Abstract

We report a systematic and comparative study of the acceptance bandwidths of two cascaded quadratic nonlinear processes in periodically poled lithium niobate waveguides, namely cascaded second-harmonic generation and difference-frequency generation (cSHG/DFG) and cascaded sum-frequency generation and difference-frequency generation (cSFG/DFG). We first theoretically and experimentally study the acceptance bandwidths of both the individual second-harmonic generation (SHG) and sum-frequency generation (SFG) processes in the continuous wave (CW) and pulsed-pump regimes. Our results show that the SHG bandwidth is approximately half that of the SFG process in the CW regime, whereas the SHG acceptance bandwidth can approach the CW SFG bandwidth limit when pulsed-pump is used. As a consequence we conclude that the tuning bandwidths of both cascaded processes should be similar in the pulsed pump regime once the pump pulse bandwidths approach that of SFG (i.e. the cSHG/DFG bandwidth is not limited by the CW SHG bandwidth). We confirm that this is the case experimentally.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996).
    [CrossRef]
  2. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24(7), 2579–2592 (2006).
    [CrossRef]
  3. K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71(8), 1020–1022 (1997).
    [CrossRef]
  4. B. Chen and C.-Q. Xu, “Analysis of novel cascaded χ(2) (SFG+DFG) wavelength conversions in quasi-phase-matched waveguides,” IEEE J. Quantum Electron. 40(3), 256–261 (2004).
    [CrossRef]
  5. K. J. Lee, S. Liu, F. Parmigiani, M. Ibsen, P. Petropoulos, K. Gallo, and D. J. Richardson, “OTDM to WDM format conversion based on quadratic cascading in a periodically poled lithium niobate waveguide,” Opt. Express 18(10), 10282–10288 (2010).
    [CrossRef] [PubMed]
  6. J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in a PPLN waveguide,” Electron. Lett. 43(7), 409–410 (2007).
    [CrossRef]
  7. Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
    [CrossRef]
  8. K. J. Lee, F. Parmigiani, S. Liu, J. Kakande, P. Petropoulos, K. Gallo, and D. Richardson, “Phase sensitive amplification based on quadratic cascading in a periodically poled lithium niobate waveguide,” Opt. Express 17(22), 20393–20400 (2009).
    [CrossRef] [PubMed]
  9. S. Liu, K. J. Lee, K. Gallo, P. Petropoulos, and D. J. Richardson, “Elimination of the chirp of optical pulses through cascaded nonlinearities in periodically poled lithium niobate waveguides,” Opt. Lett. 35(22), 3724–3726 (2010).
    [CrossRef] [PubMed]
  10. S. Liu, K. J. Lee, F. Parmigiani, K. Gallo, P. Petropoulos, and D. J. Richardson, “Retiming of short pulses using quadratic cascading in a periodically poled lithium niobate waveguide,” IEEE Photon. Technol. Lett. 23(2), 94–96 (2011).
    [CrossRef]
  11. H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, “Wavelength-conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device,” Opt. Quantum Electron. 33(7/10), 953–961 (2001).
    [CrossRef]
  12. Y. Wang, J. Fonseca-Campos, C.-Q. Xu, S. Yang, E. A. Ponomarev, and X. Bao, “Picosecond-pulse wavelength conversion based on cascaded second-harmonic generation-difference frequency generation in a periodically poled lithium niobate waveguide,” Appl. Opt. 45(21), 5391–5403 (2006).
    [CrossRef] [PubMed]
  13. J. Wang, J. Sun, X. Zhang, and D. Huang, “All-optical tunable wavelength conversion with extinction ratio enhancement using periodically poled lithium niobate waveguides,” J. Lightwave Technol. 26(17), 3137–3148 (2008).
    [CrossRef]
  14. J. Sun, H. Li, Y. Cheng, and J. Li, “Tunable wavelength conversion of picosecond pulses based on cascaded sum and difference-frequency generation in quasi-phase-matched LiNbO3 waveguides,” Opt. Commun. 281(23), 5874–5883 (2008).
    [CrossRef]
  15. J. Wang, J. Sun, C. Luo, and Q. Sun, “Flexible all-optical wavelength conversions of 1.57-ps pulses exploiting cascaded sum- and difference frequency generation (cSFG/DFG) in a PPLN waveguide,” Appl. Phys. B 83(4), 543–548 (2006).
    [CrossRef]
  16. H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
    [CrossRef]
  17. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, 2003), Chap. 2.
  18. G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, “Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping,” J. Opt. Soc. Am. B 17(2), 304–318 (2000).
    [CrossRef]
  19. R. Eckardt and J. Reintjes, “Phase matching limitations of high efficiency second harmonic generation,” IEEE J. Quantum Electron. 20(10), 1178–1187 (1984).
    [CrossRef]

2011 (1)

S. Liu, K. J. Lee, F. Parmigiani, K. Gallo, P. Petropoulos, and D. J. Richardson, “Retiming of short pulses using quadratic cascading in a periodically poled lithium niobate waveguide,” IEEE Photon. Technol. Lett. 23(2), 94–96 (2011).
[CrossRef]

2010 (2)

2009 (1)

2008 (2)

J. Wang, J. Sun, X. Zhang, and D. Huang, “All-optical tunable wavelength conversion with extinction ratio enhancement using periodically poled lithium niobate waveguides,” J. Lightwave Technol. 26(17), 3137–3148 (2008).
[CrossRef]

J. Sun, H. Li, Y. Cheng, and J. Li, “Tunable wavelength conversion of picosecond pulses based on cascaded sum and difference-frequency generation in quasi-phase-matched LiNbO3 waveguides,” Opt. Commun. 281(23), 5874–5883 (2008).
[CrossRef]

2007 (3)

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
[CrossRef]

J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in a PPLN waveguide,” Electron. Lett. 43(7), 409–410 (2007).
[CrossRef]

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

2006 (3)

2004 (1)

B. Chen and C.-Q. Xu, “Analysis of novel cascaded χ(2) (SFG+DFG) wavelength conversions in quasi-phase-matched waveguides,” IEEE J. Quantum Electron. 40(3), 256–261 (2004).
[CrossRef]

2001 (1)

H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, “Wavelength-conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device,” Opt. Quantum Electron. 33(7/10), 953–961 (2001).
[CrossRef]

2000 (1)

1997 (1)

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71(8), 1020–1022 (1997).
[CrossRef]

1996 (1)

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996).
[CrossRef]

1984 (1)

R. Eckardt and J. Reintjes, “Phase matching limitations of high efficiency second harmonic generation,” IEEE J. Quantum Electron. 20(10), 1178–1187 (1984).
[CrossRef]

Arbore, M. A.

Assanto, G.

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71(8), 1020–1022 (1997).
[CrossRef]

Bao, X.

Chen, B.

B. Chen and C.-Q. Xu, “Analysis of novel cascaded χ(2) (SFG+DFG) wavelength conversions in quasi-phase-matched waveguides,” IEEE J. Quantum Electron. 40(3), 256–261 (2004).
[CrossRef]

Cheng, Y.

J. Sun, H. Li, Y. Cheng, and J. Li, “Tunable wavelength conversion of picosecond pulses based on cascaded sum and difference-frequency generation in quasi-phase-matched LiNbO3 waveguides,” Opt. Commun. 281(23), 5874–5883 (2008).
[CrossRef]

Eckardt, R.

R. Eckardt and J. Reintjes, “Phase matching limitations of high efficiency second harmonic generation,” IEEE J. Quantum Electron. 20(10), 1178–1187 (1984).
[CrossRef]

Fejer, M. M.

Fermann, M.

Fonseca-Campos, J.

Fujimura, M.

H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, “Wavelength-conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device,” Opt. Quantum Electron. 33(7/10), 953–961 (2001).
[CrossRef]

Furukawa, H.

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
[CrossRef]

Gaeta, A. L.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

Gallo, K.

Galvanauskas, A.

Giltrelli, M.

J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in a PPLN waveguide,” Electron. Lett. 43(7), 409–410 (2007).
[CrossRef]

Harter, D.

Huang, D.

Ibsen, M.

Imeshev, G.

Ishizuki, H.

H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, “Wavelength-conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device,” Opt. Quantum Electron. 33(7/10), 953–961 (2001).
[CrossRef]

Kakande, J.

Kumar, S.

Langrock, C.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24(7), 2579–2592 (2006).
[CrossRef]

Lee, K. J.

Li, H.

J. Sun, H. Li, Y. Cheng, and J. Li, “Tunable wavelength conversion of picosecond pulses based on cascaded sum and difference-frequency generation in quasi-phase-matched LiNbO3 waveguides,” Opt. Commun. 281(23), 5874–5883 (2008).
[CrossRef]

Li, J.

J. Sun, H. Li, Y. Cheng, and J. Li, “Tunable wavelength conversion of picosecond pulses based on cascaded sum and difference-frequency generation in quasi-phase-matched LiNbO3 waveguides,” Opt. Commun. 281(23), 5874–5883 (2008).
[CrossRef]

Liu, S.

Luo, C.

J. Wang, J. Sun, C. Luo, and Q. Sun, “Flexible all-optical wavelength conversions of 1.57-ps pulses exploiting cascaded sum- and difference frequency generation (cSFG/DFG) in a PPLN waveguide,” Appl. Phys. B 83(4), 543–548 (2006).
[CrossRef]

McGeehan, J. E.

J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in a PPLN waveguide,” Electron. Lett. 43(7), 409–410 (2007).
[CrossRef]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24(7), 2579–2592 (2006).
[CrossRef]

Miyazaki, T.

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
[CrossRef]

Nirmalathas, A.

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
[CrossRef]

Nishihara, H.

H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, “Wavelength-conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device,” Opt. Quantum Electron. 33(7/10), 953–961 (2001).
[CrossRef]

Parmigiani, F.

Petropoulos, P.

Ponomarev, E. A.

Reintjes, J.

R. Eckardt and J. Reintjes, “Phase matching limitations of high efficiency second harmonic generation,” IEEE J. Quantum Electron. 20(10), 1178–1187 (1984).
[CrossRef]

Richardson, D.

Richardson, D. J.

Roussev, R.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

Sharping, J. E.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

Shinada, S.

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
[CrossRef]

Stegeman, G. I.

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71(8), 1020–1022 (1997).
[CrossRef]

Suhara, T.

H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, “Wavelength-conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device,” Opt. Quantum Electron. 33(7/10), 953–961 (2001).
[CrossRef]

Sun, J.

J. Sun, H. Li, Y. Cheng, and J. Li, “Tunable wavelength conversion of picosecond pulses based on cascaded sum and difference-frequency generation in quasi-phase-matched LiNbO3 waveguides,” Opt. Commun. 281(23), 5874–5883 (2008).
[CrossRef]

J. Wang, J. Sun, X. Zhang, and D. Huang, “All-optical tunable wavelength conversion with extinction ratio enhancement using periodically poled lithium niobate waveguides,” J. Lightwave Technol. 26(17), 3137–3148 (2008).
[CrossRef]

J. Wang, J. Sun, C. Luo, and Q. Sun, “Flexible all-optical wavelength conversions of 1.57-ps pulses exploiting cascaded sum- and difference frequency generation (cSFG/DFG) in a PPLN waveguide,” Appl. Phys. B 83(4), 543–548 (2006).
[CrossRef]

Sun, Q.

J. Wang, J. Sun, C. Luo, and Q. Sun, “Flexible all-optical wavelength conversions of 1.57-ps pulses exploiting cascaded sum- and difference frequency generation (cSFG/DFG) in a PPLN waveguide,” Appl. Phys. B 83(4), 543–548 (2006).
[CrossRef]

Tsuboya, H.

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
[CrossRef]

Wada, N.

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
[CrossRef]

Wang, J.

J. Wang, J. Sun, X. Zhang, and D. Huang, “All-optical tunable wavelength conversion with extinction ratio enhancement using periodically poled lithium niobate waveguides,” J. Lightwave Technol. 26(17), 3137–3148 (2008).
[CrossRef]

J. Wang, J. Sun, C. Luo, and Q. Sun, “Flexible all-optical wavelength conversions of 1.57-ps pulses exploiting cascaded sum- and difference frequency generation (cSFG/DFG) in a PPLN waveguide,” Appl. Phys. B 83(4), 543–548 (2006).
[CrossRef]

Wang, Y.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

Y. Wang, J. Fonseca-Campos, C.-Q. Xu, S. Yang, E. A. Ponomarev, and X. Bao, “Picosecond-pulse wavelength conversion based on cascaded second-harmonic generation-difference frequency generation in a periodically poled lithium niobate waveguide,” Appl. Opt. 45(21), 5391–5403 (2006).
[CrossRef] [PubMed]

Willner, A. E.

J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in a PPLN waveguide,” Electron. Lett. 43(7), 409–410 (2007).
[CrossRef]

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24(7), 2579–2592 (2006).
[CrossRef]

Xu, C.-Q.

Yan, L.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

Yang, S.

Yoo, S. J. B.

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996).
[CrossRef]

Yu, C.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

Zhang, X.

Appl. Opt. (1)

Appl. Phys. B (1)

J. Wang, J. Sun, C. Luo, and Q. Sun, “Flexible all-optical wavelength conversions of 1.57-ps pulses exploiting cascaded sum- and difference frequency generation (cSFG/DFG) in a PPLN waveguide,” Appl. Phys. B 83(4), 543–548 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71(8), 1020–1022 (1997).
[CrossRef]

Electron. Lett. (1)

J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in a PPLN waveguide,” Electron. Lett. 43(7), 409–410 (2007).
[CrossRef]

IEEE J. Quantum Electron. (2)

B. Chen and C.-Q. Xu, “Analysis of novel cascaded χ(2) (SFG+DFG) wavelength conversions in quasi-phase-matched waveguides,” IEEE J. Quantum Electron. 40(3), 256–261 (2004).
[CrossRef]

R. Eckardt and J. Reintjes, “Phase matching limitations of high efficiency second harmonic generation,” IEEE J. Quantum Electron. 20(10), 1178–1187 (1984).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
[CrossRef]

S. Liu, K. J. Lee, F. Parmigiani, K. Gallo, P. Petropoulos, and D. J. Richardson, “Retiming of short pulses using quadratic cascading in a periodically poled lithium niobate waveguide,” IEEE Photon. Technol. Lett. 23(2), 94–96 (2011).
[CrossRef]

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

J. Sun, H. Li, Y. Cheng, and J. Li, “Tunable wavelength conversion of picosecond pulses based on cascaded sum and difference-frequency generation in quasi-phase-matched LiNbO3 waveguides,” Opt. Commun. 281(23), 5874–5883 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, “Wavelength-conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device,” Opt. Quantum Electron. 33(7/10), 953–961 (2001).
[CrossRef]

Other (1)

R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, 2003), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagrams of (a) SHG and (b) SFG processes in the CW-pump regime. The wave vector mismatches for (c) SHG and (d) SFG. The solid and dashed lines representing each vector correspond to the fixed and the tunable wavelength, respectively.

Fig. 2
Fig. 2

Schematic diagrams of (a) SHG and (b) SFG processes in the pulsed-pump regime.

Fig. 3
Fig. 3

(a) Experimental setup used for the measurement. Both CW1 and CW2 are used for the case of Fig. 1(b), while only CW1 (which is labelled as CW0 in Fig. 1(a)) is used for the case of Fig. 1(a). PC: polarisation controller, EDFA: erbium-doped fibre amplifier, OSA: optical spectrum analyser. The measured and calculated bandwidths for (b) the SHG and (c) the SFG.

Fig. 4
Fig. 4

Schematic diagrams of (a) the cSHG/DFG and (b) the cSFG/DFG processes in the pulsed pump-regime. (c) Experimental setup used to measure the acceptable bandwidths for each case. Only CW1 is used for the case of (a), while both CW1 and CW2 are used for the case of (b). ERGO: Erbium doped glass oscillator, MOD: modulator, OSO: optical sampling oscilloscope.

Fig. 5
Fig. 5

Measured spectral and temporal shapes for (a) 1.0 nm filters and (b) without the filter in the cSHG/DFG.

Fig. 6
Fig. 6

Measured spectral and temporal shapes for (a) 1.0 nm filters and (b) without the filter in the cSFG/DFG.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Δ k S H G ( Δ ω ) = 2 k ( ω ) k ( 2 ω ) 2 k ( ω 0 + Δ ω ) k ( 2 ω 0 + 2 Δ ω ) ,
Δ k S H G ( Δ ω ) = 2 k ( ω 0 ) k ( 2 ω 0 ) + 2 [ k ω | ω 0 k ω | 2 ω 0 ] Δ ω + O ( Δ ω 2 )                  = Δ k 0 , S H G + 2 [ 1 u 0 1 u S H ] Δ ω + O ( Δ ω 2 ) .
Δ k S F G ( Δ ω ) = Δ k 0 , S F G + [ 1 u 2 1 u S F ] Δ ω + O ( Δ ω 2 ) ,
1 u 0 1 u S H 1 u 2 1 u S F δ ν .
Δ k S H G 2 δ ν Δ ω ,
Δ k S F G δ ν Δ ω ,
P S H sinc 2 ( Δ k S H G L 2 ) sinc 2 ( δ ν Δ ω ) ,
P S F sinc 2 ( Δ k S F G L 2 ) sinc 2 ( δ ν Δ ω 2 ) ,
A ˜ S H ( Ω ) = D S H G ( Ω ) [ A ˜ 0 2 ( Ω ) ] ,
A ˜ S F ( Ω ) = D S F G ( Ω ) [ A ˜ 1 ( Ω ) A ˜ 2 ( Ω ) ] ,
A 1 ( t ) CW A ˜ 1 ( ω ) = δ ( ω ω 1 ) ,
A 2 ( t ) Pulsed A ˜ 2 ( ω ) ,
A ˜ S F ( Ω ) = D S F G ( Ω ) [ A ˜ 2 ( Ω ) ] .
Δ k S H G ( Ω ) = Δ k 0 , S H G + [ 1 u 0 1 u S H ] Ω + O ( Ω 2 ) ,
Δ k S F G ( Ω ) = Δ k 0 , S F G + [ 1 u 2 1 u S F ] Ω + O ( Ω 2 ) .
Δ k S H G ( Ω ) δ ν Ω ,
Δ k S F G ( Ω ) δ ν Ω .
D S H G ( Ω ) 0 L e i Δ k S H G ( Ω ) z d z = 0 L e i δ ν Ω z d z ,
D S F G ( Ω ) 0 L e i Δ k S F G ( Ω ) z d z = 0 L e i δ ν Ω z d z = D S H G ( Ω ) ,

Metrics