Abstract

A model for characterizing the spectral response of the passband of Wavelength Selective Switches (WSS) is presented. We demonstrate that, in contrast to the commonly used supergaussian model, the presented model offers a more complete match to measured results, as it is based on the physical operation of the optical system. We also demonstrate that this model is better suited for calculation of WSS channel bandwidths, as well as predicting the final bandwidth of cascaded WSS modules. Finally, we show the utility of this model in predicting channel shapes in flexible bandwidth WSS channel plans.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48, 40–50 (2010).
    [CrossRef]
  2. J. D. Downie and A. B. Ruffin, “Analysis of signal distortion and crosstalk penalties induced by optical filters in optical networks,” J. Lightwave Technol. 21, 1876–1886 (2003).
    [CrossRef]
  3. S. Tibuleac and M. Filer, “Transmission impairments in DWDM networks with reconfigurable optical add-drop multiplexers,” J. Lightwave Technol. 28, 557–598 (2010).
    [CrossRef]
  4. T. A. Strasser and J. L. Wagener, “Wavelength-selective switches for ROADM applications,” IEEE J. Sel. Top. Quantum Electron. 16, 1150–1157 (2010).
    [CrossRef]
  5. F. Heismann, “System requirements for WSS filter shape in cascaded ROADM networks,” in Proceedings of the Optical Fiber Communication Conference , 2010.
  6. G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Proceedings of the Optical Fiber Communication Conference , 2006.
    [CrossRef]
  7. M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion trimming in a reconfigurable wavelength selective switch,” J. Lightwave Technol. 26, 73–78 (2008).
    [CrossRef]
  8. J. W. Goodman, “Frequency analysis of optical imaging system,” in Introduction to Fourier Optics , 3rd ed. (Roberts and Company, 2005).
  9. D. M. Marom, D. T. Neilson, D. S. Greywall, C. S. Pai, N. R. Basavanhally, V. A. Aksyuk, D. O. López, F. Pardo, M. E. Simon, Y. Low, P. Kolodner, and C. A. Bolle, “Wavelength-selective 1 x K switches using free-space optics and MEMS micromirrors: theory, design, and implementation,” J. Lightwave Technol. 23, 1620–1630 (2005).
    [CrossRef]
  10. R. N. Thurston, J. P. Heritage, A. M. Weiner, and W. J. Tomlinson, “Analysis of picosecond pulse shape synthesis by spectral masking in a grating pulse compressor,” IEEE J. Quantum Electron. , QE-22, 682–696 (1986).
    [CrossRef]
  11. P. Wall, P. Colbourne, C. Reimer, and S. McLaughlin, “WSS switching engine technologies,” in Proceedings of the Optical Fiber Communication Conference , 2007.
  12. “ZEMAX Optical Design Program,” ZEMAX Development Corporation, USA.
  13. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).
  14. J. F. James, Spectrograph Design Fundamentals (Cambridge University Press, 2007).
    [CrossRef]
  15. C. Malouin, J. Bennike, and T. J. Schmidt, “Differential phase-shift keying receiver design applied to strong optical filtering,” J. Lightwave Technol. 25, 3536–3542 (2007).
    [CrossRef]

2010

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48, 40–50 (2010).
[CrossRef]

T. A. Strasser and J. L. Wagener, “Wavelength-selective switches for ROADM applications,” IEEE J. Sel. Top. Quantum Electron. 16, 1150–1157 (2010).
[CrossRef]

S. Tibuleac and M. Filer, “Transmission impairments in DWDM networks with reconfigurable optical add-drop multiplexers,” J. Lightwave Technol. 28, 557–598 (2010).
[CrossRef]

2008

2007

2005

2003

1986

R. N. Thurston, J. P. Heritage, A. M. Weiner, and W. J. Tomlinson, “Analysis of picosecond pulse shape synthesis by spectral masking in a grating pulse compressor,” IEEE J. Quantum Electron. , QE-22, 682–696 (1986).
[CrossRef]

1977

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).

Abakoumov, D.

Aksyuk, V. A.

Basavanhally, N. R.

Basch, B.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48, 40–50 (2010).
[CrossRef]

Baxter, G.

Bennike, J.

Bolger, J. A.

Bolle, C. A.

Downie, J. D.

Eggleton, B. J.

Egorov, R.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48, 40–50 (2010).
[CrossRef]

Filer, M.

Frisken, S.

Goodman, J. W.

J. W. Goodman, “Frequency analysis of optical imaging system,” in Introduction to Fourier Optics , 3rd ed. (Roberts and Company, 2005).

Greywall, D. S.

Gringeri, S.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48, 40–50 (2010).
[CrossRef]

Heritage, J. P.

R. N. Thurston, J. P. Heritage, A. M. Weiner, and W. J. Tomlinson, “Analysis of picosecond pulse shape synthesis by spectral masking in a grating pulse compressor,” IEEE J. Quantum Electron. , QE-22, 682–696 (1986).
[CrossRef]

James, J. F.

J. F. James, Spectrograph Design Fundamentals (Cambridge University Press, 2007).
[CrossRef]

Kolodner, P.

López, D. O.

Low, Y.

Malouin, C.

Marcuse, D.

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).

Marom, D. M.

Neilson, D. T.

Pai, C. S.

Pardo, F.

Poole, S.

Roelens, M. A. F.

Ruffin, A. B.

Schmidt, T. J.

Shukla, V.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48, 40–50 (2010).
[CrossRef]

Simon, M. E.

Strasser, T. A.

T. A. Strasser and J. L. Wagener, “Wavelength-selective switches for ROADM applications,” IEEE J. Sel. Top. Quantum Electron. 16, 1150–1157 (2010).
[CrossRef]

Thurston, R. N.

R. N. Thurston, J. P. Heritage, A. M. Weiner, and W. J. Tomlinson, “Analysis of picosecond pulse shape synthesis by spectral masking in a grating pulse compressor,” IEEE J. Quantum Electron. , QE-22, 682–696 (1986).
[CrossRef]

Tibuleac, S.

Tomlinson, W. J.

R. N. Thurston, J. P. Heritage, A. M. Weiner, and W. J. Tomlinson, “Analysis of picosecond pulse shape synthesis by spectral masking in a grating pulse compressor,” IEEE J. Quantum Electron. , QE-22, 682–696 (1986).
[CrossRef]

Wagener, J. L.

T. A. Strasser and J. L. Wagener, “Wavelength-selective switches for ROADM applications,” IEEE J. Sel. Top. Quantum Electron. 16, 1150–1157 (2010).
[CrossRef]

Weiner, A. M.

R. N. Thurston, J. P. Heritage, A. M. Weiner, and W. J. Tomlinson, “Analysis of picosecond pulse shape synthesis by spectral masking in a grating pulse compressor,” IEEE J. Quantum Electron. , QE-22, 682–696 (1986).
[CrossRef]

Xia, T. J.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48, 40–50 (2010).
[CrossRef]

Bell Syst. Tech. J.

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).

IEEE Commun. Mag.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48, 40–50 (2010).
[CrossRef]

IEEE J. Quantum Electron.

R. N. Thurston, J. P. Heritage, A. M. Weiner, and W. J. Tomlinson, “Analysis of picosecond pulse shape synthesis by spectral masking in a grating pulse compressor,” IEEE J. Quantum Electron. , QE-22, 682–696 (1986).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

T. A. Strasser and J. L. Wagener, “Wavelength-selective switches for ROADM applications,” IEEE J. Sel. Top. Quantum Electron. 16, 1150–1157 (2010).
[CrossRef]

J. Lightwave Technol.

Other

F. Heismann, “System requirements for WSS filter shape in cascaded ROADM networks,” in Proceedings of the Optical Fiber Communication Conference , 2010.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Proceedings of the Optical Fiber Communication Conference , 2006.
[CrossRef]

J. W. Goodman, “Frequency analysis of optical imaging system,” in Introduction to Fourier Optics , 3rd ed. (Roberts and Company, 2005).

P. Wall, P. Colbourne, C. Reimer, and S. McLaughlin, “WSS switching engine technologies,” in Proceedings of the Optical Fiber Communication Conference , 2007.

“ZEMAX Optical Design Program,” ZEMAX Development Corporation, USA.

J. F. James, Spectrograph Design Fundamentals (Cambridge University Press, 2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

General schematic of LCoS-based WSS operation as shown in [6].

Fig. 2
Fig. 2

The effect of the optical transfer function bandwidth on the channel shape for a 50 GHz bandpass filter response, calculated using Eq. (5) and setting B = 50 GHz and BW OTF = 8, 12, and 16 GHz.

Fig. 3
Fig. 3

Schematic of a generic WSS.

Fig. 4
Fig. 4

Simulated WSS performance for (a) focused spot at image plane, matched to an ideal Gaussian, and (b) 50 GHz bandpass filter, matched to Eq. (5) with BW OTF = 10.4 GHz and B = 50 GHz.

Fig. 5
Fig. 5

The slope of a 50 GHz WSS channel, calculated numerically from a measured 50 GHz channel, and the resulting predicted slope calculated from Eq. (8). Also shown for comparison, overlaid in dotted green, is the original power spectrum measurement of the bandpass filter.

Fig. 6
Fig. 6

A measured 50 GHz channel, compared with Eq. (5), and a supergaussian with a 0.5 dB bandwidth of 34.5 GHz and n = 4.5.

Fig. 7
Fig. 7

Measured OTF bandwidth for a single device, evaluated over the C-band.

Fig. 8
Fig. 8

Predicted 0.5 dB and 3 dB bandwidths from Eq. (12), compared to measured results (markers), for channel bandwidths ranging from 20 to 50 GHz.

Fig. 9
Fig. 9

Effect of cascaded WSS modules on the 3 dB bandwidth of any given channel, comparing our model to supergaussian and Butterworth filters.

Fig. 10
Fig. 10

Predicted 3 dB bandwidth of cascaded WSS modules, simulated for OTF bandwidths of 8, 10, 12 and 14 GHz.

Fig. 11
Fig. 11

Comparison between measured mixed channel plan and the matching ability of (a) the model presented in this paper, and (b) supergaussian models.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

R ( f ) = { 1 , B 2 f B 2 0 , otherwise ,
S ( f ) = + R ( f ) L ( f f ) d f ,
L ( f ) = exp [ f 2 2 σ 2 ] ,
σ = B W OTF 2 2 ln 2 .
S ( f ) = 1 2 σ 2 π [ erf ( B 2 f 2 σ ) erf ( B 2 f 2 σ ) ] ,
S s g ( f ) = 1 σ s g 2 σ exp [ ( f 2 2 σ s g 2 ) n ] ,
σ s g = B W m d B 2 [ 2 ( ln 10 m 10 ) 1 n ] 1 2 .
d S ( f ) d f = 1 σ 2 π [ exp [ ( B 2 f 2 σ ) 2 ] exp [ ( B 2 f 2 σ ) 2 ] ] .
d S ( f = B 2 ) d f = 1 σ 2 π [ 1 exp ( B 2 2 σ 2 ) ] .
B W OTF = 2 2 ln 2 exp [ = ln ( 2 π d S ( f = B 2 ) d f ) ] ,
S m dB ( f ) = 10 m 10 S ( 0 ) .
B W m dB = B 2 2 σ E m ,
E m = erfinv [ 2 10 m 10 erf ( B 2 2 σ ) 1 ] ,
B W casc ( p , K ) = B W p K d B ,

Metrics