Abstract

We report on the amplitude and phase modulation of picosecond optical pulses, near λ = 800 nm, transmitted through sub-wavelength rectangular apertures in thin gold films with thicknesses of λ/10 at per-pulse energies of <0.3 nJ or 9 pJ per aperture. Due to the excitation and strong confinement of surface plasmon polaritons in the apertures, the leading edge of a pulse causes a rapid heating of the electrons and lattice to modulate its falling edge. By comparing cross-correlation frequency resolved optical gating measurements with simulations, the thermal effects responsible for the induced pulse dynamics are identified.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
    [CrossRef]
  2. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729 (2010).
    [CrossRef]
  3. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
    [CrossRef]
  4. R. Muller, V. Malyarchuk, and C. Lienau, “Three-dimensional theory on light-induced near-field dynamics in a metal film with a periodic array of nanoholes,” Phys. Rev. B 68, 205415 (2003).
    [CrossRef]
  5. A. Dogariu, A. Nahata, R. A. Linke, L. J. Wang, and R. Trebino, “Optical pulse propagation through metallic nano-apertures,” Appl. Phys. B 74, S69–S73 (2002).
    [CrossRef]
  6. D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
    [CrossRef] [PubMed]
  7. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
    [CrossRef]
  8. M. Pelton, M. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, “Ultrafast resonant optical scattering from single gold nanorods: Large nonlinearities and plasmon saturation,” Phys. Rev. B 73155419 (2006).
    [CrossRef]
  9. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009).
    [CrossRef]
  10. N. Rotenberg, J. N. Caspers, and H. M. van Driel, “Tunable ultrafast control of plasmonic coupling to gold films,” Phys. Rev. B 80, 245420 (2009).
    [CrossRef]
  11. M. Tong, A. S. Kirakosyan, T. V. Shahbazyan, and Z. V. Vardeny, “Ultrafast response of surface electromagnetic waves in an aluminum film perforated with subwavelength hole arrays,” Phys. Rev. Lett. 100, 056808 (2008).
    [CrossRef] [PubMed]
  12. E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted thz transmission through a slit aperture,” Phys. Rev. Lett. 100, 123901 (2008).
    [CrossRef] [PubMed]
  13. A. K. Azad, H. T. Chen, S. R. Kasarla, A. J. Taylor, Z. Tian, X. C. Lu, W. Zhang, H. Lu, A. C. Gossard, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95, 011105 (2009).
    [CrossRef]
  14. W. Zhang, “Resonant terahertz transmission in plasmonic arrays of subwavelength holes,” Eur. Phys. J. Appl. Phys. 43, 1–18 (2008).
    [CrossRef]
  15. J. N. Caspers, N. Rotenberg, and H. M. van Driel, “Ultrafast silicon-based active plasmonics at telecom wavelengths,” Opt. Express 18, 19761–19769 (2010).
    [CrossRef] [PubMed]
  16. B. Hou, X. Q. Liao, and J. K. S. Poon, “Resonant infrared transmission and effective medium response of sub-wavelength h-fractal apertures,” Opt. Express 18, 3946–3951 (2010).
    [CrossRef] [PubMed]
  17. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
    [CrossRef] [PubMed]
  18. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  19. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultra-short laser pulses,” Sov. Phys. JETP 39, 375–377 (1974).
  20. Y. Takata, H. Haneda, T. Mitsuhashi, and Y. Wada, “Evaluation of thermal diffusivity for thin gold films using femtosecond laser excitation technique,” Appl. Surf. Sci. 189, 227–233 (2002).
    [CrossRef]
  21. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, 1976).
  22. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Ultrafast optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1814–1823 (1999).
    [CrossRef]
  23. X. Y. Wang, D. M. Riffe, Y. S. Lee, and M. C. Downer, “Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission,” Phys. Rev. B 50, 8016 (1994).
    [CrossRef]
  24. S. Linden, H. Giessen, and J. Kuhl, “Xfrog - a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B 206, 119–124 (1998).
    [CrossRef]
  25. K. W. DeLong, D. N. Fittinghoff, and R. Trebino, “Practical issues in ultrashort-laser-pulse measurement using frequency-resolved optical gating,” IEEE J. Quantum Electron . 32, 1253–1264 (1996).
    [CrossRef]

2010

2009

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009).
[CrossRef]

N. Rotenberg, J. N. Caspers, and H. M. van Driel, “Tunable ultrafast control of plasmonic coupling to gold films,” Phys. Rev. B 80, 245420 (2009).
[CrossRef]

A. K. Azad, H. T. Chen, S. R. Kasarla, A. J. Taylor, Z. Tian, X. C. Lu, W. Zhang, H. Lu, A. C. Gossard, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95, 011105 (2009).
[CrossRef]

2008

W. Zhang, “Resonant terahertz transmission in plasmonic arrays of subwavelength holes,” Eur. Phys. J. Appl. Phys. 43, 1–18 (2008).
[CrossRef]

M. Tong, A. S. Kirakosyan, T. V. Shahbazyan, and Z. V. Vardeny, “Ultrafast response of surface electromagnetic waves in an aluminum film perforated with subwavelength hole arrays,” Phys. Rev. Lett. 100, 056808 (2008).
[CrossRef] [PubMed]

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted thz transmission through a slit aperture,” Phys. Rev. Lett. 100, 123901 (2008).
[CrossRef] [PubMed]

2007

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[CrossRef]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

2006

M. Pelton, M. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, “Ultrafast resonant optical scattering from single gold nanorods: Large nonlinearities and plasmon saturation,” Phys. Rev. B 73155419 (2006).
[CrossRef]

2004

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

2003

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef] [PubMed]

R. Muller, V. Malyarchuk, and C. Lienau, “Three-dimensional theory on light-induced near-field dynamics in a metal film with a periodic array of nanoholes,” Phys. Rev. B 68, 205415 (2003).
[CrossRef]

2002

A. Dogariu, A. Nahata, R. A. Linke, L. J. Wang, and R. Trebino, “Optical pulse propagation through metallic nano-apertures,” Appl. Phys. B 74, S69–S73 (2002).
[CrossRef]

Y. Takata, H. Haneda, T. Mitsuhashi, and Y. Wada, “Evaluation of thermal diffusivity for thin gold films using femtosecond laser excitation technique,” Appl. Surf. Sci. 189, 227–233 (2002).
[CrossRef]

1999

R. D. Averitt, S. L. Westcott, and N. J. Halas, “Ultrafast optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1814–1823 (1999).
[CrossRef]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[CrossRef]

1998

S. Linden, H. Giessen, and J. Kuhl, “Xfrog - a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B 206, 119–124 (1998).
[CrossRef]

1996

K. W. DeLong, D. N. Fittinghoff, and R. Trebino, “Practical issues in ultrashort-laser-pulse measurement using frequency-resolved optical gating,” IEEE J. Quantum Electron . 32, 1253–1264 (1996).
[CrossRef]

1994

X. Y. Wang, D. M. Riffe, Y. S. Lee, and M. C. Downer, “Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission,” Phys. Rev. B 50, 8016 (1994).
[CrossRef]

1974

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultra-short laser pulses,” Sov. Phys. JETP 39, 375–377 (1974).

Ahn, Y. H.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef] [PubMed]

Anisimov, S. I.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultra-short laser pulses,” Sov. Phys. JETP 39, 375–377 (1974).

Ashcroft, N. W.

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, 1976).

Averitt, R. D.

Azad, A. K.

A. K. Azad, H. T. Chen, S. R. Kasarla, A. J. Taylor, Z. Tian, X. C. Lu, W. Zhang, H. Lu, A. C. Gossard, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95, 011105 (2009).
[CrossRef]

Bonn, M.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted thz transmission through a slit aperture,” Phys. Rev. Lett. 100, 123901 (2008).
[CrossRef] [PubMed]

Caspers, J. N.

J. N. Caspers, N. Rotenberg, and H. M. van Driel, “Ultrafast silicon-based active plasmonics at telecom wavelengths,” Opt. Express 18, 19761–19769 (2010).
[CrossRef] [PubMed]

N. Rotenberg, J. N. Caspers, and H. M. van Driel, “Tunable ultrafast control of plasmonic coupling to gold films,” Phys. Rev. B 80, 245420 (2009).
[CrossRef]

Chen, H. T.

A. K. Azad, H. T. Chen, S. R. Kasarla, A. J. Taylor, Z. Tian, X. C. Lu, W. Zhang, H. Lu, A. C. Gossard, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95, 011105 (2009).
[CrossRef]

Chulkov, E. V.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[CrossRef]

DeLong, K. W.

K. W. DeLong, D. N. Fittinghoff, and R. Trebino, “Practical issues in ultrashort-laser-pulse measurement using frequency-resolved optical gating,” IEEE J. Quantum Electron . 32, 1253–1264 (1996).
[CrossRef]

Dogariu, A.

A. Dogariu, A. Nahata, R. A. Linke, L. J. Wang, and R. Trebino, “Optical pulse propagation through metallic nano-apertures,” Appl. Phys. B 74, S69–S73 (2002).
[CrossRef]

Downer, M. C.

X. Y. Wang, D. M. Riffe, Y. S. Lee, and M. C. Downer, “Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission,” Phys. Rev. B 50, 8016 (1994).
[CrossRef]

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729 (2010).
[CrossRef]

Echenique, P. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[CrossRef]

El-Sayed, M. A.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[CrossRef]

Fittinghoff, D. N.

K. W. DeLong, D. N. Fittinghoff, and R. Trebino, “Practical issues in ultrashort-laser-pulse measurement using frequency-resolved optical gating,” IEEE J. Quantum Electron . 32, 1253–1264 (1996).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729 (2010).
[CrossRef]

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted thz transmission through a slit aperture,” Phys. Rev. Lett. 100, 123901 (2008).
[CrossRef] [PubMed]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

Giessen, H.

S. Linden, H. Giessen, and J. Kuhl, “Xfrog - a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B 206, 119–124 (1998).
[CrossRef]

Gossard, A. C.

A. K. Azad, H. T. Chen, S. R. Kasarla, A. J. Taylor, Z. Tian, X. C. Lu, W. Zhang, H. Lu, A. C. Gossard, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95, 011105 (2009).
[CrossRef]

Guyot-Sionnest, P.

M. Pelton, M. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, “Ultrafast resonant optical scattering from single gold nanorods: Large nonlinearities and plasmon saturation,” Phys. Rev. B 73155419 (2006).
[CrossRef]

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

R. D. Averitt, S. L. Westcott, and N. J. Halas, “Ultrafast optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1814–1823 (1999).
[CrossRef]

Haneda, H.

Y. Takata, H. Haneda, T. Mitsuhashi, and Y. Wada, “Evaluation of thermal diffusivity for thin gold films using femtosecond laser excitation technique,” Appl. Surf. Sci. 189, 227–233 (2002).
[CrossRef]

Hendry, E.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted thz transmission through a slit aperture,” Phys. Rev. Lett. 100, 123901 (2008).
[CrossRef] [PubMed]

Hibbins, A. P.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted thz transmission through a slit aperture,” Phys. Rev. Lett. 100, 123901 (2008).
[CrossRef] [PubMed]

Hohng, S. C.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef] [PubMed]

Hou, B.

Kapeliovich, B. L.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultra-short laser pulses,” Sov. Phys. JETP 39, 375–377 (1974).

Kasarla, S. R.

A. K. Azad, H. T. Chen, S. R. Kasarla, A. J. Taylor, Z. Tian, X. C. Lu, W. Zhang, H. Lu, A. C. Gossard, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95, 011105 (2009).
[CrossRef]

Kim, D. S.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef] [PubMed]

Kim, J.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef] [PubMed]

Kirakosyan, A. S.

M. Tong, A. S. Kirakosyan, T. V. Shahbazyan, and Z. V. Vardeny, “Ultrafast response of surface electromagnetic waves in an aluminum film perforated with subwavelength hole arrays,” Phys. Rev. Lett. 100, 056808 (2008).
[CrossRef] [PubMed]

Kuhl, J.

S. Linden, H. Giessen, and J. Kuhl, “Xfrog - a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B 206, 119–124 (1998).
[CrossRef]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729 (2010).
[CrossRef]

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

Lee, Y. S.

X. Y. Wang, D. M. Riffe, Y. S. Lee, and M. C. Downer, “Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission,” Phys. Rev. B 50, 8016 (1994).
[CrossRef]

Liao, X. Q.

Lienau, C.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef] [PubMed]

R. Muller, V. Malyarchuk, and C. Lienau, “Three-dimensional theory on light-induced near-field dynamics in a metal film with a periodic array of nanoholes,” Phys. Rev. B 68, 205415 (2003).
[CrossRef]

Linden, S.

S. Linden, H. Giessen, and J. Kuhl, “Xfrog - a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B 206, 119–124 (1998).
[CrossRef]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[CrossRef]

Linke, R. A.

A. Dogariu, A. Nahata, R. A. Linke, L. J. Wang, and R. Trebino, “Optical pulse propagation through metallic nano-apertures,” Appl. Phys. B 74, S69–S73 (2002).
[CrossRef]

Liu, M.

M. Pelton, M. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, “Ultrafast resonant optical scattering from single gold nanorods: Large nonlinearities and plasmon saturation,” Phys. Rev. B 73155419 (2006).
[CrossRef]

Lockyear, M. J.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted thz transmission through a slit aperture,” Phys. Rev. Lett. 100, 123901 (2008).
[CrossRef] [PubMed]

Lu, H.

A. K. Azad, H. T. Chen, S. R. Kasarla, A. J. Taylor, Z. Tian, X. C. Lu, W. Zhang, H. Lu, A. C. Gossard, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95, 011105 (2009).
[CrossRef]

Lu, X. C.

A. K. Azad, H. T. Chen, S. R. Kasarla, A. J. Taylor, Z. Tian, X. C. Lu, W. Zhang, H. Lu, A. C. Gossard, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95, 011105 (2009).
[CrossRef]

MacDonald, K. F.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009).
[CrossRef]

Malyarchuk, V.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef] [PubMed]

R. Muller, V. Malyarchuk, and C. Lienau, “Three-dimensional theory on light-induced near-field dynamics in a metal film with a periodic array of nanoholes,” Phys. Rev. B 68, 205415 (2003).
[CrossRef]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729 (2010).
[CrossRef]

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted thz transmission through a slit aperture,” Phys. Rev. Lett. 100, 123901 (2008).
[CrossRef] [PubMed]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

Mermin, N. D.

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, 1976).

Mitsuhashi, T.

Y. Takata, H. Haneda, T. Mitsuhashi, and Y. Wada, “Evaluation of thermal diffusivity for thin gold films using femtosecond laser excitation technique,” Appl. Surf. Sci. 189, 227–233 (2002).
[CrossRef]

Muller, R.

R. Muller, V. Malyarchuk, and C. Lienau, “Three-dimensional theory on light-induced near-field dynamics in a metal film with a periodic array of nanoholes,” Phys. Rev. B 68, 205415 (2003).
[CrossRef]

Nahata, A.

A. Dogariu, A. Nahata, R. A. Linke, L. J. Wang, and R. Trebino, “Optical pulse propagation through metallic nano-apertures,” Appl. Phys. B 74, S69–S73 (2002).
[CrossRef]

O’Hara, J. F.

A. K. Azad, H. T. Chen, S. R. Kasarla, A. J. Taylor, Z. Tian, X. C. Lu, W. Zhang, H. Lu, A. C. Gossard, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95, 011105 (2009).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Park, J. W.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef] [PubMed]

Park, Q. H.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef] [PubMed]

Park, S.

M. Pelton, M. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, “Ultrafast resonant optical scattering from single gold nanorods: Large nonlinearities and plasmon saturation,” Phys. Rev. B 73155419 (2006).
[CrossRef]

Pelton, M.

M. Pelton, M. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, “Ultrafast resonant optical scattering from single gold nanorods: Large nonlinearities and plasmon saturation,” Phys. Rev. B 73155419 (2006).
[CrossRef]

Pendry, J. B.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

Perelman, T. L.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultra-short laser pulses,” Sov. Phys. JETP 39, 375–377 (1974).

Pitarke, J. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[CrossRef]

Poon, J. K. S.

Riffe, D. M.

X. Y. Wang, D. M. Riffe, Y. S. Lee, and M. C. Downer, “Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission,” Phys. Rev. B 50, 8016 (1994).
[CrossRef]

Rivas, J. G.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted thz transmission through a slit aperture,” Phys. Rev. Lett. 100, 123901 (2008).
[CrossRef] [PubMed]

Rotenberg, N.

J. N. Caspers, N. Rotenberg, and H. M. van Driel, “Ultrafast silicon-based active plasmonics at telecom wavelengths,” Opt. Express 18, 19761–19769 (2010).
[CrossRef] [PubMed]

N. Rotenberg, J. N. Caspers, and H. M. van Driel, “Tunable ultrafast control of plasmonic coupling to gold films,” Phys. Rev. B 80, 245420 (2009).
[CrossRef]

Samson, Z. L.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009).
[CrossRef]

Scherer, N. F.

M. Pelton, M. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, “Ultrafast resonant optical scattering from single gold nanorods: Large nonlinearities and plasmon saturation,” Phys. Rev. B 73155419 (2006).
[CrossRef]

Shahbazyan, T. V.

M. Tong, A. S. Kirakosyan, T. V. Shahbazyan, and Z. V. Vardeny, “Ultrafast response of surface electromagnetic waves in an aluminum film perforated with subwavelength hole arrays,” Phys. Rev. Lett. 100, 056808 (2008).
[CrossRef] [PubMed]

Silkin, V. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[CrossRef]

Stockman, M. I.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009).
[CrossRef]

Takata, Y.

Y. Takata, H. Haneda, T. Mitsuhashi, and Y. Wada, “Evaluation of thermal diffusivity for thin gold films using femtosecond laser excitation technique,” Appl. Surf. Sci. 189, 227–233 (2002).
[CrossRef]

Taylor, A. J.

A. K. Azad, H. T. Chen, S. R. Kasarla, A. J. Taylor, Z. Tian, X. C. Lu, W. Zhang, H. Lu, A. C. Gossard, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95, 011105 (2009).
[CrossRef]

Tian, Z.

A. K. Azad, H. T. Chen, S. R. Kasarla, A. J. Taylor, Z. Tian, X. C. Lu, W. Zhang, H. Lu, A. C. Gossard, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95, 011105 (2009).
[CrossRef]

Tong, M.

M. Tong, A. S. Kirakosyan, T. V. Shahbazyan, and Z. V. Vardeny, “Ultrafast response of surface electromagnetic waves in an aluminum film perforated with subwavelength hole arrays,” Phys. Rev. Lett. 100, 056808 (2008).
[CrossRef] [PubMed]

Trebino, R.

A. Dogariu, A. Nahata, R. A. Linke, L. J. Wang, and R. Trebino, “Optical pulse propagation through metallic nano-apertures,” Appl. Phys. B 74, S69–S73 (2002).
[CrossRef]

K. W. DeLong, D. N. Fittinghoff, and R. Trebino, “Practical issues in ultrashort-laser-pulse measurement using frequency-resolved optical gating,” IEEE J. Quantum Electron . 32, 1253–1264 (1996).
[CrossRef]

van Driel, H. M.

J. N. Caspers, N. Rotenberg, and H. M. van Driel, “Ultrafast silicon-based active plasmonics at telecom wavelengths,” Opt. Express 18, 19761–19769 (2010).
[CrossRef] [PubMed]

N. Rotenberg, J. N. Caspers, and H. M. van Driel, “Tunable ultrafast control of plasmonic coupling to gold films,” Phys. Rev. B 80, 245420 (2009).
[CrossRef]

Vardeny, Z. V.

M. Tong, A. S. Kirakosyan, T. V. Shahbazyan, and Z. V. Vardeny, “Ultrafast response of surface electromagnetic waves in an aluminum film perforated with subwavelength hole arrays,” Phys. Rev. Lett. 100, 056808 (2008).
[CrossRef] [PubMed]

Wada, Y.

Y. Takata, H. Haneda, T. Mitsuhashi, and Y. Wada, “Evaluation of thermal diffusivity for thin gold films using femtosecond laser excitation technique,” Appl. Surf. Sci. 189, 227–233 (2002).
[CrossRef]

Wang, L. J.

A. Dogariu, A. Nahata, R. A. Linke, L. J. Wang, and R. Trebino, “Optical pulse propagation through metallic nano-apertures,” Appl. Phys. B 74, S69–S73 (2002).
[CrossRef]

Wang, X. Y.

X. Y. Wang, D. M. Riffe, Y. S. Lee, and M. C. Downer, “Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission,” Phys. Rev. B 50, 8016 (1994).
[CrossRef]

Westcott, S. L.

Yee, K. J.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef] [PubMed]

Yoon, Y. C.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef] [PubMed]

Zhang, W.

A. K. Azad, H. T. Chen, S. R. Kasarla, A. J. Taylor, Z. Tian, X. C. Lu, W. Zhang, H. Lu, A. C. Gossard, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95, 011105 (2009).
[CrossRef]

W. Zhang, “Resonant terahertz transmission in plasmonic arrays of subwavelength holes,” Eur. Phys. J. Appl. Phys. 43, 1–18 (2008).
[CrossRef]

Zheludev, N. I.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009).
[CrossRef]

Appl. Phys. B

A. Dogariu, A. Nahata, R. A. Linke, L. J. Wang, and R. Trebino, “Optical pulse propagation through metallic nano-apertures,” Appl. Phys. B 74, S69–S73 (2002).
[CrossRef]

Appl. Phys. Lett.

A. K. Azad, H. T. Chen, S. R. Kasarla, A. J. Taylor, Z. Tian, X. C. Lu, W. Zhang, H. Lu, A. C. Gossard, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95, 011105 (2009).
[CrossRef]

Appl. Surf. Sci.

Y. Takata, H. Haneda, T. Mitsuhashi, and Y. Wada, “Evaluation of thermal diffusivity for thin gold films using femtosecond laser excitation technique,” Appl. Surf. Sci. 189, 227–233 (2002).
[CrossRef]

Eur. Phys. J. Appl. Phys.

W. Zhang, “Resonant terahertz transmission in plasmonic arrays of subwavelength holes,” Eur. Phys. J. Appl. Phys. 43, 1–18 (2008).
[CrossRef]

IEEE J. Quantum Electron

K. W. DeLong, D. N. Fittinghoff, and R. Trebino, “Practical issues in ultrashort-laser-pulse measurement using frequency-resolved optical gating,” IEEE J. Quantum Electron . 32, 1253–1264 (1996).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[CrossRef]

Nat. Photonics

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009).
[CrossRef]

Opt. Express

Phys. Rev. B

N. Rotenberg, J. N. Caspers, and H. M. van Driel, “Tunable ultrafast control of plasmonic coupling to gold films,” Phys. Rev. B 80, 245420 (2009).
[CrossRef]

R. Muller, V. Malyarchuk, and C. Lienau, “Three-dimensional theory on light-induced near-field dynamics in a metal film with a periodic array of nanoholes,” Phys. Rev. B 68, 205415 (2003).
[CrossRef]

M. Pelton, M. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, “Ultrafast resonant optical scattering from single gold nanorods: Large nonlinearities and plasmon saturation,” Phys. Rev. B 73155419 (2006).
[CrossRef]

X. Y. Wang, D. M. Riffe, Y. S. Lee, and M. C. Downer, “Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission,” Phys. Rev. B 50, 8016 (1994).
[CrossRef]

Phys. Rev. Lett.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef] [PubMed]

M. Tong, A. S. Kirakosyan, T. V. Shahbazyan, and Z. V. Vardeny, “Ultrafast response of surface electromagnetic waves in an aluminum film perforated with subwavelength hole arrays,” Phys. Rev. Lett. 100, 056808 (2008).
[CrossRef] [PubMed]

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted thz transmission through a slit aperture,” Phys. Rev. Lett. 100, 123901 (2008).
[CrossRef] [PubMed]

Phys. Status Solidi B

S. Linden, H. Giessen, and J. Kuhl, “Xfrog - a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B 206, 119–124 (1998).
[CrossRef]

Rep. Prog. Phys.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[CrossRef]

Rev. Mod. Phys.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729 (2010).
[CrossRef]

Science

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

Sov. Phys. JETP

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultra-short laser pulses,” Sov. Phys. JETP 39, 375–377 (1974).

Other

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, 1976).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) A schematic of the rectangular apertures. (b) The computed electric field and (c) magnetic field amplitudes in the apertures on resonance, where red indicates the highest field intensities. (d) A scanning electron micrograph of the aperture array and (e) the measured (left axis) and calculated (right axis) normalized transmission spectra of x- and y- polarized light.

Fig. 2
Fig. 2

A summary of the model used to compute the evolution of light and the properties of the metal. 1. The Helmholtz wave equation was solved at time t. The absorption of light modified the lattice and electron temperatures. 2. The modified temperatures altered the behavior of the electrons to 3. change the metal permittivity. The Helmholtz wave equation was then solved at the next time step, t + Δt, with the new value of metal permittivity assuming the envelope of the light adiabatically followed the changes in permittivity.

Fig. 3
Fig. 3

(a) –ΔIm{εb } and (b) ΔRe{εb } calculated at different temperatures for several wavelengths λ = 780 nm, λ = 850 nm, and λ = 750 nm (symbols) and the polynomial fitting for the data at λ = 780 nm (solid lines).

Fig. 4
Fig. 4

The calculated temporal evolution of (a) Te , Tl , and (b) εm for a 2.7 ps FWHM incident pulse with a fluence of 8 mJcm−2 on resonance at the spatial point indicated by the arrows in (e) and (f), which is the point of maximum temperature. The corresponding temporal evolution of (c) the transmission intensity and (d) the transmission phase at various fluences. The spatial distributions of the (e) electron and (f) lattice temperatures at 5 ps.

Fig. 5
Fig. 5

(a) The XFROG measurement setup. (b) An example of an XFROG trace at λ = 775 nm.

Fig. 6
Fig. 6

(Left column) The retrieved normalized electric field intensity, |E|2, and phase on resonance at λ = 800 nm, negatively detuned at λ = 775 nm, and positively detuned at λ = 860 nm from the resonance. (Right column) The numerically calculated normalized electric field intensity, |E|2, and phase on resonance, positively detuned, and negatively detuned from the resonance.

Fig. 7
Fig. 7

The percentage change in the FWHM of the retrieved electric field intensity, |E|2, for pump wavelengths centered on resonance at λ = 800 nm and detuned at λ = 775 nm and λ = 860 nm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

× ( 1 ɛ ( r , t ) × H ) k 0 2 H = 0 ,
E 0 ( t ) exp [ 2 ( ln 2 ) t 2 / τ p 2 + j φ ( t ) ] ,
C e T e t = [ K e T e ] g ( T e T l ) + 1 2 Re { j ω ɛ m E E * } . ,
C l T l t = g ( T e T l ) ,
ɛ m = ɛ b + ɛ f .
ɛ f ( T l , T e ) ɛ 0 = ω p 2 j ω γ ( T l , T e ) ω 2 .

Metrics