Abstract

Metal-insulator-silicon-insulator-metal (MISIM) waveguides are proposed and investigated theoretically. They are hybrid plasmonic waveguides, and light is highly confined to the insulator between the metal and silicon. As compared to previous ones, they are advantageous since they may be realized in a simple way by using current standard CMOS technology and their insulator is easily replaceable without affecting the metal and silicon. First, their structure and fabrication process are explained, both of which are compatible with standard CMOS technology. Then, the characteristics of the single MISIM waveguide whose insulator has its original or an adjusted refractive index are analyzed. The analysis demonstrates that its characteristics are comparable to those of previous hybrid plasmonic waveguides and that they are very effectively tuned by changing the refractive index of the insulator. Finally, the characteristics of the two coupled MISIM waveguides are analyzed. Through the analysis, it is obtained how close or far apart they are for efficient power transfer or low crosstalk. MISIM-waveguide-based devices may play an important role in connecting Si-based photonic and electronic circuits.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010).
    [CrossRef] [PubMed]
  2. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
    [CrossRef] [PubMed]
  3. Z. Chen, T. Holmgaard, S. I. Bozhevolnyi, A. V. Krasavin, A. V. Zayats, L. Markey, and A. Dereux, “Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides,” Opt. Lett. 34(3), 310–312 (2009).
    [CrossRef] [PubMed]
  4. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94(5), 051111 (2009).
    [CrossRef]
  5. J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96(6), 063105 (2010).
    [CrossRef]
  6. J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95(1), 013504 (2009).
    [CrossRef]
  7. Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett. 35(4), 502–504 (2010).
    [CrossRef] [PubMed]
  8. R. Yang, R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Efficient light coupling between dielectric slot waveguide and plasmonic slot waveguide,” Opt. Lett. 35(5), 649–651 (2010).
    [CrossRef] [PubMed]
  9. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [CrossRef]
  10. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009).
    [CrossRef] [PubMed]
  11. H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
    [CrossRef]
  12. M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18(11), 11728–11736 (2010).
    [CrossRef] [PubMed]
  13. Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
    [CrossRef] [PubMed]
  14. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18(12), 12971–12979 (2010).
    [CrossRef] [PubMed]
  15. N.-N. Feng and L. Dal Negro, “Plasmon mode transformation in modulated-index metal-dielectric slot waveguides,” Opt. Lett. 32(21), 3086–3088 (2007).
    [CrossRef] [PubMed]
  16. D. Dai and S. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 18(17), 17958–17966 (2010).
    [CrossRef] [PubMed]
  17. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009) (Although the acronym of MISIM was introduced for the structure of the plasmonic waveguides in this paper, they were called metal-insulator-metal (MIM) waveguides rather than MISIM waveguides. The plasmonic waveguides were intended to confine enough portion of modal energy for lasing to active semiconductor cores.).
    [CrossRef] [PubMed]
  18. R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V π L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18(15), 15618–15623 (2010).
    [CrossRef] [PubMed]
  19. C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
    [CrossRef]
  20. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
    [CrossRef] [PubMed]
  21. E. Jordana, J.-M. Fedeli, L. E. Melhaoui, P. Lyan, J. P. Colonna, N. Daldosso, L. Pavesi, P. Pellegrino, B. Garrido, A. Vila, and Y. Lebour, “Deep-UV lithography fabrication of slot waveguides and sandwiched waveguides for nonlinear applications,” in Proceedings of 2007 4th IEEE International Conference on Group IV Photonics, (Institute of Electrical and Electronics Engineers, Tokyo, 2007), pp. 1–3.
  22. S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009).
    [CrossRef]
  23. P. McCann, K. Somasundram, S. Byrne, and A. Nevin, “Conformal deposition of LPCVD TEOS,” Proc. SPIE 4557, 329–340 (2001).
    [CrossRef]
  24. H. Ishii, S. Yagi, T. Minotani, Y. Royter, K. Kudou, M. Yano, T. Nagatsuma, K. Machida, and H. Kyuragi, “Gold damascene interconnect technology for millimeter-wave photonics on silicon,” Proc. SPIE 4557, 210–219 (2001).
    [CrossRef]
  25. M. Hauder, J. Gstottner, L. Gao, and D. Schmitt-Landsiedel, “Chemical mechanical polishing of silver damascene structures,” Microelectron. Eng. 64(1-4), 73–79 (2002).
    [CrossRef]
  26. M. Ronay, “Development of aluminum chemical mechanical planarization,” J. Electrochem. Soc. 148(9), G494–G499 (2001).
    [CrossRef]
  27. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1998)
  28. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  29. P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
    [CrossRef]
  30. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” N. J. Phys. 10(10), 105018 (2008).
    [CrossRef]
  31. J. Homola, “Electromagnetic theory of surface plasmons,” in Surface Plasmon Resonance Based Sensors, J. Homola, ed. (Springer, Berlin, 2006).
  32. T. Waechtler, B. Gruska, S. Zimmermann, S. E. Schulz, and T. Gessner, “Characterization of sputtered Ta and TaN films by spectroscopic ellipsometry,” in Proceedings of 8th International Conference on Solid-State and Integrated Circuit Technology, (Institute of Electrical and Electronics Engineers, Shanghai, China, 2006), pp. 2184–2186.
  33. S. G. Lee, Y. J. Kim, S. P. Lee, H.-S. Oh, S. J. Lee, M. Kim, I.-G. Kim, J.-H. Kim, H.-J. Shin, J.-G. Hong, H.-D. Lee, and H.-K. Kang, “Low dielectric constant 3MS α-SiC:H as Cu diffusion barrier layer in Cu dual damascene process,” Jpn. J. Appl. Phys. 40(Part 1, No. 4B), 2663–2668 (2001).
    [CrossRef]
  34. Y. Shoji, K. Nakanishi, Y. Sakakibara, K. Kintaka, H. Kawashima, M. Mori, and T. Kamei, “Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications,” Appl. Phys. Express 3(12), 122201 (2010).
    [CrossRef]
  35. G. Veronis and S. Fan, “Crosstalk between three-dimensional plasmonic slot waveguides,” Opt. Express 16(3), 2129–2140 (2008).
    [CrossRef] [PubMed]
  36. Y. Song, M. Yan, Q. Yang, L.-M. Tong, and M. Qiu, “Reducing crosstalk between nanowire-based hybrid plasmonic waveguides,” Opt. Commun. 284(1), 480–484 (2011).
    [CrossRef]

2011

Y. Song, M. Yan, Q. Yang, L.-M. Tong, and M. Qiu, “Reducing crosstalk between nanowire-based hybrid plasmonic waveguides,” Opt. Commun. 284(1), 480–484 (2011).
[CrossRef]

2010

Y. Shoji, K. Nakanishi, Y. Sakakibara, K. Kintaka, H. Kawashima, M. Mori, and T. Kamei, “Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications,” Appl. Phys. Express 3(12), 122201 (2010).
[CrossRef]

D. Dai and S. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 18(17), 17958–17966 (2010).
[CrossRef] [PubMed]

M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010).
[CrossRef] [PubMed]

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96(6), 063105 (2010).
[CrossRef]

Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett. 35(4), 502–504 (2010).
[CrossRef] [PubMed]

R. Yang, R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Efficient light coupling between dielectric slot waveguide and plasmonic slot waveguide,” Opt. Lett. 35(5), 649–651 (2010).
[CrossRef] [PubMed]

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
[CrossRef]

M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18(11), 11728–11736 (2010).
[CrossRef] [PubMed]

Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
[CrossRef] [PubMed]

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18(12), 12971–12979 (2010).
[CrossRef] [PubMed]

R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V π L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18(15), 15618–15623 (2010).
[CrossRef] [PubMed]

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[CrossRef]

2009

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009).
[CrossRef]

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95(1), 013504 (2009).
[CrossRef]

Z. Chen, T. Holmgaard, S. I. Bozhevolnyi, A. V. Krasavin, A. V. Zayats, L. Markey, and A. Dereux, “Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides,” Opt. Lett. 34(3), 310–312 (2009).
[CrossRef] [PubMed]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94(5), 051111 (2009).
[CrossRef]

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009) (Although the acronym of MISIM was introduced for the structure of the plasmonic waveguides in this paper, they were called metal-insulator-metal (MIM) waveguides rather than MISIM waveguides. The plasmonic waveguides were intended to confine enough portion of modal energy for lasing to active semiconductor cores.).
[CrossRef] [PubMed]

D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009).
[CrossRef] [PubMed]

2008

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” N. J. Phys. 10(10), 105018 (2008).
[CrossRef]

G. Veronis and S. Fan, “Crosstalk between three-dimensional plasmonic slot waveguides,” Opt. Express 16(3), 2129–2140 (2008).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

2007

2006

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

2005

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[CrossRef]

2002

M. Hauder, J. Gstottner, L. Gao, and D. Schmitt-Landsiedel, “Chemical mechanical polishing of silver damascene structures,” Microelectron. Eng. 64(1-4), 73–79 (2002).
[CrossRef]

2001

M. Ronay, “Development of aluminum chemical mechanical planarization,” J. Electrochem. Soc. 148(9), G494–G499 (2001).
[CrossRef]

S. G. Lee, Y. J. Kim, S. P. Lee, H.-S. Oh, S. J. Lee, M. Kim, I.-G. Kim, J.-H. Kim, H.-J. Shin, J.-G. Hong, H.-D. Lee, and H.-K. Kang, “Low dielectric constant 3MS α-SiC:H as Cu diffusion barrier layer in Cu dual damascene process,” Jpn. J. Appl. Phys. 40(Part 1, No. 4B), 2663–2668 (2001).
[CrossRef]

P. McCann, K. Somasundram, S. Byrne, and A. Nevin, “Conformal deposition of LPCVD TEOS,” Proc. SPIE 4557, 329–340 (2001).
[CrossRef]

H. Ishii, S. Yagi, T. Minotani, Y. Royter, K. Kudou, M. Yano, T. Nagatsuma, K. Machida, and H. Kyuragi, “Gold damascene interconnect technology for millimeter-wave photonics on silicon,” Proc. SPIE 4557, 210–219 (2001).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Abushagur, M. A. G.

Aitchison, J. S.

Alam, M. Z.

Baehr-Jones, T.

Baets, R.

Bai, P.

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
[CrossRef]

Bartal, G.

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” N. J. Phys. 10(10), 105018 (2008).
[CrossRef]

Benight, S.

Berini, P.

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[CrossRef]

Bogaerts, W.

Bojko, R.

Bouhelier, A.

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96(6), 063105 (2010).
[CrossRef]

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

Z. Chen, T. Holmgaard, S. I. Bozhevolnyi, A. V. Krasavin, A. V. Zayats, L. Markey, and A. Dereux, “Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides,” Opt. Lett. 34(3), 310–312 (2009).
[CrossRef] [PubMed]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94(5), 051111 (2009).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Brongersma, M. L.

M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010).
[CrossRef] [PubMed]

Byrne, S.

P. McCann, K. Somasundram, S. Byrne, and A. Nevin, “Conformal deposition of LPCVD TEOS,” Proc. SPIE 4557, 329–340 (2001).
[CrossRef]

Chakravarty, S.

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[CrossRef]

Charbonneau, R.

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[CrossRef]

Chen, R. T.

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[CrossRef]

Chen, Z.

Z. Chen, T. Holmgaard, S. I. Bozhevolnyi, A. V. Krasavin, A. V. Zayats, L. Markey, and A. Dereux, “Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides,” Opt. Lett. 34(3), 310–312 (2009).
[CrossRef] [PubMed]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94(5), 051111 (2009).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Chu, H.-S.

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
[CrossRef]

Dai, D.

Dal Negro, L.

Dalton, L.

Dereux, A.

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96(6), 063105 (2010).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94(5), 051111 (2009).
[CrossRef]

Z. Chen, T. Holmgaard, S. I. Bozhevolnyi, A. V. Krasavin, A. V. Zayats, L. Markey, and A. Dereux, “Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides,” Opt. Lett. 34(3), 310–312 (2009).
[CrossRef] [PubMed]

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

des Francs, G. C.

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96(6), 063105 (2010).
[CrossRef]

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Ding, R.

Dumon, P.

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Elezzabi, A. Y.

Fan, S.

Fedeli, J.-M.

Feng, N.-N.

Finot, C.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Fournier, M.

Gao, L.

M. Hauder, J. Gstottner, L. Gao, and D. Schmitt-Landsiedel, “Chemical mechanical polishing of silver damascene structures,” Microelectron. Eng. 64(1-4), 73–79 (2002).
[CrossRef]

Geluk, E. J.

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Grandidier, J.

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96(6), 063105 (2010).
[CrossRef]

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Gstottner, J.

M. Hauder, J. Gstottner, L. Gao, and D. Schmitt-Landsiedel, “Chemical mechanical polishing of silver damascene structures,” Microelectron. Eng. 64(1-4), 73–79 (2002).
[CrossRef]

Han, Z.

Hauder, M.

M. Hauder, J. Gstottner, L. Gao, and D. Schmitt-Landsiedel, “Chemical mechanical polishing of silver damascene structures,” Microelectron. Eng. 64(1-4), 73–79 (2002).
[CrossRef]

He, S.

Hegde, R.

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
[CrossRef]

Hill, M. T.

Hochberg, M.

Holmgaard, T.

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94(5), 051111 (2009).
[CrossRef]

Z. Chen, T. Holmgaard, S. I. Bozhevolnyi, A. V. Krasavin, A. V. Zayats, L. Markey, and A. Dereux, “Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides,” Opt. Lett. 34(3), 310–312 (2009).
[CrossRef] [PubMed]

Hong, J.-G.

S. G. Lee, Y. J. Kim, S. P. Lee, H.-S. Oh, S. J. Lee, M. Kim, I.-G. Kim, J.-H. Kim, H.-J. Shin, J.-G. Hong, H.-D. Lee, and H.-K. Kang, “Low dielectric constant 3MS α-SiC:H as Cu diffusion barrier layer in Cu dual damascene process,” Jpn. J. Appl. Phys. 40(Part 1, No. 4B), 2663–2668 (2001).
[CrossRef]

Huang, S.

Ishii, H.

H. Ishii, S. Yagi, T. Minotani, Y. Royter, K. Kudou, M. Yano, T. Nagatsuma, K. Machida, and H. Kyuragi, “Gold damascene interconnect technology for millimeter-wave photonics on silicon,” Proc. SPIE 4557, 210–219 (2001).
[CrossRef]

Jaenen, P.

Jen, A.

Jen, A. K.-Y.

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Kamei, T.

Y. Shoji, K. Nakanishi, Y. Sakakibara, K. Kintaka, H. Kawashima, M. Mori, and T. Kamei, “Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications,” Appl. Phys. Express 3(12), 122201 (2010).
[CrossRef]

Kang, H.-K.

S. G. Lee, Y. J. Kim, S. P. Lee, H.-S. Oh, S. J. Lee, M. Kim, I.-G. Kim, J.-H. Kim, H.-J. Shin, J.-G. Hong, H.-D. Lee, and H.-K. Kang, “Low dielectric constant 3MS α-SiC:H as Cu diffusion barrier layer in Cu dual damascene process,” Jpn. J. Appl. Phys. 40(Part 1, No. 4B), 2663–2668 (2001).
[CrossRef]

Karouta, F.

Kawashima, H.

Y. Shoji, K. Nakanishi, Y. Sakakibara, K. Kintaka, H. Kawashima, M. Mori, and T. Kamei, “Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications,” Appl. Phys. Express 3(12), 122201 (2010).
[CrossRef]

Kim, I.-G.

S. G. Lee, Y. J. Kim, S. P. Lee, H.-S. Oh, S. J. Lee, M. Kim, I.-G. Kim, J.-H. Kim, H.-J. Shin, J.-G. Hong, H.-D. Lee, and H.-K. Kang, “Low dielectric constant 3MS α-SiC:H as Cu diffusion barrier layer in Cu dual damascene process,” Jpn. J. Appl. Phys. 40(Part 1, No. 4B), 2663–2668 (2001).
[CrossRef]

Kim, J.-H.

S. G. Lee, Y. J. Kim, S. P. Lee, H.-S. Oh, S. J. Lee, M. Kim, I.-G. Kim, J.-H. Kim, H.-J. Shin, J.-G. Hong, H.-D. Lee, and H.-K. Kang, “Low dielectric constant 3MS α-SiC:H as Cu diffusion barrier layer in Cu dual damascene process,” Jpn. J. Appl. Phys. 40(Part 1, No. 4B), 2663–2668 (2001).
[CrossRef]

Kim, M.

S. G. Lee, Y. J. Kim, S. P. Lee, H.-S. Oh, S. J. Lee, M. Kim, I.-G. Kim, J.-H. Kim, H.-J. Shin, J.-G. Hong, H.-D. Lee, and H.-K. Kang, “Low dielectric constant 3MS α-SiC:H as Cu diffusion barrier layer in Cu dual damascene process,” Jpn. J. Appl. Phys. 40(Part 1, No. 4B), 2663–2668 (2001).
[CrossRef]

Kim, Y. J.

S. G. Lee, Y. J. Kim, S. P. Lee, H.-S. Oh, S. J. Lee, M. Kim, I.-G. Kim, J.-H. Kim, H.-J. Shin, J.-G. Hong, H.-D. Lee, and H.-K. Kang, “Low dielectric constant 3MS α-SiC:H as Cu diffusion barrier layer in Cu dual damascene process,” Jpn. J. Appl. Phys. 40(Part 1, No. 4B), 2663–2668 (2001).
[CrossRef]

Kintaka, K.

Y. Shoji, K. Nakanishi, Y. Sakakibara, K. Kintaka, H. Kawashima, M. Mori, and T. Kamei, “Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications,” Appl. Phys. Express 3(12), 122201 (2010).
[CrossRef]

Krasavin, A. V.

Z. Chen, T. Holmgaard, S. I. Bozhevolnyi, A. V. Krasavin, A. V. Zayats, L. Markey, and A. Dereux, “Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides,” Opt. Lett. 34(3), 310–312 (2009).
[CrossRef] [PubMed]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94(5), 051111 (2009).
[CrossRef]

Kudou, K.

H. Ishii, S. Yagi, T. Minotani, Y. Royter, K. Kudou, M. Yano, T. Nagatsuma, K. Machida, and H. Kyuragi, “Gold damascene interconnect technology for millimeter-wave photonics on silicon,” Proc. SPIE 4557, 210–219 (2001).
[CrossRef]

Kyuragi, H.

H. Ishii, S. Yagi, T. Minotani, Y. Royter, K. Kudou, M. Yano, T. Nagatsuma, K. Machida, and H. Kyuragi, “Gold damascene interconnect technology for millimeter-wave photonics on silicon,” Proc. SPIE 4557, 210–219 (2001).
[CrossRef]

Lahoud, N.

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[CrossRef]

Lai, W.

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[CrossRef]

Laluet, J.-Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Lee, B. S.

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[CrossRef]

Lee, H.-D.

S. G. Lee, Y. J. Kim, S. P. Lee, H.-S. Oh, S. J. Lee, M. Kim, I.-G. Kim, J.-H. Kim, H.-J. Shin, J.-G. Hong, H.-D. Lee, and H.-K. Kang, “Low dielectric constant 3MS α-SiC:H as Cu diffusion barrier layer in Cu dual damascene process,” Jpn. J. Appl. Phys. 40(Part 1, No. 4B), 2663–2668 (2001).
[CrossRef]

Lee, S. G.

S. G. Lee, Y. J. Kim, S. P. Lee, H.-S. Oh, S. J. Lee, M. Kim, I.-G. Kim, J.-H. Kim, H.-J. Shin, J.-G. Hong, H.-D. Lee, and H.-K. Kang, “Low dielectric constant 3MS α-SiC:H as Cu diffusion barrier layer in Cu dual damascene process,” Jpn. J. Appl. Phys. 40(Part 1, No. 4B), 2663–2668 (2001).
[CrossRef]

Lee, S. J.

S. G. Lee, Y. J. Kim, S. P. Lee, H.-S. Oh, S. J. Lee, M. Kim, I.-G. Kim, J.-H. Kim, H.-J. Shin, J.-G. Hong, H.-D. Lee, and H.-K. Kang, “Low dielectric constant 3MS α-SiC:H as Cu diffusion barrier layer in Cu dual damascene process,” Jpn. J. Appl. Phys. 40(Part 1, No. 4B), 2663–2668 (2001).
[CrossRef]

Lee, S. P.

S. G. Lee, Y. J. Kim, S. P. Lee, H.-S. Oh, S. J. Lee, M. Kim, I.-G. Kim, J.-H. Kim, H.-J. Shin, J.-G. Hong, H.-D. Lee, and H.-K. Kang, “Low dielectric constant 3MS α-SiC:H as Cu diffusion barrier layer in Cu dual damascene process,” Jpn. J. Appl. Phys. 40(Part 1, No. 4B), 2663–2668 (2001).
[CrossRef]

Leong, E. S. P.

Li, E.-P.

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
[CrossRef]

Li, Q.

Lin, C.-Y.

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[CrossRef]

Liu, Y.

Lu, Z.

Luo, J.

R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V π L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18(15), 15618–15623 (2010).
[CrossRef] [PubMed]

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[CrossRef]

Machida, K.

H. Ishii, S. Yagi, T. Minotani, Y. Royter, K. Kudou, M. Yano, T. Nagatsuma, K. Machida, and H. Kyuragi, “Gold damascene interconnect technology for millimeter-wave photonics on silicon,” Proc. SPIE 4557, 210–219 (2001).
[CrossRef]

Marell, M.

Markey, L.

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96(6), 063105 (2010).
[CrossRef]

Z. Chen, T. Holmgaard, S. I. Bozhevolnyi, A. V. Krasavin, A. V. Zayats, L. Markey, and A. Dereux, “Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides,” Opt. Lett. 34(3), 310–312 (2009).
[CrossRef] [PubMed]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94(5), 051111 (2009).
[CrossRef]

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Massenot, S.

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96(6), 063105 (2010).
[CrossRef]

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Mattiussi, G.

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[CrossRef]

McCann, P.

P. McCann, K. Somasundram, S. Byrne, and A. Nevin, “Conformal deposition of LPCVD TEOS,” Proc. SPIE 4557, 329–340 (2001).
[CrossRef]

Meier, J.

Minotani, T.

H. Ishii, S. Yagi, T. Minotani, Y. Royter, K. Kudou, M. Yano, T. Nagatsuma, K. Machida, and H. Kyuragi, “Gold damascene interconnect technology for millimeter-wave photonics on silicon,” Proc. SPIE 4557, 210–219 (2001).
[CrossRef]

Mojahedi, M.

Mori, M.

Y. Shoji, K. Nakanishi, Y. Sakakibara, K. Kintaka, H. Kawashima, M. Mori, and T. Kamei, “Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications,” Appl. Phys. Express 3(12), 122201 (2010).
[CrossRef]

Nagatsuma, T.

H. Ishii, S. Yagi, T. Minotani, Y. Royter, K. Kudou, M. Yano, T. Nagatsuma, K. Machida, and H. Kyuragi, “Gold damascene interconnect technology for millimeter-wave photonics on silicon,” Proc. SPIE 4557, 210–219 (2001).
[CrossRef]

Nakanishi, K.

Y. Shoji, K. Nakanishi, Y. Sakakibara, K. Kintaka, H. Kawashima, M. Mori, and T. Kamei, “Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications,” Appl. Phys. Express 3(12), 122201 (2010).
[CrossRef]

Nevin, A.

P. McCann, K. Somasundram, S. Byrne, and A. Nevin, “Conformal deposition of LPCVD TEOS,” Proc. SPIE 4557, 329–340 (2001).
[CrossRef]

Ning, C.-Z.

Nötzel, R.

Oei, Y.-S.

Oh, H.-S.

S. G. Lee, Y. J. Kim, S. P. Lee, H.-S. Oh, S. J. Lee, M. Kim, I.-G. Kim, J.-H. Kim, H.-J. Shin, J.-G. Hong, H.-D. Lee, and H.-K. Kang, “Low dielectric constant 3MS α-SiC:H as Cu diffusion barrier layer in Cu dual damascene process,” Jpn. J. Appl. Phys. 40(Part 1, No. 4B), 2663–2668 (2001).
[CrossRef]

Oulton, R. F.

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” N. J. Phys. 10(10), 105018 (2008).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” N. J. Phys. 10(10), 105018 (2008).
[CrossRef]

Qiu, M.

Y. Song, M. Yan, Q. Yang, L.-M. Tong, and M. Qiu, “Reducing crosstalk between nanowire-based hybrid plasmonic waveguides,” Opt. Commun. 284(1), 480–484 (2011).
[CrossRef]

Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
[CrossRef] [PubMed]

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95(1), 013504 (2009).
[CrossRef]

Ronay, M.

M. Ronay, “Development of aluminum chemical mechanical planarization,” J. Electrochem. Soc. 148(9), G494–G499 (2001).
[CrossRef]

Royter, Y.

H. Ishii, S. Yagi, T. Minotani, Y. Royter, K. Kudou, M. Yano, T. Nagatsuma, K. Machida, and H. Kyuragi, “Gold damascene interconnect technology for millimeter-wave photonics on silicon,” Proc. SPIE 4557, 210–219 (2001).
[CrossRef]

Sakakibara, Y.

Y. Shoji, K. Nakanishi, Y. Sakakibara, K. Kintaka, H. Kawashima, M. Mori, and T. Kamei, “Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications,” Appl. Phys. Express 3(12), 122201 (2010).
[CrossRef]

Schmitt-Landsiedel, D.

M. Hauder, J. Gstottner, L. Gao, and D. Schmitt-Landsiedel, “Chemical mechanical polishing of silver damascene structures,” Microelectron. Eng. 64(1-4), 73–79 (2002).
[CrossRef]

Selvaraja, S. K.

Shalaev, V. M.

M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010).
[CrossRef] [PubMed]

Shin, H.-J.

S. G. Lee, Y. J. Kim, S. P. Lee, H.-S. Oh, S. J. Lee, M. Kim, I.-G. Kim, J.-H. Kim, H.-J. Shin, J.-G. Hong, H.-D. Lee, and H.-K. Kang, “Low dielectric constant 3MS α-SiC:H as Cu diffusion barrier layer in Cu dual damascene process,” Jpn. J. Appl. Phys. 40(Part 1, No. 4B), 2663–2668 (2001).
[CrossRef]

Shoji, Y.

Y. Shoji, K. Nakanishi, Y. Sakakibara, K. Kintaka, H. Kawashima, M. Mori, and T. Kamei, “Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications,” Appl. Phys. Express 3(12), 122201 (2010).
[CrossRef]

Smalbrugge, B.

Smit, M. K.

Somasundram, K.

P. McCann, K. Somasundram, S. Byrne, and A. Nevin, “Conformal deposition of LPCVD TEOS,” Proc. SPIE 4557, 329–340 (2001).
[CrossRef]

Song, Y.

Y. Song, M. Yan, Q. Yang, L.-M. Tong, and M. Qiu, “Reducing crosstalk between nanowire-based hybrid plasmonic waveguides,” Opt. Commun. 284(1), 480–484 (2011).
[CrossRef]

Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
[CrossRef] [PubMed]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Sullivan, P.

Sun, M.

Tian, J.

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95(1), 013504 (2009).
[CrossRef]

Tong, L.-M.

Y. Song, M. Yan, Q. Yang, L.-M. Tong, and M. Qiu, “Reducing crosstalk between nanowire-based hybrid plasmonic waveguides,” Opt. Commun. 284(1), 480–484 (2011).
[CrossRef]

Van, V.

Van Thourhout, D.

van Veldhoven, P. J.

Veronis, G.

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Wahsheh, R. A.

Wang, J.

Wang, X.

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[CrossRef]

Weeber, J.-C.

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96(6), 063105 (2010).
[CrossRef]

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Witzens, J.

Wu, M.

Yagi, S.

H. Ishii, S. Yagi, T. Minotani, Y. Royter, K. Kudou, M. Yano, T. Nagatsuma, K. Machida, and H. Kyuragi, “Gold damascene interconnect technology for millimeter-wave photonics on silicon,” Proc. SPIE 4557, 210–219 (2001).
[CrossRef]

Yan, M.

Y. Song, M. Yan, Q. Yang, L.-M. Tong, and M. Qiu, “Reducing crosstalk between nanowire-based hybrid plasmonic waveguides,” Opt. Commun. 284(1), 480–484 (2011).
[CrossRef]

Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
[CrossRef] [PubMed]

Yan, W.

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95(1), 013504 (2009).
[CrossRef]

Yang, Q.

Y. Song, M. Yan, Q. Yang, L.-M. Tong, and M. Qiu, “Reducing crosstalk between nanowire-based hybrid plasmonic waveguides,” Opt. Commun. 284(1), 480–484 (2011).
[CrossRef]

Yang, R.

Yano, M.

H. Ishii, S. Yagi, T. Minotani, Y. Royter, K. Kudou, M. Yano, T. Nagatsuma, K. Machida, and H. Kyuragi, “Gold damascene interconnect technology for millimeter-wave photonics on silicon,” Proc. SPIE 4557, 210–219 (2001).
[CrossRef]

Yu, S.

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95(1), 013504 (2009).
[CrossRef]

Zayats, A. V.

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94(5), 051111 (2009).
[CrossRef]

Z. Chen, T. Holmgaard, S. I. Bozhevolnyi, A. V. Krasavin, A. V. Zayats, L. Markey, and A. Dereux, “Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides,” Opt. Lett. 34(3), 310–312 (2009).
[CrossRef] [PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” N. J. Phys. 10(10), 105018 (2008).
[CrossRef]

Zhu, Y.

Appl. Phys. Express

Y. Shoji, K. Nakanishi, Y. Sakakibara, K. Kintaka, H. Kawashima, M. Mori, and T. Kamei, “Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications,” Appl. Phys. Express 3(12), 122201 (2010).
[CrossRef]

Appl. Phys. Lett.

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94(5), 051111 (2009).
[CrossRef]

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96(6), 063105 (2010).
[CrossRef]

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95(1), 013504 (2009).
[CrossRef]

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
[CrossRef]

C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[CrossRef]

J. Appl. Phys.

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[CrossRef]

J. Electrochem. Soc.

M. Ronay, “Development of aluminum chemical mechanical planarization,” J. Electrochem. Soc. 148(9), G494–G499 (2001).
[CrossRef]

J. Lightwave Technol.

Jpn. J. Appl. Phys.

S. G. Lee, Y. J. Kim, S. P. Lee, H.-S. Oh, S. J. Lee, M. Kim, I.-G. Kim, J.-H. Kim, H.-J. Shin, J.-G. Hong, H.-D. Lee, and H.-K. Kang, “Low dielectric constant 3MS α-SiC:H as Cu diffusion barrier layer in Cu dual damascene process,” Jpn. J. Appl. Phys. 40(Part 1, No. 4B), 2663–2668 (2001).
[CrossRef]

Microelectron. Eng.

M. Hauder, J. Gstottner, L. Gao, and D. Schmitt-Landsiedel, “Chemical mechanical polishing of silver damascene structures,” Microelectron. Eng. 64(1-4), 73–79 (2002).
[CrossRef]

N. J. Phys.

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” N. J. Phys. 10(10), 105018 (2008).
[CrossRef]

Nano Lett.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Nat. Photonics

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Nature

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Opt. Commun.

Y. Song, M. Yan, Q. Yang, L.-M. Tong, and M. Qiu, “Reducing crosstalk between nanowire-based hybrid plasmonic waveguides,” Opt. Commun. 284(1), 480–484 (2011).
[CrossRef]

Opt. Express

G. Veronis and S. Fan, “Crosstalk between three-dimensional plasmonic slot waveguides,” Opt. Express 16(3), 2129–2140 (2008).
[CrossRef] [PubMed]

D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009).
[CrossRef] [PubMed]

D. Dai and S. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 18(17), 17958–17966 (2010).
[CrossRef] [PubMed]

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009) (Although the acronym of MISIM was introduced for the structure of the plasmonic waveguides in this paper, they were called metal-insulator-metal (MIM) waveguides rather than MISIM waveguides. The plasmonic waveguides were intended to confine enough portion of modal energy for lasing to active semiconductor cores.).
[CrossRef] [PubMed]

R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V π L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18(15), 15618–15623 (2010).
[CrossRef] [PubMed]

M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18(11), 11728–11736 (2010).
[CrossRef] [PubMed]

Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
[CrossRef] [PubMed]

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18(12), 12971–12979 (2010).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Proc. SPIE

P. McCann, K. Somasundram, S. Byrne, and A. Nevin, “Conformal deposition of LPCVD TEOS,” Proc. SPIE 4557, 329–340 (2001).
[CrossRef]

H. Ishii, S. Yagi, T. Minotani, Y. Royter, K. Kudou, M. Yano, T. Nagatsuma, K. Machida, and H. Kyuragi, “Gold damascene interconnect technology for millimeter-wave photonics on silicon,” Proc. SPIE 4557, 210–219 (2001).
[CrossRef]

Science

M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010).
[CrossRef] [PubMed]

Other

J. Homola, “Electromagnetic theory of surface plasmons,” in Surface Plasmon Resonance Based Sensors, J. Homola, ed. (Springer, Berlin, 2006).

T. Waechtler, B. Gruska, S. Zimmermann, S. E. Schulz, and T. Gessner, “Characterization of sputtered Ta and TaN films by spectroscopic ellipsometry,” in Proceedings of 8th International Conference on Solid-State and Integrated Circuit Technology, (Institute of Electrical and Electronics Engineers, Shanghai, China, 2006), pp. 2184–2186.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1998)

E. Jordana, J.-M. Fedeli, L. E. Melhaoui, P. Lyan, J. P. Colonna, N. Daldosso, L. Pavesi, P. Pellegrino, B. Garrido, A. Vila, and Y. Lebour, “Deep-UV lithography fabrication of slot waveguides and sandwiched waveguides for nonlinear applications,” in Proceedings of 2007 4th IEEE International Conference on Group IV Photonics, (Institute of Electrical and Electronics Engineers, Tokyo, 2007), pp. 1–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Cross-sectional structure of the MISIM waveguide. This structure is mainly analyzed in Section 3. (b) Cross-sectional structure of the MISIM waveguide whose insulator is partially removed by using wet-etching. The fabrication process of the MISIM waveguide consists of (c) formation of silicon patterns, (d) deposition of oxide, (e) formation of Si3N4 patterns, (f) deposition of metal, and (g) chemical-mechanical polishing. The cross-section along the line AB is shown in (h).

Fig. 2
Fig. 2

Intensity profiles of the MISIM waveguide mode for εM = ε Au. For tI = 20, 40, 60, and 80 nm, they are shown in (a) to (d), respectively. (e) Intensity distributions along a horizontal line y = 125 nm for the different values of tI . An enlarged part is shown in the inset. (f) Intensity distributions along another horizontal line y = tI / 2 for the different values of tI . In (e) and (f), the black, red, green, and cyan lines correspond to the cases of tI = 20, 40, 60, and 80 nm, respectively. The correspondence between the line colors and the values of tI is used in the following figures.

Fig. 3
Fig. 3

Relations of the effective index n eff to tI for different values of εM . The real and imaginary parts of n eff, Re [ n eff ] and Im [ n eff ] are shown in (a) and (b), respectively. (b) also shows the relations of the propagation length Lp to tI , which are represented by the dashed lines. In the inset of (a), an enlarged part is shown. The square, circle, triangle, inverted triangle, and diamond symbols correspond to the cases of εM = ε Au, ε Ag1, ε Ag2, ε Al, and ε Cu, respectively. This correspondence between the symbol shapes and the values of εM is used in the following figures.

Fig. 4
Fig. 4

(a) Relations of the effective mode area A eff to tI for the different values of εM . An enlarged part is shown in the inset. The dotted curve represents the real area AR of the thin insulator region R. In addition, the thin horizontal line represents the diffraction-limited area of silicon. (b) Relations of the normalized power in R to tI for the different values of εM . An enlarged part is shown in the upper middle inset. The lower right inset shows the definition of the thin insulator region R.

Fig. 5
Fig. 5

(a) Relations of the change of Re [ n eff ] , Δ Re [ n eff ] to tI for the different values of εM . The dotted line represents the case of Δ Re [ n eff ] = 0.001. The inset shows the inverted U shaped sub-region of the insulator, U, whose RI is nI + ΔnI . In this figure, ΔnI = 0.001. (b) Relations of Δ r Re [ n eff ] to tI for the different values of εM . Δ r Re [ n eff ] is the relative change of Δ Re [ n eff ] , which is given by ( Δ Re [ n eff ] / Re [ n eff ] ) / ( Δ n I / n I ) .

Fig. 6
Fig. 6

(a) Relations of the change of Im [ n eff ] , Δ Im [ n eff ] to tI for the different values of εM when ΔnI = j0.00617, which means that the gain coefficient of U is 500 cm–1. The dotted line represents the case of Δ Im [ n eff ] = 0.00617. Also, the relations of Δ r Im [ n eff ] to tI are shown together. Δ r Im [ n eff ] is the relative change of Δ Im [ n eff ] , which is given by ( Δ Im [ n eff ] / Re [ n eff ] ) / ( | Δ n I | / n I ) . (b) Relations of the increase of Lp , ΔLp to tI . Also, the gain coefficient of the MISIM waveguide mode for εM = ε Ag2 is shown as a function of tI .

Fig. 7
Fig. 7

(a) Relations of Re [ n eff d n eff ] / Re [ n eff ] to wM for the different values of tI . n eff d denotes the effective index of the deteriorated MISIM waveguide mode of the structure in Fig. 1(h). (b) Relations of Im [ n eff d n eff ] / Im [ n eff ] to wM for the different values of tI .

Fig. 8
Fig. 8

(a) Cross-sectional structure of the coupled MISIM waveguides. (b) Relations of Re [ N a ] (black) and Re [ N s ] (red) to sM . Na and Ns are the effective indexes of the antisymmetric and symmetric modes of the structure in (a). The upper (lower) insets show the distributions of the real part of the x component of the electric field of the antisymmetric (symmetric) mode, Re [ E x ( a ) ] ( Re [ E x ( s ) ] ) along the line y = 125 nm for sM = 60 and 300 nm, respectively. (c) Relations of Im [ N a ] (black) and Im [ N s ] (red) to sM . In the calculation for this figure, εM = ε Au, and tI = 40 nm.

Fig. 9
Fig. 9

Relations of the beating length Lb to sM (a) for the different values of tI and (b) for the different values of εM . In the calculation for (a), εM = ε Au. In the calculation for (b), tI = 40 nm. Enlarged parts are shown in the insets.

Fig. 10
Fig. 10

(a) – (e) Relations of the coupling length Lc and the normalized, maximally-transferred power P max at Lc to sM for tI = 20, 40, 60, and 80 nm. In the calculation, εM was set to ε Au for (a), ε Ag1 for (b), ε Al for (c), ε Cu for (d), and ε Ag2 for (e). The correspondence between the line colors and the values of tI is the same as in the above figures. (f) Relations of P max in the case of sM = 60 nm to tI for the different values of εM . (g) Relations of the minimum values of sM to tI for the different values of εM . The correspondence between the symbol shapes and the values of εM is the same as in the above figures.

Tables (1)

Tables Icon

Table 1 Dielectric Constants of Gold, Silver, Copper, and Aluminum at a Wavelength of 1.55 μm

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ n eff n eff n I Δ n I R E x H y d x E x H y d x R P z ( x ) d x P z ( x ) d x .
L c = 2 L b π tan 1 ( π L ¯ p 2 L b ) ,
P max = exp ( 2 ϕ cot ϕ ) sin 2 ϕ , ϕ = π L c 2 L b ,

Metrics