Abstract

We discuss the deformation of a partially pumped active mirror amplifier as a free standing disk, as implemented in several laser systems. We rely on the Lucia laser project to experimentally evaluate the analytical and numerical deformation models.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Arzakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Experimental investigation of Yb3+:YAG growth with controlled doping distribution using the modified horizontal direct crystallization method,” presented at the 16th International Conference on Crystal Growth (ICCG-16), Beijing, China, August 8–13, 2010.
  2. A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
  3. T. Kawashima, T. Ikegawa, J. Kawanaka, N. Miyanaga, M. Nakatsuka, Y. Izawa, O. Matsumoto, R. Yasuhara, T. Kurita, T. Sekine, M. Miyamoto, H. Kan, H. Furukawa, S. Motokoshi, and T. Kanabe, “The HALNA project: diode-pumped solid-state laser for inertial fusion energy,” J. Phys. IV 133, 615–620 (2006).
  4. J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys. 20, 1079–1084 (2010).
    [CrossRef]
  5. J. F. Nye, Physical Properties of Crystals (Oxford Science Publications, 1985).
  6. S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
    [CrossRef]
  7. O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob’ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd : YAG laser crystals,” IEEE J. Quantum Electron. 39, 910–918 (2003).
    [CrossRef]
  8. R. Moncorgé, O. N. Eremeykin, J. L. Doualan, and O. L. Antipov, “Origin of athermal refractive index changes observed in Yb3+ doped YAG and KGW,” Opt. Commun. 281, 2526–2530 (2008).
    [CrossRef]
  9. E. Anashkina and O. L. Antipov, “Electronic (population) lensing versus thermal lensing in Yb:YAG and Nd:YAG laser rods and disks,” J. Opt. Soc. Am. B 27, 363–369 (2010).
    [CrossRef]
  10. W. Koechner, Solid-State Laser Engineering (Springer, 1999).
  11. J.-C. Chanteloup, H. Yu, G. Bourdet, C. Dambrine, S. Ferré, A. Fülöp, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, “Overview of the Lucia laser program: towards 100 Joules, nanosecond pulses, kW averaged power, based on ytterbium diode pumped solid state laser,” in Solid State Lasers XIV: Technology and Devices , H. J. Hoffman and R. K. Shori, eds., Proc. SPIE 5707, 105–116 (2005).
  12. D. Albach, M. Arzakantsyan, G. Bourdet, J.-C. Chanteloup, Ph. Hollander, and B. Vincent, “Current status of the Lucia laser system,” in The Sixth International Conference on Inertial Fusion Sciences and Applications (IFSA 2009), J. Phys.: Conf. Ser. 244, 032015 (2010).
    [CrossRef]
  13. T. Y. Fan, “Heat generation In Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
    [CrossRef]
  14. H. Haferkorn, Optik (VEB Deutscher Verlag der Wissenschaften, 1980).
  15. D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33, 861–873 (1997).
    [CrossRef]
  16. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 281, 103514 (2005).
    [CrossRef]
  17. F. Patel, E. Honea, J. Speth, and S. Payne, “Properties of Yb3Al5O12 and highly doped Yb:Y3Al5O12,” in Conference on Lasers and Electro-Optics (OSA, 1999), paper ThW4.
  18. A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28, 1057–1069 (1992).
    [CrossRef]
  19. J.-C. Chanteloup, D. Albach, F. Assemat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touze, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10Hz/1ms Yb:YAG pumping,” in The Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), J. Phys.: Conf. Ser. 112, 032056 (2008).
    [CrossRef]
  20. J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, and B. Le Garrec, “Multi kJ level laser concepts for HiPER facility,” in The Sixth International Conference on Inertial Fusion Sciences and Applications (IFSA 2009), J. Phys.: Conf. Ser. 244, 012010 (2010).
    [CrossRef]
  21. J. Hein, J. Körner, J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, and B. Le Garrec, “Laser concepts for a rep–rated multi-kJ ICF–driver of the HiPER facility,” presented at the International Committee on Ultra Intense Lasers Conference (ICUIL 2010), Watkins Glen, New York, USA, September 26 – October 01, 2010

2010

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys. 20, 1079–1084 (2010).
[CrossRef]

E. Anashkina and O. L. Antipov, “Electronic (population) lensing versus thermal lensing in Yb:YAG and Nd:YAG laser rods and disks,” J. Opt. Soc. Am. B 27, 363–369 (2010).
[CrossRef]

D. Albach, M. Arzakantsyan, G. Bourdet, J.-C. Chanteloup, Ph. Hollander, and B. Vincent, “Current status of the Lucia laser system,” in The Sixth International Conference on Inertial Fusion Sciences and Applications (IFSA 2009), J. Phys.: Conf. Ser. 244, 032015 (2010).
[CrossRef]

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, and B. Le Garrec, “Multi kJ level laser concepts for HiPER facility,” in The Sixth International Conference on Inertial Fusion Sciences and Applications (IFSA 2009), J. Phys.: Conf. Ser. 244, 012010 (2010).
[CrossRef]

2008

J.-C. Chanteloup, D. Albach, F. Assemat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touze, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10Hz/1ms Yb:YAG pumping,” in The Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), J. Phys.: Conf. Ser. 112, 032056 (2008).
[CrossRef]

R. Moncorgé, O. N. Eremeykin, J. L. Doualan, and O. L. Antipov, “Origin of athermal refractive index changes observed in Yb3+ doped YAG and KGW,” Opt. Commun. 281, 2526–2530 (2008).
[CrossRef]

2006

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[CrossRef]

T. Kawashima, T. Ikegawa, J. Kawanaka, N. Miyanaga, M. Nakatsuka, Y. Izawa, O. Matsumoto, R. Yasuhara, T. Kurita, T. Sekine, M. Miyamoto, H. Kan, H. Furukawa, S. Motokoshi, and T. Kanabe, “The HALNA project: diode-pumped solid-state laser for inertial fusion energy,” J. Phys. IV 133, 615–620 (2006).

2005

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 281, 103514 (2005).
[CrossRef]

2003

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob’ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd : YAG laser crystals,” IEEE J. Quantum Electron. 39, 910–918 (2003).
[CrossRef]

1997

D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33, 861–873 (1997).
[CrossRef]

1994

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).

1993

T. Y. Fan, “Heat generation In Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
[CrossRef]

1992

A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28, 1057–1069 (1992).
[CrossRef]

Aggarwal, R. L.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 281, 103514 (2005).
[CrossRef]

Albach, D.

D. Albach, M. Arzakantsyan, G. Bourdet, J.-C. Chanteloup, Ph. Hollander, and B. Vincent, “Current status of the Lucia laser system,” in The Sixth International Conference on Inertial Fusion Sciences and Applications (IFSA 2009), J. Phys.: Conf. Ser. 244, 032015 (2010).
[CrossRef]

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, and B. Le Garrec, “Multi kJ level laser concepts for HiPER facility,” in The Sixth International Conference on Inertial Fusion Sciences and Applications (IFSA 2009), J. Phys.: Conf. Ser. 244, 012010 (2010).
[CrossRef]

J.-C. Chanteloup, D. Albach, F. Assemat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touze, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10Hz/1ms Yb:YAG pumping,” in The Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), J. Phys.: Conf. Ser. 112, 032056 (2008).
[CrossRef]

Anashkina, E.

Antipov, O. L.

E. Anashkina and O. L. Antipov, “Electronic (population) lensing versus thermal lensing in Yb:YAG and Nd:YAG laser rods and disks,” J. Opt. Soc. Am. B 27, 363–369 (2010).
[CrossRef]

R. Moncorgé, O. N. Eremeykin, J. L. Doualan, and O. L. Antipov, “Origin of athermal refractive index changes observed in Yb3+ doped YAG and KGW,” Opt. Commun. 281, 2526–2530 (2008).
[CrossRef]

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob’ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd : YAG laser crystals,” IEEE J. Quantum Electron. 39, 910–918 (2003).
[CrossRef]

Arzakantsyan, M.

D. Albach, M. Arzakantsyan, G. Bourdet, J.-C. Chanteloup, Ph. Hollander, and B. Vincent, “Current status of the Lucia laser system,” in The Sixth International Conference on Inertial Fusion Sciences and Applications (IFSA 2009), J. Phys.: Conf. Ser. 244, 032015 (2010).
[CrossRef]

Assemat, F.

J.-C. Chanteloup, D. Albach, F. Assemat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touze, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10Hz/1ms Yb:YAG pumping,” in The Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), J. Phys.: Conf. Ser. 112, 032056 (2008).
[CrossRef]

Bahbah, S.

J.-C. Chanteloup, D. Albach, F. Assemat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touze, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10Hz/1ms Yb:YAG pumping,” in The Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), J. Phys.: Conf. Ser. 112, 032056 (2008).
[CrossRef]

Balembois, F.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[CrossRef]

Banerjee, S.

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, and B. Le Garrec, “Multi kJ level laser concepts for HiPER facility,” in The Sixth International Conference on Inertial Fusion Sciences and Applications (IFSA 2009), J. Phys.: Conf. Ser. 244, 012010 (2010).
[CrossRef]

Biesenbach, J.

J.-C. Chanteloup, D. Albach, F. Assemat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touze, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10Hz/1ms Yb:YAG pumping,” in The Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), J. Phys.: Conf. Ser. 112, 032056 (2008).
[CrossRef]

Bourdet, G.

D. Albach, M. Arzakantsyan, G. Bourdet, J.-C. Chanteloup, Ph. Hollander, and B. Vincent, “Current status of the Lucia laser system,” in The Sixth International Conference on Inertial Fusion Sciences and Applications (IFSA 2009), J. Phys.: Conf. Ser. 244, 032015 (2010).
[CrossRef]

J.-C. Chanteloup, D. Albach, F. Assemat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touze, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10Hz/1ms Yb:YAG pumping,” in The Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), J. Phys.: Conf. Ser. 112, 032056 (2008).
[CrossRef]

J.-C. Chanteloup, H. Yu, G. Bourdet, C. Dambrine, S. Ferré, A. Fülöp, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, “Overview of the Lucia laser program: towards 100 Joules, nanosecond pulses, kW averaged power, based on ytterbium diode pumped solid state laser,” in Solid State Lasers XIV: Technology and Devices , H. J. Hoffman and R. K. Shori, eds., Proc. SPIE 5707, 105–116 (2005).

Brauch, U.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).

Bredikhin, D. V.

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob’ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd : YAG laser crystals,” IEEE J. Quantum Electron. 39, 910–918 (2003).
[CrossRef]

Brown, D. C.

D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33, 861–873 (1997).
[CrossRef]

Chanteloup, J.-C.

D. Albach, M. Arzakantsyan, G. Bourdet, J.-C. Chanteloup, Ph. Hollander, and B. Vincent, “Current status of the Lucia laser system,” in The Sixth International Conference on Inertial Fusion Sciences and Applications (IFSA 2009), J. Phys.: Conf. Ser. 244, 032015 (2010).
[CrossRef]

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, and B. Le Garrec, “Multi kJ level laser concepts for HiPER facility,” in The Sixth International Conference on Inertial Fusion Sciences and Applications (IFSA 2009), J. Phys.: Conf. Ser. 244, 012010 (2010).
[CrossRef]

J.-C. Chanteloup, D. Albach, F. Assemat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touze, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10Hz/1ms Yb:YAG pumping,” in The Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), J. Phys.: Conf. Ser. 112, 032056 (2008).
[CrossRef]

J.-C. Chanteloup, H. Yu, G. Bourdet, C. Dambrine, S. Ferré, A. Fülöp, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, “Overview of the Lucia laser program: towards 100 Joules, nanosecond pulses, kW averaged power, based on ytterbium diode pumped solid state laser,” in Solid State Lasers XIV: Technology and Devices , H. J. Hoffman and R. K. Shori, eds., Proc. SPIE 5707, 105–116 (2005).

Chenais, S.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[CrossRef]

Collier, J. L.

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, and B. Le Garrec, “Multi kJ level laser concepts for HiPER facility,” in The Sixth International Conference on Inertial Fusion Sciences and Applications (IFSA 2009), J. Phys.: Conf. Ser. 244, 012010 (2010).
[CrossRef]

Cousins, A. K.

A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28, 1057–1069 (1992).
[CrossRef]

Dambrine, C.

J.-C. Chanteloup, H. Yu, G. Bourdet, C. Dambrine, S. Ferré, A. Fülöp, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, “Overview of the Lucia laser program: towards 100 Joules, nanosecond pulses, kW averaged power, based on ytterbium diode pumped solid state laser,” in Solid State Lasers XIV: Technology and Devices , H. J. Hoffman and R. K. Shori, eds., Proc. SPIE 5707, 105–116 (2005).

Doualan, J. L.

R. Moncorgé, O. N. Eremeykin, J. L. Doualan, and O. L. Antipov, “Origin of athermal refractive index changes observed in Yb3+ doped YAG and KGW,” Opt. Commun. 281, 2526–2530 (2008).
[CrossRef]

Druon, F.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[CrossRef]

Eremeykin, O. N.

R. Moncorgé, O. N. Eremeykin, J. L. Doualan, and O. L. Antipov, “Origin of athermal refractive index changes observed in Yb3+ doped YAG and KGW,” Opt. Commun. 281, 2526–2530 (2008).
[CrossRef]

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob’ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd : YAG laser crystals,” IEEE J. Quantum Electron. 39, 910–918 (2003).
[CrossRef]

Ertel, K.

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, and B. Le Garrec, “Multi kJ level laser concepts for HiPER facility,” in The Sixth International Conference on Inertial Fusion Sciences and Applications (IFSA 2009), J. Phys.: Conf. Ser. 244, 012010 (2010).
[CrossRef]

Fan, T. Y.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 281, 103514 (2005).
[CrossRef]

T. Y. Fan, “Heat generation In Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
[CrossRef]

Ferré, S.

J.-C. Chanteloup, H. Yu, G. Bourdet, C. Dambrine, S. Ferré, A. Fülöp, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, “Overview of the Lucia laser program: towards 100 Joules, nanosecond pulses, kW averaged power, based on ytterbium diode pumped solid state laser,” in Solid State Lasers XIV: Technology and Devices , H. J. Hoffman and R. K. Shori, eds., Proc. SPIE 5707, 105–116 (2005).

Forget, S.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[CrossRef]

Fülöp, A.

J.-C. Chanteloup, H. Yu, G. Bourdet, C. Dambrine, S. Ferré, A. Fülöp, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, “Overview of the Lucia laser program: towards 100 Joules, nanosecond pulses, kW averaged power, based on ytterbium diode pumped solid state laser,” in Solid State Lasers XIV: Technology and Devices , H. J. Hoffman and R. K. Shori, eds., Proc. SPIE 5707, 105–116 (2005).

Furukawa, H.

T. Kawashima, T. Ikegawa, J. Kawanaka, N. Miyanaga, M. Nakatsuka, Y. Izawa, O. Matsumoto, R. Yasuhara, T. Kurita, T. Sekine, M. Miyamoto, H. Kan, H. Furukawa, S. Motokoshi, and T. Kanabe, “The HALNA project: diode-pumped solid-state laser for inertial fusion energy,” J. Phys. IV 133, 615–620 (2006).

Georges, P.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[CrossRef]

Giesen, A.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).

Haferkorn, H.

H. Haferkorn, Optik (VEB Deutscher Verlag der Wissenschaften, 1980).

Hernandez-Gomez, C.

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, and B. Le Garrec, “Multi kJ level laser concepts for HiPER facility,” in The Sixth International Conference on Inertial Fusion Sciences and Applications (IFSA 2009), J. Phys.: Conf. Ser. 244, 012010 (2010).
[CrossRef]

Hollander, Ph.

D. Albach, M. Arzakantsyan, G. Bourdet, J.-C. Chanteloup, Ph. Hollander, and B. Vincent, “Current status of the Lucia laser system,” in The Sixth International Conference on Inertial Fusion Sciences and Applications (IFSA 2009), J. Phys.: Conf. Ser. 244, 032015 (2010).
[CrossRef]

Honea, E.

F. Patel, E. Honea, J. Speth, and S. Payne, “Properties of Yb3Al5O12 and highly doped Yb:Y3Al5O12,” in Conference on Lasers and Electro-Optics (OSA, 1999), paper ThW4.

Hugel, H.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).

Ikegawa, T.

T. Kawashima, T. Ikegawa, J. Kawanaka, N. Miyanaga, M. Nakatsuka, Y. Izawa, O. Matsumoto, R. Yasuhara, T. Kurita, T. Sekine, M. Miyamoto, H. Kan, H. Furukawa, S. Motokoshi, and T. Kanabe, “The HALNA project: diode-pumped solid-state laser for inertial fusion energy,” J. Phys. IV 133, 615–620 (2006).

Izawa, Y.

T. Kawashima, T. Ikegawa, J. Kawanaka, N. Miyanaga, M. Nakatsuka, Y. Izawa, O. Matsumoto, R. Yasuhara, T. Kurita, T. Sekine, M. Miyamoto, H. Kan, H. Furukawa, S. Motokoshi, and T. Kanabe, “The HALNA project: diode-pumped solid-state laser for inertial fusion energy,” J. Phys. IV 133, 615–620 (2006).

Kan, H.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys. 20, 1079–1084 (2010).
[CrossRef]

T. Kawashima, T. Ikegawa, J. Kawanaka, N. Miyanaga, M. Nakatsuka, Y. Izawa, O. Matsumoto, R. Yasuhara, T. Kurita, T. Sekine, M. Miyamoto, H. Kan, H. Furukawa, S. Motokoshi, and T. Kanabe, “The HALNA project: diode-pumped solid-state laser for inertial fusion energy,” J. Phys. IV 133, 615–620 (2006).

Kanabe, T.

T. Kawashima, T. Ikegawa, J. Kawanaka, N. Miyanaga, M. Nakatsuka, Y. Izawa, O. Matsumoto, R. Yasuhara, T. Kurita, T. Sekine, M. Miyamoto, H. Kan, H. Furukawa, S. Motokoshi, and T. Kanabe, “The HALNA project: diode-pumped solid-state laser for inertial fusion energy,” J. Phys. IV 133, 615–620 (2006).

Kawanaka, J.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys. 20, 1079–1084 (2010).
[CrossRef]

T. Kawashima, T. Ikegawa, J. Kawanaka, N. Miyanaga, M. Nakatsuka, Y. Izawa, O. Matsumoto, R. Yasuhara, T. Kurita, T. Sekine, M. Miyamoto, H. Kan, H. Furukawa, S. Motokoshi, and T. Kanabe, “The HALNA project: diode-pumped solid-state laser for inertial fusion energy,” J. Phys. IV 133, 615–620 (2006).

Kawashima, T.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys. 20, 1079–1084 (2010).
[CrossRef]

T. Kawashima, T. Ikegawa, J. Kawanaka, N. Miyanaga, M. Nakatsuka, Y. Izawa, O. Matsumoto, R. Yasuhara, T. Kurita, T. Sekine, M. Miyamoto, H. Kan, H. Furukawa, S. Motokoshi, and T. Kanabe, “The HALNA project: diode-pumped solid-state laser for inertial fusion energy,” J. Phys. IV 133, 615–620 (2006).

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer, 1999).

Kurita, T.

T. Kawashima, T. Ikegawa, J. Kawanaka, N. Miyanaga, M. Nakatsuka, Y. Izawa, O. Matsumoto, R. Yasuhara, T. Kurita, T. Sekine, M. Miyamoto, H. Kan, H. Furukawa, S. Motokoshi, and T. Kanabe, “The HALNA project: diode-pumped solid-state laser for inertial fusion energy,” J. Phys. IV 133, 615–620 (2006).

Kuznetsov, M. S.

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob’ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd : YAG laser crystals,” IEEE J. Quantum Electron. 39, 910–918 (2003).
[CrossRef]

Le Garrec, B.

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, and B. Le Garrec, “Multi kJ level laser concepts for HiPER facility,” in The Sixth International Conference on Inertial Fusion Sciences and Applications (IFSA 2009), J. Phys.: Conf. Ser. 244, 012010 (2010).
[CrossRef]

Le Moal, S.

J.-C. Chanteloup, H. Yu, G. Bourdet, C. Dambrine, S. Ferré, A. Fülöp, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, “Overview of the Lucia laser program: towards 100 Joules, nanosecond pulses, kW averaged power, based on ytterbium diode pumped solid state laser,” in Solid State Lasers XIV: Technology and Devices , H. J. Hoffman and R. K. Shori, eds., Proc. SPIE 5707, 105–116 (2005).

Le Touze, G.

J.-C. Chanteloup, D. Albach, F. Assemat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touze, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10Hz/1ms Yb:YAG pumping,” in The Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), J. Phys.: Conf. Ser. 112, 032056 (2008).
[CrossRef]

Le Touzé, G.

J.-C. Chanteloup, H. Yu, G. Bourdet, C. Dambrine, S. Ferré, A. Fülöp, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, “Overview of the Lucia laser program: towards 100 Joules, nanosecond pulses, kW averaged power, based on ytterbium diode pumped solid state laser,” in Solid State Lasers XIV: Technology and Devices , H. J. Hoffman and R. K. Shori, eds., Proc. SPIE 5707, 105–116 (2005).

Lucianetti, A.

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, and B. Le Garrec, “Multi kJ level laser concepts for HiPER facility,” in The Sixth International Conference on Inertial Fusion Sciences and Applications (IFSA 2009), J. Phys.: Conf. Ser. 244, 012010 (2010).
[CrossRef]

Mason, P. D.

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, and B. Le Garrec, “Multi kJ level laser concepts for HiPER facility,” in The Sixth International Conference on Inertial Fusion Sciences and Applications (IFSA 2009), J. Phys.: Conf. Ser. 244, 012010 (2010).
[CrossRef]

Matsumoto, O.

T. Kawashima, T. Ikegawa, J. Kawanaka, N. Miyanaga, M. Nakatsuka, Y. Izawa, O. Matsumoto, R. Yasuhara, T. Kurita, T. Sekine, M. Miyamoto, H. Kan, H. Furukawa, S. Motokoshi, and T. Kanabe, “The HALNA project: diode-pumped solid-state laser for inertial fusion energy,” J. Phys. IV 133, 615–620 (2006).

Mattern, T.

J.-C. Chanteloup, D. Albach, F. Assemat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touze, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10Hz/1ms Yb:YAG pumping,” in The Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), J. Phys.: Conf. Ser. 112, 032056 (2008).
[CrossRef]

Miyamoto, M.

T. Kawashima, T. Ikegawa, J. Kawanaka, N. Miyanaga, M. Nakatsuka, Y. Izawa, O. Matsumoto, R. Yasuhara, T. Kurita, T. Sekine, M. Miyamoto, H. Kan, H. Furukawa, S. Motokoshi, and T. Kanabe, “The HALNA project: diode-pumped solid-state laser for inertial fusion energy,” J. Phys. IV 133, 615–620 (2006).

Miyanaga, N.

T. Kawashima, T. Ikegawa, J. Kawanaka, N. Miyanaga, M. Nakatsuka, Y. Izawa, O. Matsumoto, R. Yasuhara, T. Kurita, T. Sekine, M. Miyamoto, H. Kan, H. Furukawa, S. Motokoshi, and T. Kanabe, “The HALNA project: diode-pumped solid-state laser for inertial fusion energy,” J. Phys. IV 133, 615–620 (2006).

Moncorgé, R.

R. Moncorgé, O. N. Eremeykin, J. L. Doualan, and O. L. Antipov, “Origin of athermal refractive index changes observed in Yb3+ doped YAG and KGW,” Opt. Commun. 281, 2526–2530 (2008).
[CrossRef]

Motokoshi, S.

T. Kawashima, T. Ikegawa, J. Kawanaka, N. Miyanaga, M. Nakatsuka, Y. Izawa, O. Matsumoto, R. Yasuhara, T. Kurita, T. Sekine, M. Miyamoto, H. Kan, H. Furukawa, S. Motokoshi, and T. Kanabe, “The HALNA project: diode-pumped solid-state laser for inertial fusion energy,” J. Phys. IV 133, 615–620 (2006).

Müntz, H.

J.-C. Chanteloup, D. Albach, F. Assemat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touze, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10Hz/1ms Yb:YAG pumping,” in The Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), J. Phys.: Conf. Ser. 112, 032056 (2008).
[CrossRef]

Nakatsuka, M.

T. Kawashima, T. Ikegawa, J. Kawanaka, N. Miyanaga, M. Nakatsuka, Y. Izawa, O. Matsumoto, R. Yasuhara, T. Kurita, T. Sekine, M. Miyamoto, H. Kan, H. Furukawa, S. Motokoshi, and T. Kanabe, “The HALNA project: diode-pumped solid-state laser for inertial fusion energy,” J. Phys. IV 133, 615–620 (2006).

Noeske, A.

J.-C. Chanteloup, D. Albach, F. Assemat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touze, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10Hz/1ms Yb:YAG pumping,” in The Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), J. Phys.: Conf. Ser. 112, 032056 (2008).
[CrossRef]

Nye, J. F.

J. F. Nye, Physical Properties of Crystals (Oxford Science Publications, 1985).

Ochoa, J. R.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 281, 103514 (2005).
[CrossRef]

Opower, H.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).

Patel, F.

F. Patel, E. Honea, J. Speth, and S. Payne, “Properties of Yb3Al5O12 and highly doped Yb:Y3Al5O12,” in Conference on Lasers and Electro-Optics (OSA, 1999), paper ThW4.

Payne, S.

F. Patel, E. Honea, J. Speth, and S. Payne, “Properties of Yb3Al5O12 and highly doped Yb:Y3Al5O12,” in Conference on Lasers and Electro-Optics (OSA, 1999), paper ThW4.

Pearce, S. J.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys. 20, 1079–1084 (2010).
[CrossRef]

Piatti, P.

J.-C. Chanteloup, D. Albach, F. Assemat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touze, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10Hz/1ms Yb:YAG pumping,” in The Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), J. Phys.: Conf. Ser. 112, 032056 (2008).
[CrossRef]

Pichot, A.

J.-C. Chanteloup, H. Yu, G. Bourdet, C. Dambrine, S. Ferré, A. Fülöp, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, “Overview of the Lucia laser program: towards 100 Joules, nanosecond pulses, kW averaged power, based on ytterbium diode pumped solid state laser,” in Solid State Lasers XIV: Technology and Devices , H. J. Hoffman and R. K. Shori, eds., Proc. SPIE 5707, 105–116 (2005).

Pluvinage, M.

J.-C. Chanteloup, D. Albach, F. Assemat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touze, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10Hz/1ms Yb:YAG pumping,” in The Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), J. Phys.: Conf. Ser. 112, 032056 (2008).
[CrossRef]

Ripin, D. J.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 281, 103514 (2005).
[CrossRef]

Savikin, A. P.

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob’ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd : YAG laser crystals,” IEEE J. Quantum Electron. 39, 910–918 (2003).
[CrossRef]

Sekine, T.

T. Kawashima, T. Ikegawa, J. Kawanaka, N. Miyanaga, M. Nakatsuka, Y. Izawa, O. Matsumoto, R. Yasuhara, T. Kurita, T. Sekine, M. Miyamoto, H. Kan, H. Furukawa, S. Motokoshi, and T. Kanabe, “The HALNA project: diode-pumped solid-state laser for inertial fusion energy,” J. Phys. IV 133, 615–620 (2006).

Speth, J.

F. Patel, E. Honea, J. Speth, and S. Payne, “Properties of Yb3Al5O12 and highly doped Yb:Y3Al5O12,” in Conference on Lasers and Electro-Optics (OSA, 1999), paper ThW4.

Takeuchi, Y.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys. 20, 1079–1084 (2010).
[CrossRef]

Venohr, R.

J.-C. Chanteloup, D. Albach, F. Assemat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touze, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10Hz/1ms Yb:YAG pumping,” in The Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), J. Phys.: Conf. Ser. 112, 032056 (2008).
[CrossRef]

Vincent, B.

D. Albach, M. Arzakantsyan, G. Bourdet, J.-C. Chanteloup, Ph. Hollander, and B. Vincent, “Current status of the Lucia laser system,” in The Sixth International Conference on Inertial Fusion Sciences and Applications (IFSA 2009), J. Phys.: Conf. Ser. 244, 032015 (2010).
[CrossRef]

J.-C. Chanteloup, D. Albach, F. Assemat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touze, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10Hz/1ms Yb:YAG pumping,” in The Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), J. Phys.: Conf. Ser. 112, 032056 (2008).
[CrossRef]

Vorob’ev, V. A.

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob’ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd : YAG laser crystals,” IEEE J. Quantum Electron. 39, 910–918 (2003).
[CrossRef]

Voss, A.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).

Wittig, K.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).

Yasuhara, R.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys. 20, 1079–1084 (2010).
[CrossRef]

T. Kawashima, T. Ikegawa, J. Kawanaka, N. Miyanaga, M. Nakatsuka, Y. Izawa, O. Matsumoto, R. Yasuhara, T. Kurita, T. Sekine, M. Miyamoto, H. Kan, H. Furukawa, S. Motokoshi, and T. Kanabe, “The HALNA project: diode-pumped solid-state laser for inertial fusion energy,” J. Phys. IV 133, 615–620 (2006).

Yoshida, A.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys. 20, 1079–1084 (2010).
[CrossRef]

Yu, H.

J.-C. Chanteloup, H. Yu, G. Bourdet, C. Dambrine, S. Ferré, A. Fülöp, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, “Overview of the Lucia laser program: towards 100 Joules, nanosecond pulses, kW averaged power, based on ytterbium diode pumped solid state laser,” in Solid State Lasers XIV: Technology and Devices , H. J. Hoffman and R. K. Shori, eds., Proc. SPIE 5707, 105–116 (2005).

Zhao, Z.

J.-C. Chanteloup, H. Yu, G. Bourdet, C. Dambrine, S. Ferré, A. Fülöp, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, “Overview of the Lucia laser program: towards 100 Joules, nanosecond pulses, kW averaged power, based on ytterbium diode pumped solid state laser,” in Solid State Lasers XIV: Technology and Devices , H. J. Hoffman and R. K. Shori, eds., Proc. SPIE 5707, 105–116 (2005).

Appl. Phys. B

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).

IEEE J. Quantum Electron.

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob’ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd : YAG laser crystals,” IEEE J. Quantum Electron. 39, 910–918 (2003).
[CrossRef]

T. Y. Fan, “Heat generation In Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
[CrossRef]

A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28, 1057–1069 (1992).
[CrossRef]

D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33, 861–873 (1997).
[CrossRef]

J. Appl. Phys.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 281, 103514 (2005).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. IV

T. Kawashima, T. Ikegawa, J. Kawanaka, N. Miyanaga, M. Nakatsuka, Y. Izawa, O. Matsumoto, R. Yasuhara, T. Kurita, T. Sekine, M. Miyamoto, H. Kan, H. Furukawa, S. Motokoshi, and T. Kanabe, “The HALNA project: diode-pumped solid-state laser for inertial fusion energy,” J. Phys. IV 133, 615–620 (2006).

J. Phys.: Conf. Ser.

J.-C. Chanteloup, D. Albach, F. Assemat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. Le Touze, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10Hz/1ms Yb:YAG pumping,” in The Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), J. Phys.: Conf. Ser. 112, 032056 (2008).
[CrossRef]

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, and B. Le Garrec, “Multi kJ level laser concepts for HiPER facility,” in The Sixth International Conference on Inertial Fusion Sciences and Applications (IFSA 2009), J. Phys.: Conf. Ser. 244, 012010 (2010).
[CrossRef]

D. Albach, M. Arzakantsyan, G. Bourdet, J.-C. Chanteloup, Ph. Hollander, and B. Vincent, “Current status of the Lucia laser system,” in The Sixth International Conference on Inertial Fusion Sciences and Applications (IFSA 2009), J. Phys.: Conf. Ser. 244, 032015 (2010).
[CrossRef]

Laser Phys.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys. 20, 1079–1084 (2010).
[CrossRef]

Opt. Commun.

R. Moncorgé, O. N. Eremeykin, J. L. Doualan, and O. L. Antipov, “Origin of athermal refractive index changes observed in Yb3+ doped YAG and KGW,” Opt. Commun. 281, 2526–2530 (2008).
[CrossRef]

Prog. Quantum Electron.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[CrossRef]

Other

M. Arzakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Experimental investigation of Yb3+:YAG growth with controlled doping distribution using the modified horizontal direct crystallization method,” presented at the 16th International Conference on Crystal Growth (ICCG-16), Beijing, China, August 8–13, 2010.

J. F. Nye, Physical Properties of Crystals (Oxford Science Publications, 1985).

J. Hein, J. Körner, J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, and B. Le Garrec, “Laser concepts for a rep–rated multi-kJ ICF–driver of the HiPER facility,” presented at the International Committee on Ultra Intense Lasers Conference (ICUIL 2010), Watkins Glen, New York, USA, September 26 – October 01, 2010

W. Koechner, Solid-State Laser Engineering (Springer, 1999).

J.-C. Chanteloup, H. Yu, G. Bourdet, C. Dambrine, S. Ferré, A. Fülöp, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, “Overview of the Lucia laser program: towards 100 Joules, nanosecond pulses, kW averaged power, based on ytterbium diode pumped solid state laser,” in Solid State Lasers XIV: Technology and Devices , H. J. Hoffman and R. K. Shori, eds., Proc. SPIE 5707, 105–116 (2005).

H. Haferkorn, Optik (VEB Deutscher Verlag der Wissenschaften, 1980).

F. Patel, E. Honea, J. Speth, and S. Payne, “Properties of Yb3Al5O12 and highly doped Yb:Y3Al5O12,” in Conference on Lasers and Electro-Optics (OSA, 1999), paper ThW4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Sketch illustrating the deformation of an active medium in the thin disk case. The transverse size of the gain medium is L while its thickness is D. The temperature induced deformation leads to a different transverse elongation of both large surfaces resulting in a bending of the disk. In first order the radii are R and R + D. The pump direction is in z. The red outline illustrates the approximative deformation used in the derived model.

Fig. 2
Fig. 2

The left log–log scale diagram gives an estimation of the thermally induced focal length (m) for three cases as a function of the average intensity Iavg (W/cm 2). Two plotted curves stand for a 2 at.% doped Yb3+:YAG crystal at 300 K and 150 K (dash-dot) with ηh = 0.1 and ηabs =0.9. The third curve (bottom, dash) refers to the highly doped case (20 at.%) uses ηh = 0.5 and ηabs = 1. The right log–log scale diagram shows the solution of Equation 6 for different apertures of a 60 mm diameter, 7 mm thick, 2 at.% doped Yb3+:YAG crystal at 300 K.

Fig. 3
Fig. 3

Sketch of the experimental setup. A cw laser source is imaged onto the gain medium and is reflected towards a wave front sensor. The reflection on the gain medium can occur at the front or the back surface as illustrated in the two top inserts. The direction of the pump is indicated by the red arrow.

Fig. 4
Fig. 4

Pictures of the pump system used in the experiment on the Lucia AMA. A laser diode array housing up to 88 laser diode stacks with concentration optics is shown in the left (a), the large pump light concentration mirrors (b) are shown in both pictures, whereas the laser head (c) is shown in the right picture.

Fig. 5
Fig. 5

The left log–log diagram displays experimental results for the rectangular crystals R1 (green disks) and R2 (blue triangles) as well as the corresponding curves derived from the analytical and numerical models. The right image shows a cut through the 3D modeled crystal R1 showing the deformation and the temperature distribution within the gain medium for Iavg = 30W/cm −2. The deformation is magnified by a factor of 300.

Fig. 6
Fig. 6

The left log–log diagram displays experimental results for the circular crystal C1 (purple diamonds) as well as the corresponding curve derived from the analytical and numerical models. The right image shows a cut through the 3D modeled crystal C1 showing the deformation and the temperature distribution within the gain medium for Iavg = 75W/cm −2. The deformation is magnified by a factor of 3000.

Fig. 7
Fig. 7

The left log–log diagram displays compiled results of the focal length measurements performed on the crystals R1, R2 and C1 (symbols) as a function of the average intensity Iavg as well as the numerical results of a 3D simulation using an FEA code (curves). The right figure shows horizontal lineouts of the probe wave front after being reflected on the top surfaces of R1 (green full circle), the bottom surface of R2 (blue hollow triangles) and C1 (purple hollow squares).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

L L + Δ L = R R + D '
R = D α T Δ T .
R = 2 k A beam α T η h η abs P inj .
| f mech | = k α T η h η abs I avg .
f th p 2 2 D d n d T Δ T ¯ ,
f tot f mech f th f th + 2 f mech .
| f | = r p 2 4 3 λ Z def .

Metrics