Abstract

Single-mode, strip-loaded silicon-rich silicon nitride (SRSN) waveguide with 11 at.% excess Si and 1.7×1020 cm−3 Er was fabricated and characterized. By using a 350 nm thick SRSN:Er core layer and a 850 nm wide SiO2 strip, a high core-mode overlap of 0.85 and low transmission loss of 2.9 dB/cm is achieved. Population inversion of 0.73-0.75, close to the theoretical maximum, is estimated to have been achieved via 1480 nm resonant pumping, indicating that nearly all doped Er in SRSN are optically active. Analysis of the pump power dependence of Er3+ luminescence intensity and lifetime indicate that the Er cooperative upconversion coefficient in SRSN:Er is as low as 2.1×10−18 cm3/sec.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for instance, “Silicon Photonics,”Topics in Applied Physics Vol. 94, edited by L. Pavesi and D. J. Lockwood (Springer, 2004).
    [PubMed]
  2. D. S. Gardner and M. L. Brongersma, “Microring and microdisk optical resonators using silicon nanocrystals and erbium prepared using silicon technology,” Opt. Mater. 27(5), 804–811 (2005).
    [CrossRef]
  3. N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui, and L. Pavesi, “Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line,” J. Lightwave Technol. 22(7), 1734–1740 (2004).
    [CrossRef]
  4. M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation loss of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
    [CrossRef]
  5. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
    [CrossRef] [PubMed]
  6. E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “Systematic design and fabrication of high-Q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths,” Opt. Express 18(3), 2127–2136 (2010).
    [CrossRef] [PubMed]
  7. S. Zheng, H. Chen, and A. W. Poon, “Microring-resonator cross-connect filters in silicon nitride: rib waveguide dimensions dependence,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1380–1387 (2006).
    [CrossRef]
  8. J. S. Chang, K. Suh, M.-S. Yang, and J. H. Shin, “Development and application of Er-doped silicon-rich silicon nitrides and Er silicates for on-chip light sources,” “Silicon Photonics II,” Topics in Applied Physics Vol. 119, 95–130 (2011).
  9. L. Dal Negro, R. Li, J. Warga, and S. N. Basu, “Sensitized erbium emission from silicon-rich nitrides/silicon superlattice structures,” Appl. Phys. Lett. 92(18), 181105 (2008).
    [CrossRef]
  10. R. Li, S. Yerci, and L. Dal Negro, “Temperature dependence of the energy transfer from amorphous silicon nitride to Er ions,” Appl. Phys. Lett. 95(4), 041111 (2009).
    [CrossRef]
  11. S. Yerci, R. Li, S. O. Kucheyev, T. van Buuren, S. N. Basu, and L. Dal Negro, “Energy transfer and 1.54 µm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95(3), 031107 (2009).
    [CrossRef]
  12. J. S. Chang, S. C. Eom, G. Y. Sung, and J. H. Shin, “On-chip, planar integration of Er doped silicon-rich silicon nitride microdisk with SU-8 waveguide with sub-micron gap control,” Opt. Express 17(25), 22918–22924 (2009).
    [CrossRef]
  13. Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vuckovic, and L. Dal Negro, “Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform,” Opt. Express 18(3), 2601–2612 (2010).
    [CrossRef] [PubMed]
  14. G. Y. Sung, N.-M. Park, J.-H. Shin, K.-H. Kim, T.-Y. Kim, K. S. Cho, and C. Huh, “Physics and device structures of highly efficient silicon quantum dots based silicon nitride light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1545–1555 (2006).
    [CrossRef]
  15. S. Yerci, R. Li, and L. Dal Negro, “Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes,” Appl. Phys. Lett. 97(8), 081109 (2010).
    [CrossRef]
  16. W. J. Miniscalco, “Er-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
    [CrossRef]
  17. K. Suh, M. Lee, J. S. Chang, H. Lee, N. Park, G. Y. Sung, and J. H. Shin, “Cooperative upconversion and optical gain in ion-beam sputter-deposited Er(x)Y(2-x)SiO(5) waveguides,” Opt. Express 18(8), 7724–7731 (2010).
    [CrossRef] [PubMed]
  18. G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm, in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
    [CrossRef]
  19. J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010).
    [CrossRef]
  20. A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70(7), 3778–3784 (1991).
    [CrossRef]
  21. I. Y. Kim, J. H. Shin, and K. J. Kim, “Extending the nanocluster-Si/erbium sensitization distance in Er-doped silicon nitride: The role of Er-Er energy migration,” Appl. Phys. Lett. 95(22), 221101 (2009).
    [CrossRef]
  22. P. Pellegrino, B. Garrido, J. Arbiol, C. Garcia, Y. Lebour, and J. R. Morante, “Site of Er ions in silica layers codoped with Si nanoclusters and Er,” Appl. Phys. Lett. 88(12), 121915 (2006).
    [CrossRef]
  23. J. S. Chang, J.-H. Jhe, M.-S. Yang, J. H. Shin, K. J. Kim, and D. W. Moon, “Effects of silicon nanostructure evolution on Er3+ luminescence in silicon-rich silicon oxide/Er-doped silica multilayers,” Appl. Phys. Lett. 89(18), 181909 (2006).
    [CrossRef]
  24. S. Minissale, T. Gregorkiewicz, M. Forcales, and R. G. Elliman, “On optical activity of Er3+ ions in Si-rich SiO2 waveguides,” Appl. Phys. Lett. 89(17), 171908 (2006).
    [CrossRef]
  25. D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134(2A), A299–A306 (1964).
    [CrossRef]
  26. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic Press, 1997).
  27. M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, A. J. Bruce, G. Nykolak, and J. Shmulovich, “Uniform upconversion in high-concentration Er3+-doped soda lime silicate and aluminosilicate glasses,” Opt. Lett. 22(11), 1468–1474 (1997).
    [CrossRef]
  28. E. Snoeks, G. N. Hoven, A. Polman, B. Hendriksen, M. B. J. Diemeer, and F. Priolo, “Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides,” J. Opt. Soc. Am. B 12(8), 1468–1474 (1995).
    [CrossRef]
  29. G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
    [CrossRef]

2010 (5)

2009 (5)

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
[CrossRef] [PubMed]

J. S. Chang, S. C. Eom, G. Y. Sung, and J. H. Shin, “On-chip, planar integration of Er doped silicon-rich silicon nitride microdisk with SU-8 waveguide with sub-micron gap control,” Opt. Express 17(25), 22918–22924 (2009).
[CrossRef]

R. Li, S. Yerci, and L. Dal Negro, “Temperature dependence of the energy transfer from amorphous silicon nitride to Er ions,” Appl. Phys. Lett. 95(4), 041111 (2009).
[CrossRef]

S. Yerci, R. Li, S. O. Kucheyev, T. van Buuren, S. N. Basu, and L. Dal Negro, “Energy transfer and 1.54 µm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95(3), 031107 (2009).
[CrossRef]

I. Y. Kim, J. H. Shin, and K. J. Kim, “Extending the nanocluster-Si/erbium sensitization distance in Er-doped silicon nitride: The role of Er-Er energy migration,” Appl. Phys. Lett. 95(22), 221101 (2009).
[CrossRef]

2008 (1)

L. Dal Negro, R. Li, J. Warga, and S. N. Basu, “Sensitized erbium emission from silicon-rich nitrides/silicon superlattice structures,” Appl. Phys. Lett. 92(18), 181105 (2008).
[CrossRef]

2006 (5)

S. Zheng, H. Chen, and A. W. Poon, “Microring-resonator cross-connect filters in silicon nitride: rib waveguide dimensions dependence,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1380–1387 (2006).
[CrossRef]

P. Pellegrino, B. Garrido, J. Arbiol, C. Garcia, Y. Lebour, and J. R. Morante, “Site of Er ions in silica layers codoped with Si nanoclusters and Er,” Appl. Phys. Lett. 88(12), 121915 (2006).
[CrossRef]

J. S. Chang, J.-H. Jhe, M.-S. Yang, J. H. Shin, K. J. Kim, and D. W. Moon, “Effects of silicon nanostructure evolution on Er3+ luminescence in silicon-rich silicon oxide/Er-doped silica multilayers,” Appl. Phys. Lett. 89(18), 181909 (2006).
[CrossRef]

S. Minissale, T. Gregorkiewicz, M. Forcales, and R. G. Elliman, “On optical activity of Er3+ ions in Si-rich SiO2 waveguides,” Appl. Phys. Lett. 89(17), 171908 (2006).
[CrossRef]

G. Y. Sung, N.-M. Park, J.-H. Shin, K.-H. Kim, T.-Y. Kim, K. S. Cho, and C. Huh, “Physics and device structures of highly efficient silicon quantum dots based silicon nitride light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1545–1555 (2006).
[CrossRef]

2005 (2)

D. S. Gardner and M. L. Brongersma, “Microring and microdisk optical resonators using silicon nanocrystals and erbium prepared using silicon technology,” Opt. Mater. 27(5), 804–811 (2005).
[CrossRef]

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation loss of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[CrossRef]

2004 (1)

1997 (1)

M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, A. J. Bruce, G. Nykolak, and J. Shmulovich, “Uniform upconversion in high-concentration Er3+-doped soda lime silicate and aluminosilicate glasses,” Opt. Lett. 22(11), 1468–1474 (1997).
[CrossRef]

1996 (2)

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm, in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[CrossRef]

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
[CrossRef]

1995 (1)

1991 (2)

W. J. Miniscalco, “Er-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[CrossRef]

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70(7), 3778–3784 (1991).
[CrossRef]

1964 (1)

D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134(2A), A299–A306 (1964).
[CrossRef]

Adibi, A.

Agazzi, L.

Arbiol, J.

P. Pellegrino, B. Garrido, J. Arbiol, C. Garcia, Y. Lebour, and J. R. Morante, “Site of Er ions in silica layers codoped with Si nanoclusters and Er,” Appl. Phys. Lett. 88(12), 121915 (2006).
[CrossRef]

Atabaki, A. H.

Ay, F.

Baek, B.

Basu, S. N.

S. Yerci, R. Li, S. O. Kucheyev, T. van Buuren, S. N. Basu, and L. Dal Negro, “Energy transfer and 1.54 µm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95(3), 031107 (2009).
[CrossRef]

L. Dal Negro, R. Li, J. Warga, and S. N. Basu, “Sensitized erbium emission from silicon-rich nitrides/silicon superlattice structures,” Appl. Phys. Lett. 92(18), 181105 (2008).
[CrossRef]

Bellutti, P.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation loss of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[CrossRef]

N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui, and L. Pavesi, “Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line,” J. Lightwave Technol. 22(7), 1734–1740 (2004).
[CrossRef]

Bradley, J. D. B.

Brongersma, M. L.

D. S. Gardner and M. L. Brongersma, “Microring and microdisk optical resonators using silicon nanocrystals and erbium prepared using silicon technology,” Opt. Mater. 27(5), 804–811 (2005).
[CrossRef]

Bruce, A. J.

M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, A. J. Bruce, G. Nykolak, and J. Shmulovich, “Uniform upconversion in high-concentration Er3+-doped soda lime silicate and aluminosilicate glasses,” Opt. Lett. 22(11), 1468–1474 (1997).
[CrossRef]

Chang, J. S.

Chen, H.

S. Zheng, H. Chen, and A. W. Poon, “Microring-resonator cross-connect filters in silicon nitride: rib waveguide dimensions dependence,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1380–1387 (2006).
[CrossRef]

Cho, K. S.

G. Y. Sung, N.-M. Park, J.-H. Shin, K.-H. Kim, T.-Y. Kim, K. S. Cho, and C. Huh, “Physics and device structures of highly efficient silicon quantum dots based silicon nitride light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1545–1555 (2006).
[CrossRef]

Cockroft, N. J.

M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, A. J. Bruce, G. Nykolak, and J. Shmulovich, “Uniform upconversion in high-concentration Er3+-doped soda lime silicate and aluminosilicate glasses,” Opt. Lett. 22(11), 1468–1474 (1997).
[CrossRef]

Crivellari, M.

Dal Negro, L.

S. Yerci, R. Li, and L. Dal Negro, “Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes,” Appl. Phys. Lett. 97(8), 081109 (2010).
[CrossRef]

Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vuckovic, and L. Dal Negro, “Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform,” Opt. Express 18(3), 2601–2612 (2010).
[CrossRef] [PubMed]

R. Li, S. Yerci, and L. Dal Negro, “Temperature dependence of the energy transfer from amorphous silicon nitride to Er ions,” Appl. Phys. Lett. 95(4), 041111 (2009).
[CrossRef]

S. Yerci, R. Li, S. O. Kucheyev, T. van Buuren, S. N. Basu, and L. Dal Negro, “Energy transfer and 1.54 µm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95(3), 031107 (2009).
[CrossRef]

L. Dal Negro, R. Li, J. Warga, and S. N. Basu, “Sensitized erbium emission from silicon-rich nitrides/silicon superlattice structures,” Appl. Phys. Lett. 92(18), 181105 (2008).
[CrossRef]

Daldosso, N.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation loss of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[CrossRef]

N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui, and L. Pavesi, “Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line,” J. Lightwave Technol. 22(7), 1734–1740 (2004).
[CrossRef]

Diemeer, M. B. J.

Dorenbos, S. N.

Eaglesham, D. J.

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70(7), 3778–3784 (1991).
[CrossRef]

Elliman, R. G.

S. Minissale, T. Gregorkiewicz, M. Forcales, and R. G. Elliman, “On optical activity of Er3+ ions in Si-rich SiO2 waveguides,” Appl. Phys. Lett. 89(17), 171908 (2006).
[CrossRef]

Eom, S. C.

Forcales, M.

S. Minissale, T. Gregorkiewicz, M. Forcales, and R. G. Elliman, “On optical activity of Er3+ ions in Si-rich SiO2 waveguides,” Appl. Phys. Lett. 89(17), 171908 (2006).
[CrossRef]

Garcia, C.

P. Pellegrino, B. Garrido, J. Arbiol, C. Garcia, Y. Lebour, and J. R. Morante, “Site of Er ions in silica layers codoped with Si nanoclusters and Er,” Appl. Phys. Lett. 88(12), 121915 (2006).
[CrossRef]

Gardner, D. S.

D. S. Gardner and M. L. Brongersma, “Microring and microdisk optical resonators using silicon nanocrystals and erbium prepared using silicon technology,” Opt. Mater. 27(5), 804–811 (2005).
[CrossRef]

Garrido, B.

P. Pellegrino, B. Garrido, J. Arbiol, C. Garcia, Y. Lebour, and J. R. Morante, “Site of Er ions in silica layers codoped with Si nanoclusters and Er,” Appl. Phys. Lett. 88(12), 121915 (2006).
[CrossRef]

Geskus, D.

Girardini, M.

Gondarenko, A.

Gong, Y.

Gosnell, T. R.

M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, A. J. Bruce, G. Nykolak, and J. Shmulovich, “Uniform upconversion in high-concentration Er3+-doped soda lime silicate and aluminosilicate glasses,” Opt. Lett. 22(11), 1468–1474 (1997).
[CrossRef]

Gregorkiewicz, T.

S. Minissale, T. Gregorkiewicz, M. Forcales, and R. G. Elliman, “On optical activity of Er3+ ions in Si-rich SiO2 waveguides,” Appl. Phys. Lett. 89(17), 171908 (2006).
[CrossRef]

Hadfield, R. H.

Hehlen, M. P.

M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, A. J. Bruce, G. Nykolak, and J. Shmulovich, “Uniform upconversion in high-concentration Er3+-doped soda lime silicate and aluminosilicate glasses,” Opt. Lett. 22(11), 1468–1474 (1997).
[CrossRef]

Hendriksen, B.

Hoven, G. N.

Huh, C.

G. Y. Sung, N.-M. Park, J.-H. Shin, K.-H. Kim, T.-Y. Kim, K. S. Cho, and C. Huh, “Physics and device structures of highly efficient silicon quantum dots based silicon nitride light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1545–1555 (2006).
[CrossRef]

Jacobson, D. C.

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70(7), 3778–3784 (1991).
[CrossRef]

Jhe, J.-H.

J. S. Chang, J.-H. Jhe, M.-S. Yang, J. H. Shin, K. J. Kim, and D. W. Moon, “Effects of silicon nanostructure evolution on Er3+ luminescence in silicon-rich silicon oxide/Er-doped silica multilayers,” Appl. Phys. Lett. 89(18), 181909 (2006).
[CrossRef]

Kim, I. Y.

I. Y. Kim, J. H. Shin, and K. J. Kim, “Extending the nanocluster-Si/erbium sensitization distance in Er-doped silicon nitride: The role of Er-Er energy migration,” Appl. Phys. Lett. 95(22), 221101 (2009).
[CrossRef]

Kim, K. J.

I. Y. Kim, J. H. Shin, and K. J. Kim, “Extending the nanocluster-Si/erbium sensitization distance in Er-doped silicon nitride: The role of Er-Er energy migration,” Appl. Phys. Lett. 95(22), 221101 (2009).
[CrossRef]

J. S. Chang, J.-H. Jhe, M.-S. Yang, J. H. Shin, K. J. Kim, and D. W. Moon, “Effects of silicon nanostructure evolution on Er3+ luminescence in silicon-rich silicon oxide/Er-doped silica multilayers,” Appl. Phys. Lett. 89(18), 181909 (2006).
[CrossRef]

Kim, K.-H.

G. Y. Sung, N.-M. Park, J.-H. Shin, K.-H. Kim, T.-Y. Kim, K. S. Cho, and C. Huh, “Physics and device structures of highly efficient silicon quantum dots based silicon nitride light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1545–1555 (2006).
[CrossRef]

Kim, T.-Y.

G. Y. Sung, N.-M. Park, J.-H. Shin, K.-H. Kim, T.-Y. Kim, K. S. Cho, and C. Huh, “Physics and device structures of highly efficient silicon quantum dots based silicon nitride light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1545–1555 (2006).
[CrossRef]

Kistler, R. C.

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70(7), 3778–3784 (1991).
[CrossRef]

Kompocholis, C.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation loss of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[CrossRef]

Koper, R. J. I. M.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm, in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[CrossRef]

Kucheyev, S. O.

S. Yerci, R. Li, S. O. Kucheyev, T. van Buuren, S. N. Basu, and L. Dal Negro, “Energy transfer and 1.54 µm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95(3), 031107 (2009).
[CrossRef]

Lebour, Y.

P. Pellegrino, B. Garrido, J. Arbiol, C. Garcia, Y. Lebour, and J. R. Morante, “Site of Er ions in silica layers codoped with Si nanoclusters and Er,” Appl. Phys. Lett. 88(12), 121915 (2006).
[CrossRef]

Lee, H.

Lee, M.

Levy, J. S.

Li, R.

S. Yerci, R. Li, and L. Dal Negro, “Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes,” Appl. Phys. Lett. 97(8), 081109 (2010).
[CrossRef]

Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vuckovic, and L. Dal Negro, “Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform,” Opt. Express 18(3), 2601–2612 (2010).
[CrossRef] [PubMed]

R. Li, S. Yerci, and L. Dal Negro, “Temperature dependence of the energy transfer from amorphous silicon nitride to Er ions,” Appl. Phys. Lett. 95(4), 041111 (2009).
[CrossRef]

S. Yerci, R. Li, S. O. Kucheyev, T. van Buuren, S. N. Basu, and L. Dal Negro, “Energy transfer and 1.54 µm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95(3), 031107 (2009).
[CrossRef]

L. Dal Negro, R. Li, J. Warga, and S. N. Basu, “Sensitized erbium emission from silicon-rich nitrides/silicon superlattice structures,” Appl. Phys. Lett. 92(18), 181105 (2008).
[CrossRef]

Lipson, M.

Lui, A.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation loss of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[CrossRef]

N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui, and L. Pavesi, “Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line,” J. Lightwave Technol. 22(7), 1734–1740 (2004).
[CrossRef]

Makarova, M.

McCumber, D. E.

D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134(2A), A299–A306 (1964).
[CrossRef]

Melchiorri, M.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation loss of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[CrossRef]

N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui, and L. Pavesi, “Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line,” J. Lightwave Technol. 22(7), 1734–1740 (2004).
[CrossRef]

Miniscalco, W. J.

W. J. Miniscalco, “Er-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[CrossRef]

Minissale, S.

S. Minissale, T. Gregorkiewicz, M. Forcales, and R. G. Elliman, “On optical activity of Er3+ ions in Si-rich SiO2 waveguides,” Appl. Phys. Lett. 89(17), 171908 (2006).
[CrossRef]

Moon, D. W.

J. S. Chang, J.-H. Jhe, M.-S. Yang, J. H. Shin, K. J. Kim, and D. W. Moon, “Effects of silicon nanostructure evolution on Er3+ luminescence in silicon-rich silicon oxide/Er-doped silica multilayers,” Appl. Phys. Lett. 89(18), 181909 (2006).
[CrossRef]

Morante, J. R.

P. Pellegrino, B. Garrido, J. Arbiol, C. Garcia, Y. Lebour, and J. R. Morante, “Site of Er ions in silica layers codoped with Si nanoclusters and Er,” Appl. Phys. Lett. 88(12), 121915 (2006).
[CrossRef]

Nam, S. W.

Nykolak, G.

M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, A. J. Bruce, G. Nykolak, and J. Shmulovich, “Uniform upconversion in high-concentration Er3+-doped soda lime silicate and aluminosilicate glasses,” Opt. Lett. 22(11), 1468–1474 (1997).
[CrossRef]

Park, N.

Park, N.-M.

G. Y. Sung, N.-M. Park, J.-H. Shin, K.-H. Kim, T.-Y. Kim, K. S. Cho, and C. Huh, “Physics and device structures of highly efficient silicon quantum dots based silicon nitride light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1545–1555 (2006).
[CrossRef]

Pavesi, L.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation loss of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[CrossRef]

N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui, and L. Pavesi, “Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line,” J. Lightwave Technol. 22(7), 1734–1740 (2004).
[CrossRef]

Pellegrino, P.

P. Pellegrino, B. Garrido, J. Arbiol, C. Garcia, Y. Lebour, and J. R. Morante, “Site of Er ions in silica layers codoped with Si nanoclusters and Er,” Appl. Phys. Lett. 88(12), 121915 (2006).
[CrossRef]

Poate, J. M.

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70(7), 3778–3784 (1991).
[CrossRef]

Pollnau, M.

Polman, A.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm, in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[CrossRef]

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
[CrossRef]

E. Snoeks, G. N. Hoven, A. Polman, B. Hendriksen, M. B. J. Diemeer, and F. Priolo, “Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides,” J. Opt. Soc. Am. B 12(8), 1468–1474 (1995).
[CrossRef]

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70(7), 3778–3784 (1991).
[CrossRef]

Poon, A. W.

S. Zheng, H. Chen, and A. W. Poon, “Microring-resonator cross-connect filters in silicon nitride: rib waveguide dimensions dependence,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1380–1387 (2006).
[CrossRef]

Priolo, F.

Pucker, G.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation loss of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[CrossRef]

N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui, and L. Pavesi, “Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line,” J. Lightwave Technol. 22(7), 1734–1740 (2004).
[CrossRef]

Riboli, F.

Sbrana, F.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation loss of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[CrossRef]

Shah Hosseini, E.

Shin, J. H.

K. Suh, M. Lee, J. S. Chang, H. Lee, N. Park, G. Y. Sung, and J. H. Shin, “Cooperative upconversion and optical gain in ion-beam sputter-deposited Er(x)Y(2-x)SiO(5) waveguides,” Opt. Express 18(8), 7724–7731 (2010).
[CrossRef] [PubMed]

I. Y. Kim, J. H. Shin, and K. J. Kim, “Extending the nanocluster-Si/erbium sensitization distance in Er-doped silicon nitride: The role of Er-Er energy migration,” Appl. Phys. Lett. 95(22), 221101 (2009).
[CrossRef]

J. S. Chang, S. C. Eom, G. Y. Sung, and J. H. Shin, “On-chip, planar integration of Er doped silicon-rich silicon nitride microdisk with SU-8 waveguide with sub-micron gap control,” Opt. Express 17(25), 22918–22924 (2009).
[CrossRef]

J. S. Chang, J.-H. Jhe, M.-S. Yang, J. H. Shin, K. J. Kim, and D. W. Moon, “Effects of silicon nanostructure evolution on Er3+ luminescence in silicon-rich silicon oxide/Er-doped silica multilayers,” Appl. Phys. Lett. 89(18), 181909 (2006).
[CrossRef]

Shin, J.-H.

G. Y. Sung, N.-M. Park, J.-H. Shin, K.-H. Kim, T.-Y. Kim, K. S. Cho, and C. Huh, “Physics and device structures of highly efficient silicon quantum dots based silicon nitride light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1545–1555 (2006).
[CrossRef]

Shmulovich, J.

M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, A. J. Bruce, G. Nykolak, and J. Shmulovich, “Uniform upconversion in high-concentration Er3+-doped soda lime silicate and aluminosilicate glasses,” Opt. Lett. 22(11), 1468–1474 (1997).
[CrossRef]

Smit, M. K.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm, in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[CrossRef]

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
[CrossRef]

Snoeks, E.

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
[CrossRef]

E. Snoeks, G. N. Hoven, A. Polman, B. Hendriksen, M. B. J. Diemeer, and F. Priolo, “Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides,” J. Opt. Soc. Am. B 12(8), 1468–1474 (1995).
[CrossRef]

Soltani, M.

Stevens, M. J.

Suh, K.

Sung, G. Y.

van Buuren, T.

S. Yerci, R. Li, S. O. Kucheyev, T. van Buuren, S. N. Basu, and L. Dal Negro, “Energy transfer and 1.54 µm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95(3), 031107 (2009).
[CrossRef]

van Dam, C.

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
[CrossRef]

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm, in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[CrossRef]

van den Hoven, G. N.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm, in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[CrossRef]

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
[CrossRef]

van Uffelen, J. W. M.

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
[CrossRef]

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm, in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[CrossRef]

Vuckovic, J.

Warga, J.

L. Dal Negro, R. Li, J. Warga, and S. N. Basu, “Sensitized erbium emission from silicon-rich nitrides/silicon superlattice structures,” Appl. Phys. Lett. 92(18), 181105 (2008).
[CrossRef]

Wörhoff, K.

Yang, M.-S.

J. S. Chang, J.-H. Jhe, M.-S. Yang, J. H. Shin, K. J. Kim, and D. W. Moon, “Effects of silicon nanostructure evolution on Er3+ luminescence in silicon-rich silicon oxide/Er-doped silica multilayers,” Appl. Phys. Lett. 89(18), 181909 (2006).
[CrossRef]

Yegnanarayanan, S.

Yerci, S.

Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vuckovic, and L. Dal Negro, “Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform,” Opt. Express 18(3), 2601–2612 (2010).
[CrossRef] [PubMed]

S. Yerci, R. Li, and L. Dal Negro, “Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes,” Appl. Phys. Lett. 97(8), 081109 (2010).
[CrossRef]

S. Yerci, R. Li, S. O. Kucheyev, T. van Buuren, S. N. Basu, and L. Dal Negro, “Energy transfer and 1.54 µm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95(3), 031107 (2009).
[CrossRef]

R. Li, S. Yerci, and L. Dal Negro, “Temperature dependence of the energy transfer from amorphous silicon nitride to Er ions,” Appl. Phys. Lett. 95(4), 041111 (2009).
[CrossRef]

Zheng, S.

S. Zheng, H. Chen, and A. W. Poon, “Microring-resonator cross-connect filters in silicon nitride: rib waveguide dimensions dependence,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1380–1387 (2006).
[CrossRef]

Zwiller, V.

Appl. Phys. Lett. (10)

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation loss of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[CrossRef]

L. Dal Negro, R. Li, J. Warga, and S. N. Basu, “Sensitized erbium emission from silicon-rich nitrides/silicon superlattice structures,” Appl. Phys. Lett. 92(18), 181105 (2008).
[CrossRef]

R. Li, S. Yerci, and L. Dal Negro, “Temperature dependence of the energy transfer from amorphous silicon nitride to Er ions,” Appl. Phys. Lett. 95(4), 041111 (2009).
[CrossRef]

S. Yerci, R. Li, S. O. Kucheyev, T. van Buuren, S. N. Basu, and L. Dal Negro, “Energy transfer and 1.54 µm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95(3), 031107 (2009).
[CrossRef]

S. Yerci, R. Li, and L. Dal Negro, “Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes,” Appl. Phys. Lett. 97(8), 081109 (2010).
[CrossRef]

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm, in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[CrossRef]

I. Y. Kim, J. H. Shin, and K. J. Kim, “Extending the nanocluster-Si/erbium sensitization distance in Er-doped silicon nitride: The role of Er-Er energy migration,” Appl. Phys. Lett. 95(22), 221101 (2009).
[CrossRef]

P. Pellegrino, B. Garrido, J. Arbiol, C. Garcia, Y. Lebour, and J. R. Morante, “Site of Er ions in silica layers codoped with Si nanoclusters and Er,” Appl. Phys. Lett. 88(12), 121915 (2006).
[CrossRef]

J. S. Chang, J.-H. Jhe, M.-S. Yang, J. H. Shin, K. J. Kim, and D. W. Moon, “Effects of silicon nanostructure evolution on Er3+ luminescence in silicon-rich silicon oxide/Er-doped silica multilayers,” Appl. Phys. Lett. 89(18), 181909 (2006).
[CrossRef]

S. Minissale, T. Gregorkiewicz, M. Forcales, and R. G. Elliman, “On optical activity of Er3+ ions in Si-rich SiO2 waveguides,” Appl. Phys. Lett. 89(17), 171908 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Zheng, H. Chen, and A. W. Poon, “Microring-resonator cross-connect filters in silicon nitride: rib waveguide dimensions dependence,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1380–1387 (2006).
[CrossRef]

G. Y. Sung, N.-M. Park, J.-H. Shin, K.-H. Kim, T.-Y. Kim, K. S. Cho, and C. Huh, “Physics and device structures of highly efficient silicon quantum dots based silicon nitride light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1545–1555 (2006).
[CrossRef]

J. Appl. Phys. (2)

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70(7), 3778–3784 (1991).
[CrossRef]

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (2)

Opt. Express (5)

Opt. Lett. (1)

M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, A. J. Bruce, G. Nykolak, and J. Shmulovich, “Uniform upconversion in high-concentration Er3+-doped soda lime silicate and aluminosilicate glasses,” Opt. Lett. 22(11), 1468–1474 (1997).
[CrossRef]

Opt. Mater. (1)

D. S. Gardner and M. L. Brongersma, “Microring and microdisk optical resonators using silicon nanocrystals and erbium prepared using silicon technology,” Opt. Mater. 27(5), 804–811 (2005).
[CrossRef]

Phys. Rev. (1)

D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134(2A), A299–A306 (1964).
[CrossRef]

Other (3)

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic Press, 1997).

See, for instance, “Silicon Photonics,”Topics in Applied Physics Vol. 94, edited by L. Pavesi and D. J. Lockwood (Springer, 2004).
[PubMed]

J. S. Chang, K. Suh, M.-S. Yang, and J. H. Shin, “Development and application of Er-doped silicon-rich silicon nitrides and Er silicates for on-chip light sources,” “Silicon Photonics II,” Topics in Applied Physics Vol. 119, 95–130 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Refractive index of the Er doped SiN film measured by ellipsometry and fitted by the single-pole Sellmeier equation. Calculated absorption coefficient (a=4pk/l) using the extinction coefficient (k), obtained by ellipsometry. (b) Measured Er3+ emission spectrum and estimated absorption spectrum by the relation, σem(ν)=σabs(ν)e(ε-hν)/kT [25,26]. (c) SEM image of a strip-loaded SRSN:Er waveguide prior to polishing. Inset shows the calculated single TE mode profile with same parameters.

Fig. 2
Fig. 2

(a) Measured transmission spectrum (black) of a 0.58 cm length waveguide, fitted by the absorption spectrum (red) in Fig. 1(b). Er absorption is 2.9 dB at 1536 nm. (b) A linear fitted, waveguide length dependent transmission loss without Er loss.

Fig. 3
Fig. 3

(a) An absorption (black) and gain (red) spectrum with co-propagating 1480 nm laser diode (LD) pumping at 40 mW/40 mW maximum pump power. A signal enhancement of 4.46 dB is observed. The green spectrum was measured at a lower pump power, 5 mW. The colored lines are estimated transmission spectra for different inversion levels (0, 0.4, 0.5, 0.6, 0.65, 0.75). (b) The signal enhancement as a function of input pump power. Note that the pump power is measured from input fiber, and not calibrated by the waveguide-fiber coupling loss.

Fig. 4
Fig. 4

(a) Photoluminescence observed by 1480 nm pumping shows no emission peak near wavelength 980 nm. (inset) Er3+ lifetime at 1536 nm when pumped resonantly (Ar 488 nm) with various pump powers. (b) The 1536 nm PL intensity was measured twice by increasing/decreasing the pump power. CUC of 2.1×10−18 cm3/sec was derived by fitting Eq. (1) (green line). The 2-level model without CUC (σabsϕ/(σabsϕ+σemϕ+1/tEr)) was also calculated for comparison (blue line). The absorption/emission cross section used for calculation at 1480 nm, was 4.7×10−21 cm2/1.53×10−21 cm2 based on Fig. 1(b).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I E r σ a b s ϕ + σ e m ϕ + 1 / τ 2 C N { [ 1 + 4 C N σ a b s ϕ ( σ a b s ϕ + σ e m ϕ + 1 / τ ) 2 ] 1 / 2 1 }

Metrics