Aigner, L. Della Pietra, Y. Japha, O. Entin-Wohlman, T. David, R. Salem, R. Folman, and J. Schmiedmayer, “Long-range order in electronic transport through disordered metal films,” Science 319, 1226–1229 (2008).
[CrossRef] [PubMed]

Saravanan, R.

Y. Wang, D. Anderson, V. Bright, E. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. Saravanan, S. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005)
[CrossRef] [PubMed]

Sauer, B.

M. Jones, C. Vale, D. Sahagun, B. Hall, C. Eberlein, B. Sauer, K. Furusawa, D. Richardson, and E. Hinds, “Cold atoms probe the magnetic field near a wire,” J. Phys. B 37, L15–L20 (2004)
[CrossRef]

Sauer, B. E.

C. D. J. Sinclair, E. A. Curtis, I. L. Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein condensation on a permanent-magnet atom chip,” Phys. Rev. A 72, 031603 (2005).
[CrossRef]

Schlotterbeck, G.

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401 (2001).
[CrossRef] [PubMed]

Schmiedmayer, J.

D. Heine, W. Rohringer, D. Fischer, M. Wilzbach, T. Raub, S. Loziczky, X. Liu, S. Groth, B. Hessmo, and J. Schmiedmayer, “A single-atom detector integrated on an atom chip: fabrication, characterization and application,” N. J. Phys. 12, 095005 (2010).
[CrossRef]

R. Bücker, A. Perrin, S. Manz, T. Betz, C. Koller, T. Plisson, J. Rottmann, T. Schumm, and J. Schmiedmayer, “Single-particle-sensitive imaging of freely propagating ultracold atoms,” N. J. Phys. 11, 103039 (2009).
[CrossRef]

M. Trinker, S. Groth, S. Haslinger, S. Manz, T. Betz, S. Schneider, I. Bar-Joseph, T. Schumm, and J. Schmiedmayer, “Multilayer atom chips for versatile atom micromanipulation,” Appl. Phys. Lett. 92, 254102 (2008).
[CrossRef]

S. Aigner, L. Della Pietra, Y. Japha, O. Entin-Wohlman, T. David, R. Salem, R. Folman, and J. Schmiedmayer, “Long-range order in electronic transport through disordered metal films,” Science 319, 1226–1229 (2008).
[CrossRef] [PubMed]

P. Krüger, L. M. Andersson, S. Wildermuth, S. Hofferberth, E. Haller, S. Aigner, S. Groth, I. Bar-Joseph, and J. Schmiedmayer, “Potential roughness near lithographically fabricated atom chips,” Phys. Rev. A 76, 063621 (2007).
[CrossRef]

S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm, and J. Schmiedmayer, “Non-equilibrium coherence dynamics in one-dimensional Bose gases,” Nature 449, 324–327 (2007).
[CrossRef] [PubMed]

M. Wilzbach, A. Haase, M. Schwarz, D. Heine, K. Wicker, X. Liu, K.-H. Brenner, S. Groth, T. Fernholz, B. Hessmo, and J. Schmiedmayer, “Detecting neutral atoms on an atom chip,” Fortschr. Phys. 54, 746 (2006).
[CrossRef]

S. Hofferberth, I. Lesanovsky, B. Fischer, J. Verdú, and J. Schmiedmayer, “Radio-frequency dressed state potentials for neutral atoms,” Nat. Phys. 2, 710–716 (2006).
[CrossRef]

S. Wildermuth, S. Hofferberth, I. Lesanovsky, E. Haller, L. M. Andersson, S. Groth, I. Bar-Joseph, P. Krüger, and J. Schmiedmayer, “Microscopic magnetic-field imaging,” Nature 435, 440 (2005).
[CrossRef] [PubMed]

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Krüger, “Matter wave interferometry in a double well on an atom chip,” Nat. Phys. 1, 57–62 (2005).
[CrossRef]

S. Groth, P. Krüger, S. Wildermuth, R. Folman, T. Fernholz, J. Schmiedmayer, D. Mahalu, and I. Bar-Joseph, “Atom chips: fabrication and thermal properties,” Appl. Phys. Lett. 85, 2980 (2004).
[CrossRef]

S. Schneider, A. Kasper, C. vom Hagen, M. Bartenstein, B. Engeser, T. Schumm, I. Bar-Joseph, R. Folman, L. Feenstra, and J. Schmiedmayer, “Bose-Einstein condensation in a simple microtrap,” Phys. Rev. A 67, 23612 (2003).
[CrossRef]

P. Krüger, X. Luo, M. W. Klein, K. Brugger, A. Haase, S. Wildermuth, S. Groth, I. Bar-Joseph, R. Folman, and J. Schmiedmayer, “Trapping and manipulating neutral atoms with electrostatic fields,” Phys. Rev. Lett. 91, 233201 (2003).
[CrossRef] [PubMed]

R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At. Mol. Opt. Phys. 48, 263–356 (2002).

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: atom chips,” Phys. Rev. Lett. 84, 4749 (2000).
[CrossRef] [PubMed]

D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam splitter for guided atoms,” Phys. Rev. Lett. 85, 5483–5487 (2000).
[CrossRef]

T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 22304 (2000).
[CrossRef]

J. Denschlag, G. Umshaus, and J. Schmiedmayer, “Probing a singular potential with cold atoms: A neutral atom and a charged wire,” Phys. Rev. Lett. , 81, 737, (1998)
[CrossRef]

J. Schmiedmayer, “A wire trap for neutral atoms,” Appl. Phys. B 60, 169–179 (1995).
[CrossRef]

Schneider, S.

M. Trinker, S. Groth, S. Haslinger, S. Manz, T. Betz, S. Schneider, I. Bar-Joseph, T. Schumm, and J. Schmiedmayer, “Multilayer atom chips for versatile atom micromanipulation,” Appl. Phys. Lett. 92, 254102 (2008).
[CrossRef]

S. Schneider, A. Kasper, C. vom Hagen, M. Bartenstein, B. Engeser, T. Schumm, I. Bar-Joseph, R. Folman, L. Feenstra, and J. Schmiedmayer, “Bose-Einstein condensation in a simple microtrap,” Phys. Rev. A 67, 23612 (2003).
[CrossRef]

Schumm, T.

R. Bücker, A. Perrin, S. Manz, T. Betz, C. Koller, T. Plisson, J. Rottmann, T. Schumm, and J. Schmiedmayer, “Single-particle-sensitive imaging of freely propagating ultracold atoms,” N. J. Phys. 11, 103039 (2009).
[CrossRef]

M. Trinker, S. Groth, S. Haslinger, S. Manz, T. Betz, S. Schneider, I. Bar-Joseph, T. Schumm, and J. Schmiedmayer, “Multilayer atom chips for versatile atom micromanipulation,” Appl. Phys. Lett. 92, 254102 (2008).
[CrossRef]

S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm, and J. Schmiedmayer, “Non-equilibrium coherence dynamics in one-dimensional Bose gases,” Nature 449, 324–327 (2007).
[CrossRef] [PubMed]

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Krüger, “Matter wave interferometry in a double well on an atom chip,” Nat. Phys. 1, 57–62 (2005).
[CrossRef]

J. Esteve, C. Aussibal, T. Schumm, C. Figl, D. Mailly, I. Bouchoule, C. Westbrook, and A. Aspect, “Role of wire imperfections in micromagnetic traps for atoms,” Phys. Rev. A 70042629 (2004)
[CrossRef]

S. Schneider, A. Kasper, C. vom Hagen, M. Bartenstein, B. Engeser, T. Schumm, I. Bar-Joseph, R. Folman, L. Feenstra, and J. Schmiedmayer, “Bose-Einstein condensation in a simple microtrap,” Phys. Rev. A 67, 23612 (2003).
[CrossRef]

Schwarz, M.

M. Wilzbach, A. Haase, M. Schwarz, D. Heine, K. Wicker, X. Liu, K.-H. Brenner, S. Groth, T. Fernholz, B. Hessmo, and J. Schmiedmayer, “Detecting neutral atoms on an atom chip,” Fortschr. Phys. 54, 746 (2006).
[CrossRef]

Schwindt, P. D. D.

D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, “Guiding neutral atoms around curves with lithographically patterned current-carrying wires,” Phys. Rev. Lett. 83, 5194 (1999).
[CrossRef]

Segal, S.

Y. Wang, D. Anderson, V. Bright, E. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. Saravanan, S. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005)
[CrossRef] [PubMed]

Shin, Y.

A. E. Leanhardt, Y. Shin, A. P. Chikkatur, D. Kielpinski, W. Ketterle, and D. E. Pritchard, “Bose-Einstein condensates near a microfabricated surface,” Phys. Rev. Lett. 90, 100404 (2003).
[CrossRef] [PubMed]

A. E. Leanhardt, A. P. Chikkatur, D. Kielpinski, Y. Shin, T. L. Gustavson, W. Ketterle, and D. E. Pritchard, “Propagation of Bose-Einstein condensates in a magnetic waveguide,” Phys. Rev. Lett. 89, 40401 (2002).
[CrossRef]

Sinclair, C. D. J.

C. D. J. Sinclair, E. A. Curtis, I. L. Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein condensation on a permanent-magnet atom chip,” Phys. Rev. A 72, 031603 (2005).
[CrossRef]

Smith, S. P.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndić, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124 (2000).
[CrossRef] [PubMed]

Spreeuw, R. J. C.

C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and S. Whitlock, “Detection of small atom numbers through image processing,” Phys. Rev. A 82, 061606 (2010).
[CrossRef]

Stamper-Kurn, D. M.

W. Ketterle, D. S. Durfee, and D. M. Stamper-Kurn, “Making, probing and understanding Bose-Einstein condensates,” in “Bose-Einstein condensation in atomic gases ,”, M. Inguscio, S. Stringari, and C. E. Wieman, eds. (IOS Press, Amsterdam, 1999), Proceedings of the International School of Physics Enrico Fermi, Course CXL, pp. 67–176.

Steinmetz, T.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272 (2007).
[CrossRef] [PubMed]

P. Treutlein, P. Hommelhoff, T. Steinmetz, T. W. Hänsch, and J. Reichel, “Coherence in Microchip Traps,” Phys. Rev. Lett. 92, 203005 (2004).
[CrossRef] [PubMed]

Tauschinsky, A. F.

C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and S. Whitlock, “Detection of small atom numbers through image processing,” Phys. Rev. A 82, 061606 (2010).
[CrossRef]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals Of Photonics (John Wiley & Sons, 1991).
[CrossRef]

Teper, I.

Y. Lin, I. Teper, C. Chin, and V. Vuletić, “Impact of the Casimir-Polder potential and Johnson noise on Bose-Einstein condensate stability near surfaces,” Phys. Rev. Lett. 92, 50404 (2004).
[CrossRef]

Thywissen, J. H.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndić, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124 (2000).
[CrossRef] [PubMed]

Treutlein, P.

P. Böhi, M. F. Riedel, J. Hoffrogge, J. Reichel, T. W. Hänsch, and P. Treutlein, “Coherent manipulation of Bose-Einstein condensates with state-dependent microwave potentials on an atom chip,” Nat. Phys. 5, 592 (2009).
[CrossRef]

P. Treutlein, T. W. Hänsch, J. Reichel, A. Negretti, M. A. Cirone, and T. Calarco, “Microwave potentials and optimal control for robust quantum gates on an atom chip,” Phys. Rev. A 74, 22312 (2006).
[CrossRef]

P. Treutlein, P. Hommelhoff, T. Steinmetz, T. W. Hänsch, and J. Reichel, “Coherence in Microchip Traps,” Phys. Rev. Lett. 92, 203005 (2004).
[CrossRef] [PubMed]

Trinker, M.

M. Trinker, S. Groth, S. Haslinger, S. Manz, T. Betz, S. Schneider, I. Bar-Joseph, T. Schumm, and J. Schmiedmayer, “Multilayer atom chips for versatile atom micromanipulation,” Appl. Phys. Lett. 92, 254102 (2008).
[CrossRef]

Umshaus, G.

J. Denschlag, G. Umshaus, and J. Schmiedmayer, “Probing a singular potential with cold atoms: A neutral atom and a charged wire,” Phys. Rev. Lett. , 81, 737, (1998)
[CrossRef]

Vale, C.

M. Jones, C. Vale, D. Sahagun, B. Hall, C. Eberlein, B. Sauer, K. Furusawa, D. Richardson, and E. Hinds, “Cold atoms probe the magnetic field near a wire,” J. Phys. B 37, L15–L20 (2004)
[CrossRef]

Vale, C. J.

A. Günther, M. Kemmler, S. Kraft, C. J. Vale, C. Zimmermann, and J. Fortagh, “Combined chips for atom-optics,” Phys. Rev. A 71, 63619 (2005).
[CrossRef]

van Amerongen, A.

A. van Amerongen, J. van Es, P. Wicke, K. Kheruntsyan, and N. van Druten, “Yang-Yang thermodynamics on an atom chip,” Phys. Rev. Lett. 100, 13–15 (2008).
[CrossRef]

van Druten, N.

A. van Amerongen, J. van Es, P. Wicke, K. Kheruntsyan, and N. van Druten, “Yang-Yang thermodynamics on an atom chip,” Phys. Rev. Lett. 100, 13–15 (2008).
[CrossRef]

van Es, J.

A. van Amerongen, J. van Es, P. Wicke, K. Kheruntsyan, and N. van Druten, “Yang-Yang thermodynamics on an atom chip,” Phys. Rev. Lett. 100, 13–15 (2008).
[CrossRef]

Verdú, J.

S. Hofferberth, I. Lesanovsky, B. Fischer, J. Verdú, and J. Schmiedmayer, “Radio-frequency dressed state potentials for neutral atoms,” Nat. Phys. 2, 710–716 (2006).
[CrossRef]

vom Hagen, C.

S. Schneider, A. Kasper, C. vom Hagen, M. Bartenstein, B. Engeser, T. Schumm, I. Bar-Joseph, R. Folman, L. Feenstra, and J. Schmiedmayer, “Bose-Einstein condensation in a simple microtrap,” Phys. Rev. A 67, 23612 (2003).
[CrossRef]

Vuletic, V.

Y. Lin, I. Teper, C. Chin, and V. Vuletić, “Impact of the Casimir-Polder potential and Johnson noise on Bose-Einstein condensate stability near surfaces,” Phys. Rev. Lett. 92, 50404 (2004).
[CrossRef]

Wang, Y.

Y. Wang, D. Anderson, V. Bright, E. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. Saravanan, S. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005)
[CrossRef] [PubMed]

Westbrook, C.

J. Esteve, C. Aussibal, T. Schumm, C. Figl, D. Mailly, I. Bouchoule, C. Westbrook, and A. Aspect, “Role of wire imperfections in micromagnetic traps for atoms,” Phys. Rev. A 70042629 (2004)
[CrossRef]

Westervelt, R. M.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndić, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124 (2000).
[CrossRef] [PubMed]

Whitlock, S.

C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and S. Whitlock, “Detection of small atom numbers through image processing,” Phys. Rev. A 82, 061606 (2010).
[CrossRef]

Wicke, P.

A. van Amerongen, J. van Es, P. Wicke, K. Kheruntsyan, and N. van Druten, “Yang-Yang thermodynamics on an atom chip,” Phys. Rev. Lett. 100, 13–15 (2008).
[CrossRef]

Wicker, K.

M. Wilzbach, A. Haase, M. Schwarz, D. Heine, K. Wicker, X. Liu, K.-H. Brenner, S. Groth, T. Fernholz, B. Hessmo, and J. Schmiedmayer, “Detecting neutral atoms on an atom chip,” Fortschr. Phys. 54, 746 (2006).
[CrossRef]

Wildermuth, S.

P. Krüger, L. M. Andersson, S. Wildermuth, S. Hofferberth, E. Haller, S. Aigner, S. Groth, I. Bar-Joseph, and J. Schmiedmayer, “Potential roughness near lithographically fabricated atom chips,” Phys. Rev. A 76, 063621 (2007).
[CrossRef]

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Krüger, “Matter wave interferometry in a double well on an atom chip,” Nat. Phys. 1, 57–62 (2005).
[CrossRef]

S. Wildermuth, S. Hofferberth, I. Lesanovsky, E. Haller, L. M. Andersson, S. Groth, I. Bar-Joseph, P. Krüger, and J. Schmiedmayer, “Microscopic magnetic-field imaging,” Nature 435, 440 (2005).
[CrossRef] [PubMed]

S. Groth, P. Krüger, S. Wildermuth, R. Folman, T. Fernholz, J. Schmiedmayer, D. Mahalu, and I. Bar-Joseph, “Atom chips: fabrication and thermal properties,” Appl. Phys. Lett. 85, 2980 (2004).
[CrossRef]

P. Krüger, X. Luo, M. W. Klein, K. Brugger, A. Haase, S. Wildermuth, S. Groth, I. Bar-Joseph, R. Folman, and J. Schmiedmayer, “Trapping and manipulating neutral atoms with electrostatic fields,” Phys. Rev. Lett. 91, 233201 (2003).
[CrossRef] [PubMed]

Wilzbach, M.

D. Heine, W. Rohringer, D. Fischer, M. Wilzbach, T. Raub, S. Loziczky, X. Liu, S. Groth, B. Hessmo, and J. Schmiedmayer, “A single-atom detector integrated on an atom chip: fabrication, characterization and application,” N. J. Phys. 12, 095005 (2010).
[CrossRef]

M. Wilzbach, A. Haase, M. Schwarz, D. Heine, K. Wicker, X. Liu, K.-H. Brenner, S. Groth, T. Fernholz, B. Hessmo, and J. Schmiedmayer, “Detecting neutral atoms on an atom chip,” Fortschr. Phys. 54, 746 (2006).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).

Wu, S.

Y. Wang, D. Anderson, V. Bright, E. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. Saravanan, S. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005)
[CrossRef] [PubMed]

Zimmermann, C.

S. Kraft, A. Günther, J. Fortágh, and C. Zimmermann, “Spatially resolved photoionization of ultracold atoms on an atom chip,” Phys. Rev. A 75, 1–5 (2007).
[CrossRef]

J. Fortágh and C. Zimmermann, “Magnetic microtraps for ultracold atoms,” Rev. Mod. Phys. 79, 235 (2007).
[CrossRef]

A. Günther, M. Kemmler, S. Kraft, C. J. Vale, C. Zimmermann, and J. Fortagh, “Combined chips for atom-optics,” Phys. Rev. A 71, 63619 (2005).
[CrossRef]

J. Fortagh, H. Ott, S. Kraft, A. Gunther, and C. Zimmermann, “Surface effects in magnetic microtraps,” Phys. Rev. A 66, 041604 (2002).
[CrossRef]

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401 (2001).
[CrossRef] [PubMed]

Zoller, P.

T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 22304 (2000).
[CrossRef]

Adv. At. Mol. Opt. Phys. (1)

R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At. Mol. Opt. Phys. 48, 263–356 (2002).

Appl. Phys. B (1)

J. Schmiedmayer, “A wire trap for neutral atoms,” Appl. Phys. B 60, 169–179 (1995).
[CrossRef]

Appl. Phys. Lett. (2)

S. Groth, P. Krüger, S. Wildermuth, R. Folman, T. Fernholz, J. Schmiedmayer, D. Mahalu, and I. Bar-Joseph, “Atom chips: fabrication and thermal properties,” Appl. Phys. Lett. 85, 2980 (2004).
[CrossRef]

M. Trinker, S. Groth, S. Haslinger, S. Manz, T. Betz, S. Schneider, I. Bar-Joseph, T. Schumm, and J. Schmiedmayer, “Multilayer atom chips for versatile atom micromanipulation,” Appl. Phys. Lett. 92, 254102 (2008).
[CrossRef]

Fortschr. Phys. (1)

M. Wilzbach, A. Haase, M. Schwarz, D. Heine, K. Wicker, X. Liu, K.-H. Brenner, S. Groth, T. Fernholz, B. Hessmo, and J. Schmiedmayer, “Detecting neutral atoms on an atom chip,” Fortschr. Phys. 54, 746 (2006).
[CrossRef]

J. Phys. B (1)

M. Jones, C. Vale, D. Sahagun, B. Hall, C. Eberlein, B. Sauer, K. Furusawa, D. Richardson, and E. Hinds, “Cold atoms probe the magnetic field near a wire,” J. Phys. B 37, L15–L20 (2004)
[CrossRef]

N. J. Phys. (2)

D. Heine, W. Rohringer, D. Fischer, M. Wilzbach, T. Raub, S. Loziczky, X. Liu, S. Groth, B. Hessmo, and J. Schmiedmayer, “A single-atom detector integrated on an atom chip: fabrication, characterization and application,” N. J. Phys. 12, 095005 (2010).
[CrossRef]

R. Bücker, A. Perrin, S. Manz, T. Betz, C. Koller, T. Plisson, J. Rottmann, T. Schumm, and J. Schmiedmayer, “Single-particle-sensitive imaging of freely propagating ultracold atoms,” N. J. Phys. 11, 103039 (2009).
[CrossRef]

Nat. Phys. (3)

S. Hofferberth, I. Lesanovsky, B. Fischer, J. Verdú, and J. Schmiedmayer, “Radio-frequency dressed state potentials for neutral atoms,” Nat. Phys. 2, 710–716 (2006).
[CrossRef]

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Krüger, “Matter wave interferometry in a double well on an atom chip,” Nat. Phys. 1, 57–62 (2005).
[CrossRef]

P. Böhi, M. F. Riedel, J. Hoffrogge, J. Reichel, T. W. Hänsch, and P. Treutlein, “Coherent manipulation of Bose-Einstein condensates with state-dependent microwave potentials on an atom chip,” Nat. Phys. 5, 592 (2009).
[CrossRef]

Nature (4)

S. Wildermuth, S. Hofferberth, I. Lesanovsky, E. Haller, L. M. Andersson, S. Groth, I. Bar-Joseph, P. Krüger, and J. Schmiedmayer, “Microscopic magnetic-field imaging,” Nature 435, 440 (2005).
[CrossRef] [PubMed]

S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm, and J. Schmiedmayer, “Non-equilibrium coherence dynamics in one-dimensional Bose gases,” Nature 449, 324–327 (2007).
[CrossRef] [PubMed]

W. Hänsel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498 (2001).
[CrossRef] [PubMed]

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272 (2007).
[CrossRef] [PubMed]

Phys. Rev. A (10)

S. Kraft, A. Günther, J. Fortágh, and C. Zimmermann, “Spatially resolved photoionization of ultracold atoms on an atom chip,” Phys. Rev. A 75, 1–5 (2007).
[CrossRef]

S. Schneider, A. Kasper, C. vom Hagen, M. Bartenstein, B. Engeser, T. Schumm, I. Bar-Joseph, R. Folman, L. Feenstra, and J. Schmiedmayer, “Bose-Einstein condensation in a simple microtrap,” Phys. Rev. A 67, 23612 (2003).
[CrossRef]

C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and S. Whitlock, “Detection of small atom numbers through image processing,” Phys. Rev. A 82, 061606 (2010).
[CrossRef]

P. Krüger, L. M. Andersson, S. Wildermuth, S. Hofferberth, E. Haller, S. Aigner, S. Groth, I. Bar-Joseph, and J. Schmiedmayer, “Potential roughness near lithographically fabricated atom chips,” Phys. Rev. A 76, 063621 (2007).
[CrossRef]

C. D. J. Sinclair, E. A. Curtis, I. L. Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein condensation on a permanent-magnet atom chip,” Phys. Rev. A 72, 031603 (2005).
[CrossRef]

J. Fortagh, H. Ott, S. Kraft, A. Gunther, and C. Zimmermann, “Surface effects in magnetic microtraps,” Phys. Rev. A 66, 041604 (2002).
[CrossRef]

A. Günther, M. Kemmler, S. Kraft, C. J. Vale, C. Zimmermann, and J. Fortagh, “Combined chips for atom-optics,” Phys. Rev. A 71, 63619 (2005).
[CrossRef]

J. Esteve, C. Aussibal, T. Schumm, C. Figl, D. Mailly, I. Bouchoule, C. Westbrook, and A. Aspect, “Role of wire imperfections in micromagnetic traps for atoms,” Phys. Rev. A 70042629 (2004)
[CrossRef]

T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 22304 (2000).
[CrossRef]

P. Treutlein, T. W. Hänsch, J. Reichel, A. Negretti, M. A. Cirone, and T. Calarco, “Microwave potentials and optimal control for robust quantum gates on an atom chip,” Phys. Rev. A 74, 22312 (2006).
[CrossRef]

Phys. Rev. Lett. (16)

Y. Wang, D. Anderson, V. Bright, E. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. Saravanan, S. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005)
[CrossRef] [PubMed]

J. Armijo, T. Jacqmin, K. Kheruntsyan, and I. Bouchoule, “Probing three-body correlations in a quantum gas using the measurement of the third moment of density fluctuations,” Phys. Rev. Lett. 105, 3–6 (2010).
[CrossRef]

A. van Amerongen, J. van Es, P. Wicke, K. Kheruntsyan, and N. van Druten, “Yang-Yang thermodynamics on an atom chip,” Phys. Rev. Lett. 100, 13–15 (2008).
[CrossRef]

A. E. Leanhardt, Y. Shin, A. P. Chikkatur, D. Kielpinski, W. Ketterle, and D. E. Pritchard, “Bose-Einstein condensates near a microfabricated surface,” Phys. Rev. Lett. 90, 100404 (2003).
[CrossRef] [PubMed]

Y. Lin, I. Teper, C. Chin, and V. Vuletić, “Impact of the Casimir-Polder potential and Johnson noise on Bose-Einstein condensate stability near surfaces,” Phys. Rev. Lett. 92, 50404 (2004).
[CrossRef]

A. E. Leanhardt, A. P. Chikkatur, D. Kielpinski, Y. Shin, T. L. Gustavson, W. Ketterle, and D. E. Pritchard, “Propagation of Bose-Einstein condensates in a magnetic waveguide,” Phys. Rev. Lett. 89, 40401 (2002).
[CrossRef]

J. Reichel, W. Hänsel, and T. W. Hänsch, “Atomic Micromanipulation with Magnetic Surface Traps,” Phys. Rev. Lett. 83, 3398 (1999).
[CrossRef]

D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, “Guiding neutral atoms around curves with lithographically patterned current-carrying wires,” Phys. Rev. Lett. 83, 5194 (1999).
[CrossRef]

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling cold atoms using nanofabricated surfaces: atom chips,” Phys. Rev. Lett. 84, 4749 (2000).
[CrossRef] [PubMed]

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndić, R. M. Westervelt, and M. Prentiss, “Guiding neutral atoms on a chip,” Phys. Rev. Lett. 84, 1124 (2000).
[CrossRef] [PubMed]

D. Cassettari, B. Hessmo, R. Folman, T. Maier, and J. Schmiedmayer, “Beam splitter for guided atoms,” Phys. Rev. Lett. 85, 5483–5487 (2000).
[CrossRef]

W. Hänsel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86, 608 (2001).
[CrossRef] [PubMed]

J. Denschlag, G. Umshaus, and J. Schmiedmayer, “Probing a singular potential with cold atoms: A neutral atom and a charged wire,” Phys. Rev. Lett. , 81, 737, (1998)
[CrossRef]

P. Krüger, X. Luo, M. W. Klein, K. Brugger, A. Haase, S. Wildermuth, S. Groth, I. Bar-Joseph, R. Folman, and J. Schmiedmayer, “Trapping and manipulating neutral atoms with electrostatic fields,” Phys. Rev. Lett. 91, 233201 (2003).
[CrossRef] [PubMed]

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401 (2001).
[CrossRef] [PubMed]

P. Treutlein, P. Hommelhoff, T. Steinmetz, T. W. Hänsch, and J. Reichel, “Coherence in Microchip Traps,” Phys. Rev. Lett. 92, 203005 (2004).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

J. Fortágh and C. Zimmermann, “Magnetic microtraps for ultracold atoms,” Rev. Mod. Phys. 79, 235 (2007).
[CrossRef]

Science (1)

S. Aigner, L. Della Pietra, Y. Japha, O. Entin-Wohlman, T. David, R. Salem, R. Folman, and J. Schmiedmayer, “Long-range order in electronic transport through disordered metal films,” Science 319, 1226–1229 (2008).
[CrossRef] [PubMed]

Other (5)

W. Ketterle, D. S. Durfee, and D. M. Stamper-Kurn, “Making, probing and understanding Bose-Einstein condensates,” in “Bose-Einstein condensation in atomic gases ,”, M. Inguscio, S. Stringari, and C. E. Wieman, eds. (IOS Press, Amsterdam, 1999), Proceedings of the International School of Physics Enrico Fermi, Course CXL, pp. 67–176.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).

B. E. A. Saleh and M. C. Teich, Fundamentals Of Photonics (John Wiley & Sons, 1991).
[CrossRef]

Atom Chips , J. Reichel and V. Vuletic, eds. (Wiley VCH, 2011).
[CrossRef]

D. A. Steck, “Rubidium 87 D Line Data,” (2001), http://steck.us/alkalidata/rubidium87numbers.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Sketch of Imaging Configurations (not to scale). (a) Grazing Incidence Imaging. The imaging beam is reflected off the atom chip surface and the atom cloud (blue circle) produces two shadows. For the direct image, the imaging beam first reflects off the atom chip surface, then interacts with the atom cloud. For the mirror image, the imaging beam first interacts with the atom cloud, then reflects off the atom chip. (b) Normal Incidence Imaging provides the location of the atom cloud relative to the structures on the atom chip surface. (c) Time-of-flight Imaging, where the atom cloud is far from the atom chip surface.

Fig. 2
Fig. 2

(a, b) Images without atoms (I in) with (a) the imaging beam propagating parallel to chip surface and (b) the imaging beam reflected from chip surface with θ = 2°. The dark region at the top is the shadow cast by the chip and its mounting. The red boxes represent the region where the atom cloud would be located in situ or for short times of flight. The strong horizontal fringes are due to diffraction from the edges of the chip. The inclination of the beam allows the diffraction effects to be moved in the image relative to the position of the atom cloud. The circular fringes and other structures are due to small dust particles in the beam path. (c, d) Reflecting the imaging beam off the atom chip surface results in a standing wave (d) and 2 clouds in the image (c) because the atom cloud (blue circle) is passed by two different beam paths. Path (1) is mapped by the imaging system to a real image, path (2) to a mirror image. The image in (c) would lie in the area denoted in (b).

Fig. 3
Fig. 3

The total scattered power Psc for trapped condensates at different heights above a wire. The blue and green curves show the result for in-plane and out-of-plane linear polarization of the imaging beam, which have a small relative phase shift caused by the different boundary conditions of the standing wave at the mirror surface. The angle of incidence of the imaging beam θ was 4.2°. The jump in signal between h = 20 and h = 25 is due to wires of different heights obscuring part of the beams (see Fig. 4). Imaging System 2 in section 9 was used in this case.

Fig. 4
Fig. 4

(a–c). Imaging close to wires of different heights. The three scenarios show the atom cloud (blue circle) above different parts of the chip in the situation where the atom chip surface has wires of different heights. Shadows cast by the wires into the imaging beam result in part of the cloud not being imaged in each case. (d) Angular aliasing. If a plane wave component scattered by the atom cloud is reflected by the surface (dashed line), it exits under an angle that is already occupied by a wave component that travels directly away from the surface.

Fig. 5
Fig. 5

(a) Simulation and (b) experimental data of absorption images for varying distance between the atom cloud and the chip surface. Shown are vertical line densities for different trap distances, with two separate absorption positions emerging as the distance between the atom cloud and the chip increases (Fig. 2). It can be seen that many of the features resulting from interference effects due to the reflecting surface, such as dark fringes where the atoms are located, are well reproduced by the simulation. The good agreement between theory and experiment allows for an accurate calibration of the trap distance from the surface, which in turn allows for precise calibration of the magnetic fields applied to form the magnetic trap. Imaging System 1 in section 9 was used in this case.

Fig. 6
Fig. 6

Extracting the height above the chip by Fourier method. (a) Fourier transform Ĩ sc(kx ) of (b) the scattered intensity I sc(x). The transverse wave vector kx has been translated to the propagation angle β of the corresponding plane wave component. The green curve shows a fit of the model eq. 7 to the data, the red curve shows the envelope exp( k x 2 w 2 / 2 ) , where w is from a fit to the experimental data I sc(x) shown in (b), which shows the scattered intensity profile I sc(x) together with the profile obtained from the fit in Fourier space (green line). (c) Comparing height estimation methods: Taking the distance directly from I sc(x) to obtain h (open circles) and the corresponding result of the Fourier method (filled circles). The experimental control parameter is nearly linear in height above the surface and is related to the magnetic field controlling the magnetic trap. The Fourier approach presents the more stable and less noisy method. (d) Residuals from the direct fitting method of (b), giving a standard deviation of 0.95μm. (e) Residuals from the Fourier fitting method of (a), giving a standard deviation of 0.21μm. Imaging System 2 in section 9 was used in this case.

Fig. 7
Fig. 7

(left) Orthogonal-angle-of-incidence imaging of an atomic cloud above a broad 100 μm wide Z-shaped trapping wire. (a) The direct image reveals the features on the chip. The atom cloud is just visible in the center of the central broad wire. (b) Processed absorption picture (divided by a reference image without atoms). The atoms are clearly visible and the speckle patterns are reduced. (Imaging System 3 section 9). (right): Longitudinal imaging. (c) in situ image, 80 μm away from the chip surface showing a BEC that has been split by ∼ 45 μm using a RF dressed-state double-well potential. (d) Image of time-of-flight matter-wave interference of two BECs after 15 ms time of flight [27]. (Imaging System 4 section 9).

Fig. 8
Fig. 8

(a) Absorption image of a fragmented BEC taken after 5 ms of time-of-flight expansion. The BEC has been formed at a distance of 10 μm from the wire surface. (b) Longitudinal one-dimensional density profile (blue) derived from the absorption image. The noise-level is shown in red. (c) To accentuate the noise-floor of ∼ 2 atoms/μm rms, the same data has been plotted logarithmically. Imaging System 1 in section 9 was used for this image.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I out I in = exp ( n σ ) .
I sc ( x ) = I sw ( x ) [ 1 e n ( x ) σ sc ] .
P sc = 2 P 0 [ 1 cos ( 2 k x h ) e 2 k x 2 w 2 ] ,
K ( ν x , ν y ) = exp ( i 2 π 1 / λ 2 ν x 2 ν y 2 Δ z )
V ( ν x , ν y , z 0 ) = U ( x , y , z 0 ) e i 2 π ( ν x x + ν y y ) d x d y
U ( x , y , z 0 + Δ z ) = K ( ν x , ν y ) V ( ν x , ν y , z 0 ) e i 2 π ( ν x x + ν y y ) d x d y
I ˜ sc model ( k x ) cos ( k x h ) exp ( k x 2 w 2 / 2 ) .

Metrics