Abstract

Metamaterials have shown to support the intriguing phenomenon of asymmetric electromagnetic transmission in the opposite propagation directions, for both circular and linear polarizations. In the present article, we propose a criterion on the relationship among the elements of transmission matrix, which allows asymmetrical transmission for linearly polarized electromagnetic radiation only while the reciprocal transmission for circularly one. Asymmetric hybridized metamaterials are shown to satisfy this criterion. The influence from the rotation of the sample around the radiation propagation direction is discussed. A special structure design is proposed, and its characteristics are analyzed by using numerical simulation.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534 (2005).
    [CrossRef] [PubMed]
  2. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435 (2008).
    [CrossRef] [PubMed]
  3. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780 (2006).
    [CrossRef] [PubMed]
  4. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77 (2001).
    [CrossRef] [PubMed]
  5. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
    [CrossRef] [PubMed]
  6. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett. 94, 131901 (2009).
    [CrossRef]
  7. S. V. Zhukovsky, A. V. Novitsky, and V. M. Galynsky, “Elliptical dichroism: operating principle of planar chiral metamaterials,” Opt. Lett. 34, 1988 (2009).
  8. V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996 (2007).
  9. A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8, 2940 (2008).
    [CrossRef] [PubMed]
  10. A. Drezet, C. Genet, J. Y. Laluet, and T. W. Ebbesen, “Optical chirality without optical activity: How surface plasmons give a twist to light,” Opt. Express 16, 12559 (2008).
    [CrossRef] [PubMed]
  11. R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80, 153104 (2009).
    [CrossRef]
  12. C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
    [CrossRef] [PubMed]
  13. J. D. Jackson, Classical Electrodynamics , 3rd ed. (Wiley, 1999).
  14. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13, 024006 (2011).
    [CrossRef]
  15. M. Born, “Elektronentheorie des natrlichen optischen Drehungsmgens isotroper und anisotroper Flssigkeiten,” Ann. Phys. (Leipzig) 55, 177–240 (1918).
  16. W. Kuhn and Z. PhysChem. (Leipzig) B 20, 325 (1933).
  17. Y. P. Svirko and N. I. Zheludev, Polarization of Light in Nonlinear Optics (Wiley, 1998).
  18. R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67, 717 (2004).
    [CrossRef]
  19. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419 (2003).
    [CrossRef] [PubMed]
  20. M. Kang, Y. Li, J. Chen, J. Chen, Q. Bai, H. T. Wang, and P. H. Wu, “Slow light in a simple metamaterial structure constructed by cut and continuous metal strips,” Appl. Phys. B 100, 699 (2010).
    [CrossRef]
  21. M. Kang, N. H. Shen, J. Chen, J. Chen, Y. X. Fan, J. Ding, H. T. Wang, and P. H. Wu, “A new planar left-handed metamaterial composed of metal-dielectric-metal structure,” Opt. Express 16, 8617 (2008).
    [CrossRef] [PubMed]
  22. C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82, 053811(2010).
    [CrossRef]
  23. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91 (2009).
    [CrossRef]
  24. D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684 (2008).
    [CrossRef]

2011

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13, 024006 (2011).
[CrossRef]

2010

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[CrossRef] [PubMed]

M. Kang, Y. Li, J. Chen, J. Chen, Q. Bai, H. T. Wang, and P. H. Wu, “Slow light in a simple metamaterial structure constructed by cut and continuous metal strips,” Appl. Phys. B 100, 699 (2010).
[CrossRef]

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82, 053811(2010).
[CrossRef]

2009

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91 (2009).
[CrossRef]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80, 153104 (2009).
[CrossRef]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett. 94, 131901 (2009).
[CrossRef]

2008

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8, 2940 (2008).
[CrossRef] [PubMed]

A. Drezet, C. Genet, J. Y. Laluet, and T. W. Ebbesen, “Optical chirality without optical activity: How surface plasmons give a twist to light,” Opt. Express 16, 12559 (2008).
[CrossRef] [PubMed]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435 (2008).
[CrossRef] [PubMed]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684 (2008).
[CrossRef]

M. Kang, N. H. Shen, J. Chen, J. Chen, Y. X. Fan, J. Ding, H. T. Wang, and P. H. Wu, “A new planar left-handed metamaterial composed of metal-dielectric-metal structure,” Opt. Express 16, 8617 (2008).
[CrossRef] [PubMed]

2006

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780 (2006).
[CrossRef] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[CrossRef] [PubMed]

2005

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534 (2005).
[CrossRef] [PubMed]

2004

R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67, 717 (2004).
[CrossRef]

2003

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419 (2003).
[CrossRef] [PubMed]

2001

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77 (2001).
[CrossRef] [PubMed]

1996

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996 (2007).

1988

S. V. Zhukovsky, A. V. Novitsky, and V. M. Galynsky, “Elliptical dichroism: operating principle of planar chiral metamaterials,” Opt. Lett. 34, 1988 (2009).

1933

W. Kuhn and Z. PhysChem. (Leipzig) B 20, 325 (1933).

1918

M. Born, “Elektronentheorie des natrlichen optischen Drehungsmgens isotroper und anisotroper Flssigkeiten,” Ann. Phys. (Leipzig) 55, 177–240 (1918).

Aussenegg, F. R.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684 (2008).
[CrossRef]

Azad, A. K.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80, 153104 (2009).
[CrossRef]

Bai, Q.

M. Kang, Y. Li, J. Chen, J. Chen, Q. Bai, H. T. Wang, and P. H. Wu, “Slow light in a simple metamaterial structure constructed by cut and continuous metal strips,” Appl. Phys. B 100, 699 (2010).
[CrossRef]

Born, M.

M. Born, “Elektronentheorie des natrlichen optischen Drehungsmgens isotroper und anisotroper Flssigkeiten,” Ann. Phys. (Leipzig) 55, 177–240 (1918).

Chen, J.

M. Kang, Y. Li, J. Chen, J. Chen, Q. Bai, H. T. Wang, and P. H. Wu, “Slow light in a simple metamaterial structure constructed by cut and continuous metal strips,” Appl. Phys. B 100, 699 (2010).
[CrossRef]

M. Kang, Y. Li, J. Chen, J. Chen, Q. Bai, H. T. Wang, and P. H. Wu, “Slow light in a simple metamaterial structure constructed by cut and continuous metal strips,” Appl. Phys. B 100, 699 (2010).
[CrossRef]

M. Kang, N. H. Shen, J. Chen, J. Chen, Y. X. Fan, J. Ding, H. T. Wang, and P. H. Wu, “A new planar left-handed metamaterial composed of metal-dielectric-metal structure,” Opt. Express 16, 8617 (2008).
[CrossRef] [PubMed]

M. Kang, N. H. Shen, J. Chen, J. Chen, Y. X. Fan, J. Ding, H. T. Wang, and P. H. Wu, “A new planar left-handed metamaterial composed of metal-dielectric-metal structure,” Opt. Express 16, 8617 (2008).
[CrossRef] [PubMed]

Chen, Y.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8, 2940 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[CrossRef] [PubMed]

Cheville, R. A.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80, 153104 (2009).
[CrossRef]

Ding, J.

Ditlbacher, H.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684 (2008).
[CrossRef]

Drezet, A.

Ebbesen, T. W.

Fan, S.

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91 (2009).
[CrossRef]

Fan, Y. X.

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534 (2005).
[CrossRef] [PubMed]

Fedotov, V. A.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13, 024006 (2011).
[CrossRef]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett. 94, 131901 (2009).
[CrossRef]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8, 2940 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[CrossRef] [PubMed]

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996 (2007).

Galler, N.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684 (2008).
[CrossRef]

Galynsky, V. M.

S. V. Zhukovsky, A. V. Novitsky, and V. M. Galynsky, “Elliptical dichroism: operating principle of planar chiral metamaterials,” Opt. Lett. 34, 1988 (2009).

Genet, C.

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419 (2003).
[CrossRef] [PubMed]

Helgert, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[CrossRef] [PubMed]

Hohenau, A.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684 (2008).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics , 3rd ed. (Wiley, 1999).

Kang, M.

M. Kang, Y. Li, J. Chen, J. Chen, Q. Bai, H. T. Wang, and P. H. Wu, “Slow light in a simple metamaterial structure constructed by cut and continuous metal strips,” Appl. Phys. B 100, 699 (2010).
[CrossRef]

M. Kang, N. H. Shen, J. Chen, J. Chen, Y. X. Fan, J. Ding, H. T. Wang, and P. H. Wu, “A new planar left-handed metamaterial composed of metal-dielectric-metal structure,” Opt. Express 16, 8617 (2008).
[CrossRef] [PubMed]

Khardikov, V. V.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8, 2940 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996 (2007).

Kley, E. B.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[CrossRef] [PubMed]

Koller, D. M.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684 (2008).
[CrossRef]

Krenn, J. R.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684 (2008).
[CrossRef]

Kuhn, W.

W. Kuhn and Z. PhysChem. (Leipzig) B 20, 325 (1933).

Laluet, J. Y.

Lederer, F.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[CrossRef] [PubMed]

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82, 053811(2010).
[CrossRef]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80, 153104 (2009).
[CrossRef]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534 (2005).
[CrossRef] [PubMed]

Leitner, A.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684 (2008).
[CrossRef]

Li, Y.

M. Kang, Y. Li, J. Chen, J. Chen, Q. Bai, H. T. Wang, and P. H. Wu, “Slow light in a simple metamaterial structure constructed by cut and continuous metal strips,” Appl. Phys. B 100, 699 (2010).
[CrossRef]

List, E. J. W.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684 (2008).
[CrossRef]

Liu, Z.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435 (2008).
[CrossRef] [PubMed]

Menzel, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[CrossRef] [PubMed]

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82, 053811(2010).
[CrossRef]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80, 153104 (2009).
[CrossRef]

Mladyonov, P. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[CrossRef] [PubMed]

Nordlander, P.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419 (2003).
[CrossRef] [PubMed]

Novitsky, A. V.

S. V. Zhukovsky, A. V. Novitsky, and V. M. Galynsky, “Elliptical dichroism: operating principle of planar chiral metamaterials,” Opt. Lett. 34, 1988 (2009).

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780 (2006).
[CrossRef] [PubMed]

Pertsch, T.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[CrossRef] [PubMed]

Phys, Z.

W. Kuhn and Z. PhysChem. (Leipzig) B 20, 325 (1933).

Plum, E.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13, 024006 (2011).
[CrossRef]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80, 153104 (2009).
[CrossRef]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett. 94, 131901 (2009).
[CrossRef]

Potton, R. J.

R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67, 717 (2004).
[CrossRef]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419 (2003).
[CrossRef] [PubMed]

Prosvirnin, S. L.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8, 2940 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[CrossRef] [PubMed]

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996 (2007).

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419 (2003).
[CrossRef] [PubMed]

Reil, F.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684 (2008).
[CrossRef]

Rockstuhl, C.

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82, 053811(2010).
[CrossRef]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[CrossRef] [PubMed]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80, 153104 (2009).
[CrossRef]

Rogacheva, A. V.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[CrossRef] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77 (2001).
[CrossRef] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780 (2006).
[CrossRef] [PubMed]

Schwanecke, A. S.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8, 2940 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996 (2007).

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77 (2001).
[CrossRef] [PubMed]

Shen, N. H.

Singh, R.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80, 153104 (2009).
[CrossRef]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780 (2006).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77 (2001).
[CrossRef] [PubMed]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534 (2005).
[CrossRef] [PubMed]

Svirko, Y. P.

Y. P. Svirko and N. I. Zheludev, Polarization of Light in Nonlinear Optics (Wiley, 1998).

Tünnermann, A.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[CrossRef] [PubMed]

Wang, H. T.

M. Kang, Y. Li, J. Chen, J. Chen, Q. Bai, H. T. Wang, and P. H. Wu, “Slow light in a simple metamaterial structure constructed by cut and continuous metal strips,” Appl. Phys. B 100, 699 (2010).
[CrossRef]

M. Kang, N. H. Shen, J. Chen, J. Chen, Y. X. Fan, J. Ding, H. T. Wang, and P. H. Wu, “A new planar left-handed metamaterial composed of metal-dielectric-metal structure,” Opt. Express 16, 8617 (2008).
[CrossRef] [PubMed]

Wu, P. H.

M. Kang, Y. Li, J. Chen, J. Chen, Q. Bai, H. T. Wang, and P. H. Wu, “Slow light in a simple metamaterial structure constructed by cut and continuous metal strips,” Appl. Phys. B 100, 699 (2010).
[CrossRef]

M. Kang, N. H. Shen, J. Chen, J. Chen, Y. X. Fan, J. Ding, H. T. Wang, and P. H. Wu, “A new planar left-handed metamaterial composed of metal-dielectric-metal structure,” Opt. Express 16, 8617 (2008).
[CrossRef] [PubMed]

Yu, Z.

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91 (2009).
[CrossRef]

Zhang, W.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80, 153104 (2009).
[CrossRef]

Zhang, X.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435 (2008).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534 (2005).
[CrossRef] [PubMed]

Zheludev, N. I.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13, 024006 (2011).
[CrossRef]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80, 153104 (2009).
[CrossRef]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett. 94, 131901 (2009).
[CrossRef]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8, 2940 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[CrossRef] [PubMed]

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996 (2007).

Y. P. Svirko and N. I. Zheludev, Polarization of Light in Nonlinear Optics (Wiley, 1998).

Zhukovsky, S. V.

S. V. Zhukovsky, A. V. Novitsky, and V. M. Galynsky, “Elliptical dichroism: operating principle of planar chiral metamaterials,” Opt. Lett. 34, 1988 (2009).

Ann. Phys. (Leipzig)

M. Born, “Elektronentheorie des natrlichen optischen Drehungsmgens isotroper und anisotroper Flssigkeiten,” Ann. Phys. (Leipzig) 55, 177–240 (1918).

Appl. Phys. B

M. Kang, Y. Li, J. Chen, J. Chen, Q. Bai, H. T. Wang, and P. H. Wu, “Slow light in a simple metamaterial structure constructed by cut and continuous metal strips,” Appl. Phys. B 100, 699 (2010).
[CrossRef]

Appl. Phys. Lett.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett. 94, 131901 (2009).
[CrossRef]

Chem. (Leipzig) B

W. Kuhn and Z. PhysChem. (Leipzig) B 20, 325 (1933).

J. Opt.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13, 024006 (2011).
[CrossRef]

Nano Lett.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996 (2007).

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8, 2940 (2008).
[CrossRef] [PubMed]

Nat. Mater.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435 (2008).
[CrossRef] [PubMed]

Nat. Photonics

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91 (2009).
[CrossRef]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

S. V. Zhukovsky, A. V. Novitsky, and V. M. Galynsky, “Elliptical dichroism: operating principle of planar chiral metamaterials,” Opt. Lett. 34, 1988 (2009).

Phys. Rev. A

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82, 053811(2010).
[CrossRef]

Phys. Rev. B

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80, 153104 (2009).
[CrossRef]

Phys. Rev. Lett.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[CrossRef] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[CrossRef] [PubMed]

Rep. Prog. Phys.

R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67, 717 (2004).
[CrossRef]

Science

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419 (2003).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534 (2005).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780 (2006).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77 (2001).
[CrossRef] [PubMed]

Other

J. D. Jackson, Classical Electrodynamics , 3rd ed. (Wiley, 1999).

Y. P. Svirko and N. I. Zheludev, Polarization of Light in Nonlinear Optics (Wiley, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Geometry of the unit cell of the hybridized metamaterial we designed. (a) top layer with a half-sauwastika that can have a lateral displacement g, (b) bottom layer with a half-gammadion, (c) profile view, and (d) the mutual coupling diagram in the whole structure, A and B indicate the top and bottom layers, the thick red and blue arrows (other two thick arrows) stand for the induced orthogonal dipole oscillators in the top (bottom) copper pattern, and the dashed lines represent the coupling processes among induced dipole oscillators.

Fig. 2
Fig. 2

Amplitude of the transmission matrix elements for single planar metamaterial in the forward (+z) direction.

Fig. 3
Fig. 3

(a) Amplitude of the transmission matrix elements for the hybridized metamaterial we designed in the forward (+z) direction. (b) The degree of asymmetric transmission in the linear and circular polarization bases. Inset plots the variation of Δ lin ( x , y ) versus the orientation angle θ at 14.24 GHz.

Fig. 4
Fig. 4

Dispersion of the eigenstates of the metamaterials, including the amplitude A (red solid) and the phase δ (blue dot).

Fig. 5
Fig. 5

Influence of the geometric parameter g on the transmission performance of the hybridized metamaterial. (a) Δ lin ( x ) for linear polarization and (b) Δ circ ( l ) for circular polarization.

Fig. 6
Fig. 6

Simulation results for the oblique and non-collimated incidence cases. (a) The oblique incidence case with an incident angle of 5° and (b) The non-collimated incidence case with the finite-aperture EM radiation with a diameter of 35d.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

T lin + = [ t xx t xy t yx t yy ] ,
T circ + = [ t rr t rl t lr t ll ] ,
t rr = t xx + t yy + j ( t xy t yx ) 2 ,
t ll = t xx + t yy j ( t xy t yx ) 2 ,
t rl = t xx t yy j ( t xy + t yx ) 2 ,
t lr = t xx t yy + j ( t xy + t yx ) 2 .
Δ lin ( x ) = | t yx | 2 | t xy | 2 = Δ lin ( y ) = Δ lin .
Δ circ ( r ) = | t lr | 2 | t rl | 2 = Δ circ ( l ) = Δ circ .
| t yx | | t xy | t xx = t yy .
Δ lin ( x ) ( θ ) = ( | t yx | 2 | t xy | 2 ) cos 2 θ .
H [ d x A d y A d x B d y B ] = q m [ E x A E y A E x B E y B ] ,
H = [ ϖ x A 2 ω 2 j ω γ x A Ω x A y A 2 Ω x A x B 2 Ω x A y B 2 Ω x A y A 2 ϖ y A 2 ω 2 j ω γ y A Ω y A x B 2 Ω y A y B 2 Ω x A x B 2 Ω y A x B 2 ϖ x B 2 ω 2 j ω γ x B Ω x B y B 2 Ω x A y B 2 Ω y A y B 2 Ω x B y B 2 ϖ y B 2 ω 2 j ω γ y B ] ,
t xx d x B , t yx d y B ,
t xy d x B , t yy d y B .
t xx H 12 ( H 23 H 44 H 24 H 34 ) + H 13 ( H 24 2 H 22 H 44 ) + H 14 ( H 22 H 34 H 23 H 24 ) ,
t yy H 34 ( H 11 H 23 H 12 H 13 ) + H 24 ( H 13 2 H 11 H 33 ) + H 14 ( H 12 H 33 H 13 H 23 ) ,
t xy H 24 ( H 11 H 34 H 14 H 13 ) + H 23 ( H 14 2 H 11 H 44 ) + H 12 ( H 13 H 44 H 14 H 34 ) ,
t yx H 13 ( H 22 H 34 H 23 H 24 ) + H 14 ( H 23 2 H 22 H 33 ) + H 12 ( H 24 H 33 H 23 H 34 ) ,
ϖ x A 2 = ϖ x B 2 γ x A = γ x B ,
ϖ y A 2 = ϖ y B 2 γ y A = γ y B ,
Ω x A y A 2 = Ω x B y B 2 Ω x A y B 2 = Ω y A x B 2 .
ϖ x A 2 = ϖ y B 2 γ x A = γ y B ,
ϖ y A 2 = ϖ x B 2 γ y A = γ x B ,
Ω x A y A 2 = Ω x B y B 2 Ω x A x B 2 = Ω y A y B 2 .

Metrics