Abstract

We demonstrate high-performance, long-wavelength (λ ≈14 µm) Quantum Cascade (QC) lasers based on a diagonal optical transition and a “two-phonon-continuum” depletion scheme in which the lower laser level is depopulated by resonant longitudinal optical phonon scattering followed by scattering to a lower energy level continuum. A 2.8 mm long QC laser shows a low threshold current density of 2.0 kA/cm2, a peak output power of ~336 mW, and a slope efficiency of 375 mW/A, all at 300K, with a high characteristic temperature T0 ~310 K over a wide temperature range from 240 K to 390 K.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-wave infrared (λ > 6 µm),” Opt. Eng. 49(11), 111106 (2010).
    [CrossRef]
  2. N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ~ 3.76 µm,” Appl. Phys. Lett. 97(13), 131117 (2010).
    [CrossRef]
  3. S. Slivken, A. Evans, W. Zhang, and M. Razeghi, “High-power, continuous-operation intersubband laser for wavelengths greater than 10 µm,” Appl. Phys. Lett. 90(15), 151115 (2007).
    [CrossRef]
  4. R. F. Curl, F. Capasso, C. F. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
    [CrossRef]
  5. I. Sydoryk, A. Lim, W. Jäger, J. Tulip, and M. T. Parsons, “Detection of benzene and toluene gases using a midinfrared continuous-wave external cavity quantum cascade laser at atmospheric pressure,” Appl. Opt. 49(6), 945–949 (2010).
    [CrossRef] [PubMed]
  6. R. Lewicki, A. A. Kosterev, F. Toor, Y. Yao, C. F. Gmachl, T. Tsai, G. Wysocki, X. Wang, M. Troccoli, M. Fong, and F. K. Tittel, “Quantum cascade laser absorption spectroscopy of UF6 at 7.74 μm for analytical uranium enrichment measurements,” Proc. SPIE 7608, 76080E (2002).
  7. A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength superlattice quantum cascade lasers at λ ≃ 17 μm,” Appl. Phys. Lett. 74(5), 638–640 (1999).
    [CrossRef]
  8. M. Rochat, D. Hofstetter, M. Beck, and J. Faist, “Long-wavelength (λ≈16 μm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 79(26), 4271–4273 (2001).
    [CrossRef]
  9. K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0-values (∼ 450 K) of long-wavelength (∼ 15 μm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97, 201109 (2010).
    [CrossRef]
  10. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
    [CrossRef] [PubMed]
  11. A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96(14), 141105 (2010).
    [CrossRef]
  12. D. Hofstetter, M. Beck, T. Aellen, and J. Fait, “High-temperature operation of distributed feedback quantum-cascade lasers at 5.3 μm,” Appl. Phys. Lett. 78(4), 396–398 (2001).
    [CrossRef]
  13. J. Faist, M. Beck, T. Aellen, and E. Gini, “Quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 78(2), 147–149 (2001).
    [CrossRef]
  14. K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 91(14), 141121 (2007).
    [CrossRef]
  15. M. Escarra, A. J. Hoffman, K. J. Franz, S. S. Howard, R. Cendejas, X. Wang, J. Y. Fan, and C. F. Gmachl, “Quantum cascade lasers with voltage defect of less than one longitudinal optical phonon energy,” Appl. Phys. Lett. 94(25), 251114 (2009).
    [CrossRef]
  16. A. Lops, V. Spagnolo, and G. Scamarcio, “Thermal modeling of GaInAs/AlInAs quantum cascade lasers,” J. Appl. Phys. 100(4), 043109 (2006).
    [CrossRef]

2010 (6)

R. F. Curl, F. Capasso, C. F. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

I. Sydoryk, A. Lim, W. Jäger, J. Tulip, and M. T. Parsons, “Detection of benzene and toluene gases using a midinfrared continuous-wave external cavity quantum cascade laser at atmospheric pressure,” Appl. Opt. 49(6), 945–949 (2010).
[CrossRef] [PubMed]

M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-wave infrared (λ > 6 µm),” Opt. Eng. 49(11), 111106 (2010).
[CrossRef]

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ~ 3.76 µm,” Appl. Phys. Lett. 97(13), 131117 (2010).
[CrossRef]

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0-values (∼ 450 K) of long-wavelength (∼ 15 μm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97, 201109 (2010).
[CrossRef]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96(14), 141105 (2010).
[CrossRef]

2009 (1)

M. Escarra, A. J. Hoffman, K. J. Franz, S. S. Howard, R. Cendejas, X. Wang, J. Y. Fan, and C. F. Gmachl, “Quantum cascade lasers with voltage defect of less than one longitudinal optical phonon energy,” Appl. Phys. Lett. 94(25), 251114 (2009).
[CrossRef]

2007 (2)

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 91(14), 141121 (2007).
[CrossRef]

S. Slivken, A. Evans, W. Zhang, and M. Razeghi, “High-power, continuous-operation intersubband laser for wavelengths greater than 10 µm,” Appl. Phys. Lett. 90(15), 151115 (2007).
[CrossRef]

2006 (1)

A. Lops, V. Spagnolo, and G. Scamarcio, “Thermal modeling of GaInAs/AlInAs quantum cascade lasers,” J. Appl. Phys. 100(4), 043109 (2006).
[CrossRef]

2002 (1)

R. Lewicki, A. A. Kosterev, F. Toor, Y. Yao, C. F. Gmachl, T. Tsai, G. Wysocki, X. Wang, M. Troccoli, M. Fong, and F. K. Tittel, “Quantum cascade laser absorption spectroscopy of UF6 at 7.74 μm for analytical uranium enrichment measurements,” Proc. SPIE 7608, 76080E (2002).

2001 (3)

M. Rochat, D. Hofstetter, M. Beck, and J. Faist, “Long-wavelength (λ≈16 μm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 79(26), 4271–4273 (2001).
[CrossRef]

D. Hofstetter, M. Beck, T. Aellen, and J. Fait, “High-temperature operation of distributed feedback quantum-cascade lasers at 5.3 μm,” Appl. Phys. Lett. 78(4), 396–398 (2001).
[CrossRef]

J. Faist, M. Beck, T. Aellen, and E. Gini, “Quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 78(2), 147–149 (2001).
[CrossRef]

1999 (1)

A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength superlattice quantum cascade lasers at λ ≃ 17 μm,” Appl. Phys. Lett. 74(5), 638–640 (1999).
[CrossRef]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Aellen, T.

D. Hofstetter, M. Beck, T. Aellen, and J. Fait, “High-temperature operation of distributed feedback quantum-cascade lasers at 5.3 μm,” Appl. Phys. Lett. 78(4), 396–398 (2001).
[CrossRef]

J. Faist, M. Beck, T. Aellen, and E. Gini, “Quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 78(2), 147–149 (2001).
[CrossRef]

Akikusa, N.

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 91(14), 141121 (2007).
[CrossRef]

Bai, Y.

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ~ 3.76 µm,” Appl. Phys. Lett. 97(13), 131117 (2010).
[CrossRef]

Bandyopadhyay, N.

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ~ 3.76 µm,” Appl. Phys. Lett. 97(13), 131117 (2010).
[CrossRef]

Beck, M.

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96(14), 141105 (2010).
[CrossRef]

D. Hofstetter, M. Beck, T. Aellen, and J. Fait, “High-temperature operation of distributed feedback quantum-cascade lasers at 5.3 μm,” Appl. Phys. Lett. 78(4), 396–398 (2001).
[CrossRef]

M. Rochat, D. Hofstetter, M. Beck, and J. Faist, “Long-wavelength (λ≈16 μm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 79(26), 4271–4273 (2001).
[CrossRef]

J. Faist, M. Beck, T. Aellen, and E. Gini, “Quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 78(2), 147–149 (2001).
[CrossRef]

Bismuto, A.

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96(14), 141105 (2010).
[CrossRef]

Capasso, F.

R. F. Curl, F. Capasso, C. F. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength superlattice quantum cascade lasers at λ ≃ 17 μm,” Appl. Phys. Lett. 74(5), 638–640 (1999).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Cendejas, R.

M. Escarra, A. J. Hoffman, K. J. Franz, S. S. Howard, R. Cendejas, X. Wang, J. Y. Fan, and C. F. Gmachl, “Quantum cascade lasers with voltage defect of less than one longitudinal optical phonon energy,” Appl. Phys. Lett. 94(25), 251114 (2009).
[CrossRef]

Cho, A. Y.

A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength superlattice quantum cascade lasers at λ ≃ 17 μm,” Appl. Phys. Lett. 74(5), 638–640 (1999).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Curl, R. F.

R. F. Curl, F. Capasso, C. F. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

Edamura, T.

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0-values (∼ 450 K) of long-wavelength (∼ 15 μm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97, 201109 (2010).
[CrossRef]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 91(14), 141121 (2007).
[CrossRef]

Escarra, M.

M. Escarra, A. J. Hoffman, K. J. Franz, S. S. Howard, R. Cendejas, X. Wang, J. Y. Fan, and C. F. Gmachl, “Quantum cascade lasers with voltage defect of less than one longitudinal optical phonon energy,” Appl. Phys. Lett. 94(25), 251114 (2009).
[CrossRef]

Evans, A.

S. Slivken, A. Evans, W. Zhang, and M. Razeghi, “High-power, continuous-operation intersubband laser for wavelengths greater than 10 µm,” Appl. Phys. Lett. 90(15), 151115 (2007).
[CrossRef]

Faist, J.

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96(14), 141105 (2010).
[CrossRef]

J. Faist, M. Beck, T. Aellen, and E. Gini, “Quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 78(2), 147–149 (2001).
[CrossRef]

M. Rochat, D. Hofstetter, M. Beck, and J. Faist, “Long-wavelength (λ≈16 μm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 79(26), 4271–4273 (2001).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Fait, J.

D. Hofstetter, M. Beck, T. Aellen, and J. Fait, “High-temperature operation of distributed feedback quantum-cascade lasers at 5.3 μm,” Appl. Phys. Lett. 78(4), 396–398 (2001).
[CrossRef]

Fan, J.

M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-wave infrared (λ > 6 µm),” Opt. Eng. 49(11), 111106 (2010).
[CrossRef]

Fan, J. Y.

M. Escarra, A. J. Hoffman, K. J. Franz, S. S. Howard, R. Cendejas, X. Wang, J. Y. Fan, and C. F. Gmachl, “Quantum cascade lasers with voltage defect of less than one longitudinal optical phonon energy,” Appl. Phys. Lett. 94(25), 251114 (2009).
[CrossRef]

Fong, M.

R. Lewicki, A. A. Kosterev, F. Toor, Y. Yao, C. F. Gmachl, T. Tsai, G. Wysocki, X. Wang, M. Troccoli, M. Fong, and F. K. Tittel, “Quantum cascade laser absorption spectroscopy of UF6 at 7.74 μm for analytical uranium enrichment measurements,” Proc. SPIE 7608, 76080E (2002).

Franz, K. J.

M. Escarra, A. J. Hoffman, K. J. Franz, S. S. Howard, R. Cendejas, X. Wang, J. Y. Fan, and C. F. Gmachl, “Quantum cascade lasers with voltage defect of less than one longitudinal optical phonon energy,” Appl. Phys. Lett. 94(25), 251114 (2009).
[CrossRef]

Fujita, K.

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0-values (∼ 450 K) of long-wavelength (∼ 15 μm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97, 201109 (2010).
[CrossRef]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 91(14), 141121 (2007).
[CrossRef]

Furuta, S.

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0-values (∼ 450 K) of long-wavelength (∼ 15 μm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97, 201109 (2010).
[CrossRef]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 91(14), 141121 (2007).
[CrossRef]

Gini, E.

J. Faist, M. Beck, T. Aellen, and E. Gini, “Quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 78(2), 147–149 (2001).
[CrossRef]

Gmachl, C.

A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength superlattice quantum cascade lasers at λ ≃ 17 μm,” Appl. Phys. Lett. 74(5), 638–640 (1999).
[CrossRef]

Gmachl, C. F.

R. F. Curl, F. Capasso, C. F. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

M. Escarra, A. J. Hoffman, K. J. Franz, S. S. Howard, R. Cendejas, X. Wang, J. Y. Fan, and C. F. Gmachl, “Quantum cascade lasers with voltage defect of less than one longitudinal optical phonon energy,” Appl. Phys. Lett. 94(25), 251114 (2009).
[CrossRef]

R. Lewicki, A. A. Kosterev, F. Toor, Y. Yao, C. F. Gmachl, T. Tsai, G. Wysocki, X. Wang, M. Troccoli, M. Fong, and F. K. Tittel, “Quantum cascade laser absorption spectroscopy of UF6 at 7.74 μm for analytical uranium enrichment measurements,” Proc. SPIE 7608, 76080E (2002).

Gokden, B.

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ~ 3.76 µm,” Appl. Phys. Lett. 97(13), 131117 (2010).
[CrossRef]

Hoffman, A. J.

M. Escarra, A. J. Hoffman, K. J. Franz, S. S. Howard, R. Cendejas, X. Wang, J. Y. Fan, and C. F. Gmachl, “Quantum cascade lasers with voltage defect of less than one longitudinal optical phonon energy,” Appl. Phys. Lett. 94(25), 251114 (2009).
[CrossRef]

Hofstetter, D.

M. Rochat, D. Hofstetter, M. Beck, and J. Faist, “Long-wavelength (λ≈16 μm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 79(26), 4271–4273 (2001).
[CrossRef]

D. Hofstetter, M. Beck, T. Aellen, and J. Fait, “High-temperature operation of distributed feedback quantum-cascade lasers at 5.3 μm,” Appl. Phys. Lett. 78(4), 396–398 (2001).
[CrossRef]

Howard, S. S.

M. Escarra, A. J. Hoffman, K. J. Franz, S. S. Howard, R. Cendejas, X. Wang, J. Y. Fan, and C. F. Gmachl, “Quantum cascade lasers with voltage defect of less than one longitudinal optical phonon energy,” Appl. Phys. Lett. 94(25), 251114 (2009).
[CrossRef]

Hutchinson, A. L.

A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength superlattice quantum cascade lasers at λ ≃ 17 μm,” Appl. Phys. Lett. 74(5), 638–640 (1999).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Jäger, W.

Kan, H.

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 91(14), 141121 (2007).
[CrossRef]

Kosterev, A. A.

R. F. Curl, F. Capasso, C. F. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

R. Lewicki, A. A. Kosterev, F. Toor, Y. Yao, C. F. Gmachl, T. Tsai, G. Wysocki, X. Wang, M. Troccoli, M. Fong, and F. K. Tittel, “Quantum cascade laser absorption spectroscopy of UF6 at 7.74 μm for analytical uranium enrichment measurements,” Proc. SPIE 7608, 76080E (2002).

Lewicki, R.

R. F. Curl, F. Capasso, C. F. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

R. Lewicki, A. A. Kosterev, F. Toor, Y. Yao, C. F. Gmachl, T. Tsai, G. Wysocki, X. Wang, M. Troccoli, M. Fong, and F. K. Tittel, “Quantum cascade laser absorption spectroscopy of UF6 at 7.74 μm for analytical uranium enrichment measurements,” Proc. SPIE 7608, 76080E (2002).

Lim, A.

Lops, A.

A. Lops, V. Spagnolo, and G. Scamarcio, “Thermal modeling of GaInAs/AlInAs quantum cascade lasers,” J. Appl. Phys. 100(4), 043109 (2006).
[CrossRef]

McManus, B.

R. F. Curl, F. Capasso, C. F. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

Myzaferi, A.

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ~ 3.76 µm,” Appl. Phys. Lett. 97(13), 131117 (2010).
[CrossRef]

Ochiai, T.

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 91(14), 141121 (2007).
[CrossRef]

Parsons, M. T.

Pusharsky, M.

R. F. Curl, F. Capasso, C. F. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

Razeghi, M.

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ~ 3.76 µm,” Appl. Phys. Lett. 97(13), 131117 (2010).
[CrossRef]

S. Slivken, A. Evans, W. Zhang, and M. Razeghi, “High-power, continuous-operation intersubband laser for wavelengths greater than 10 µm,” Appl. Phys. Lett. 90(15), 151115 (2007).
[CrossRef]

Rochat, M.

M. Rochat, D. Hofstetter, M. Beck, and J. Faist, “Long-wavelength (λ≈16 μm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 79(26), 4271–4273 (2001).
[CrossRef]

Scamarcio, G.

A. Lops, V. Spagnolo, and G. Scamarcio, “Thermal modeling of GaInAs/AlInAs quantum cascade lasers,” J. Appl. Phys. 100(4), 043109 (2006).
[CrossRef]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Sivco, D. L.

A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength superlattice quantum cascade lasers at λ ≃ 17 μm,” Appl. Phys. Lett. 74(5), 638–640 (1999).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Slivken, S.

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ~ 3.76 µm,” Appl. Phys. Lett. 97(13), 131117 (2010).
[CrossRef]

S. Slivken, A. Evans, W. Zhang, and M. Razeghi, “High-power, continuous-operation intersubband laser for wavelengths greater than 10 µm,” Appl. Phys. Lett. 90(15), 151115 (2007).
[CrossRef]

Spagnolo, V.

A. Lops, V. Spagnolo, and G. Scamarcio, “Thermal modeling of GaInAs/AlInAs quantum cascade lasers,” J. Appl. Phys. 100(4), 043109 (2006).
[CrossRef]

Sugiyama, A.

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0-values (∼ 450 K) of long-wavelength (∼ 15 μm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97, 201109 (2010).
[CrossRef]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 91(14), 141121 (2007).
[CrossRef]

Sydoryk, I.

Terazzi, R.

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96(14), 141105 (2010).
[CrossRef]

Tittel, F. K.

R. F. Curl, F. Capasso, C. F. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

R. Lewicki, A. A. Kosterev, F. Toor, Y. Yao, C. F. Gmachl, T. Tsai, G. Wysocki, X. Wang, M. Troccoli, M. Fong, and F. K. Tittel, “Quantum cascade laser absorption spectroscopy of UF6 at 7.74 μm for analytical uranium enrichment measurements,” Proc. SPIE 7608, 76080E (2002).

Toor, F.

R. Lewicki, A. A. Kosterev, F. Toor, Y. Yao, C. F. Gmachl, T. Tsai, G. Wysocki, X. Wang, M. Troccoli, M. Fong, and F. K. Tittel, “Quantum cascade laser absorption spectroscopy of UF6 at 7.74 μm for analytical uranium enrichment measurements,” Proc. SPIE 7608, 76080E (2002).

Tredicucci, A.

A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength superlattice quantum cascade lasers at λ ≃ 17 μm,” Appl. Phys. Lett. 74(5), 638–640 (1999).
[CrossRef]

Troccoli, M.

M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-wave infrared (λ > 6 µm),” Opt. Eng. 49(11), 111106 (2010).
[CrossRef]

R. Lewicki, A. A. Kosterev, F. Toor, Y. Yao, C. F. Gmachl, T. Tsai, G. Wysocki, X. Wang, M. Troccoli, M. Fong, and F. K. Tittel, “Quantum cascade laser absorption spectroscopy of UF6 at 7.74 μm for analytical uranium enrichment measurements,” Proc. SPIE 7608, 76080E (2002).

Tsai, T.

R. Lewicki, A. A. Kosterev, F. Toor, Y. Yao, C. F. Gmachl, T. Tsai, G. Wysocki, X. Wang, M. Troccoli, M. Fong, and F. K. Tittel, “Quantum cascade laser absorption spectroscopy of UF6 at 7.74 μm for analytical uranium enrichment measurements,” Proc. SPIE 7608, 76080E (2002).

Tsao, S.

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ~ 3.76 µm,” Appl. Phys. Lett. 97(13), 131117 (2010).
[CrossRef]

Tulip, J.

Wang, X.

M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-wave infrared (λ > 6 µm),” Opt. Eng. 49(11), 111106 (2010).
[CrossRef]

M. Escarra, A. J. Hoffman, K. J. Franz, S. S. Howard, R. Cendejas, X. Wang, J. Y. Fan, and C. F. Gmachl, “Quantum cascade lasers with voltage defect of less than one longitudinal optical phonon energy,” Appl. Phys. Lett. 94(25), 251114 (2009).
[CrossRef]

R. Lewicki, A. A. Kosterev, F. Toor, Y. Yao, C. F. Gmachl, T. Tsai, G. Wysocki, X. Wang, M. Troccoli, M. Fong, and F. K. Tittel, “Quantum cascade laser absorption spectroscopy of UF6 at 7.74 μm for analytical uranium enrichment measurements,” Proc. SPIE 7608, 76080E (2002).

Wysocki, G.

R. F. Curl, F. Capasso, C. F. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

R. Lewicki, A. A. Kosterev, F. Toor, Y. Yao, C. F. Gmachl, T. Tsai, G. Wysocki, X. Wang, M. Troccoli, M. Fong, and F. K. Tittel, “Quantum cascade laser absorption spectroscopy of UF6 at 7.74 μm for analytical uranium enrichment measurements,” Proc. SPIE 7608, 76080E (2002).

Yamanishi, M.

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0-values (∼ 450 K) of long-wavelength (∼ 15 μm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97, 201109 (2010).
[CrossRef]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 91(14), 141121 (2007).
[CrossRef]

Yao, Y.

R. Lewicki, A. A. Kosterev, F. Toor, Y. Yao, C. F. Gmachl, T. Tsai, G. Wysocki, X. Wang, M. Troccoli, M. Fong, and F. K. Tittel, “Quantum cascade laser absorption spectroscopy of UF6 at 7.74 μm for analytical uranium enrichment measurements,” Proc. SPIE 7608, 76080E (2002).

Zhang, W.

S. Slivken, A. Evans, W. Zhang, and M. Razeghi, “High-power, continuous-operation intersubband laser for wavelengths greater than 10 µm,” Appl. Phys. Lett. 90(15), 151115 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (10)

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ~ 3.76 µm,” Appl. Phys. Lett. 97(13), 131117 (2010).
[CrossRef]

S. Slivken, A. Evans, W. Zhang, and M. Razeghi, “High-power, continuous-operation intersubband laser for wavelengths greater than 10 µm,” Appl. Phys. Lett. 90(15), 151115 (2007).
[CrossRef]

A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength superlattice quantum cascade lasers at λ ≃ 17 μm,” Appl. Phys. Lett. 74(5), 638–640 (1999).
[CrossRef]

M. Rochat, D. Hofstetter, M. Beck, and J. Faist, “Long-wavelength (λ≈16 μm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 79(26), 4271–4273 (2001).
[CrossRef]

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0-values (∼ 450 K) of long-wavelength (∼ 15 μm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97, 201109 (2010).
[CrossRef]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96(14), 141105 (2010).
[CrossRef]

D. Hofstetter, M. Beck, T. Aellen, and J. Fait, “High-temperature operation of distributed feedback quantum-cascade lasers at 5.3 μm,” Appl. Phys. Lett. 78(4), 396–398 (2001).
[CrossRef]

J. Faist, M. Beck, T. Aellen, and E. Gini, “Quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 78(2), 147–149 (2001).
[CrossRef]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 91(14), 141121 (2007).
[CrossRef]

M. Escarra, A. J. Hoffman, K. J. Franz, S. S. Howard, R. Cendejas, X. Wang, J. Y. Fan, and C. F. Gmachl, “Quantum cascade lasers with voltage defect of less than one longitudinal optical phonon energy,” Appl. Phys. Lett. 94(25), 251114 (2009).
[CrossRef]

Chem. Phys. Lett. (1)

R. F. Curl, F. Capasso, C. F. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

J. Appl. Phys. (1)

A. Lops, V. Spagnolo, and G. Scamarcio, “Thermal modeling of GaInAs/AlInAs quantum cascade lasers,” J. Appl. Phys. 100(4), 043109 (2006).
[CrossRef]

Opt. Eng. (1)

M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-wave infrared (λ > 6 µm),” Opt. Eng. 49(11), 111106 (2010).
[CrossRef]

Proc. SPIE (1)

R. Lewicki, A. A. Kosterev, F. Toor, Y. Yao, C. F. Gmachl, T. Tsai, G. Wysocki, X. Wang, M. Troccoli, M. Fong, and F. K. Tittel, “Quantum cascade laser absorption spectroscopy of UF6 at 7.74 μm for analytical uranium enrichment measurements,” Proc. SPIE 7608, 76080E (2002).

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

A portion of the conduction band diagram of the λ ~14 µm QC laser structure with the moduli squared of the relevant wave functions at an electric field of 35 kV/cm at 300 K. The optical transition is indicated by the red arrow. The red indicated levels “u” and “l” are the upper and lower laser levels, respectively. The “two-phonon-continuum” depletion is achieved through the green marked level “ll” and the level continuum below it. The blue marked level “uu” is ~63 meV above the upper laser level.

Fig. 2
Fig. 2

Laser spectra of a 3.8 mm long, 38 µm wide QC laser with an applied current density of 1.1 times the threshold density, from 80 K to 370 K.

Fig. 3
Fig. 3

Pulsed LIV characteristics for a 2.8 mm long, 38 µm wide HR- back facet coated QC laser at the indicated heat-sink temperatures, from 80 K to 390 K. The pulse width is 100 ns, and the repetition rate is 4 kHz.

Fig. 4
Fig. 4

(a) Threshold current density (blue and red squares) and energy difference El-d between the lower laser level and the level directly below it (green triangles) vs. heat-sink temperature, for the 2.8 mm long, 38 µm wide QC laser. The blue and red solid lines are exponential fits to the data, showing two different regions with different characteristic temperatures, T0 = 189 K from 80 K to 240 K and T0 = 306 K from 240 K to 390 K. Improvement of T0 occurs where El-d at threshold becomes larger than one LO-phonon, as shown by the dashed green arrow. (b) Threshold current density of 38 μm wide QC lasers with different cavity lengths (1.9 mm, 2.8 mm, and 3.8 mm). Three lasers are with two as-cleaved facets, and one 2.8 mm long laser has a HR-coating on the back facet. The solid curves are exponential fits to the data, from which different characteristic temperatures around room temperature are extracted.

Fig. 5
Fig. 5

Light-current characteristics of a 2.8 mm long, 38 µm wide laser, with average power measured by a thermopile detector, from 80 K to 300 K. The duty cycle optimized for maximum average power is 20% (pulse width 1 μs, repetition rate 200 kHz) from 80 K to 160 K, 7.5% (pulse width 0.5 μs, repetition rate 150 kHz) from 200 K to 240 K, and 5% (pulse width 0.5 μs, repetition rate 100 kHz) from 280 K to 300 K.

Metrics