Abstract

We propose a single mode transflective liquid crystal display (LCD) which is operated as the transmissive and reflective modes in a single pixel without dividing into sub-pixels. The single pixel transflective LCD was composed of the cross-polarized nematic LCD as a light modulator and the broadband cholesteric liquid crystal film (BCLCF) as a half mirror. The BCLCF, simply prepared by the exposure of ultraviolet light to the mixture of the nematic LC and the reactive mesogen with chirality, selectively reflects a certain circular polarization but transmits the orthogonal circular polarization in entire visible light. The electro-optical properties in both transmissive and reflective modes coincide with each other.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Ge, X. Zhu, R. Lu, T. X. Wu, and S.-T. Wu, “Transflective liquid crystal display using commonly biased reflectors,” Appl. Phys. Lett. 90(22), 221111 (2007).
    [CrossRef]
  2. H. Y. Kim, Z. Ge, S.-T. Wu, and S. H. Lee, “Wide view transflective liquid crystal display for mobile applications,” Appl. Phys. Lett. 91(23), 231108 (2007).
    [CrossRef]
  3. C.-L. Yang, “Electro-optics of a transflective liquid crystal display with hybrid-aligned liquid crystal texture,” Jpn. J. Appl. Phys. 43(No. 7A), 4273–4275 (2004).
    [CrossRef]
  4. Y.-T. Kim, J.-H. Hong, H. Kim, and S.-D. Lee, “Single mode transflective liquid crystal display with dual cell gap,” Digest of Technical Papers of 2009 Society for Information Display International Symposium, 1662–1664 (2009).
  5. J. Kim, D.-W. Kim, C.-J. Yu, and S.-D. Lee, “New configuration of a transflective liquid crystal display having a single cell gap and a single liquid crystal mode,” Jpn. J. Appl. Phys. 43(No. 10B), L1369–L1371 (2004).
    [CrossRef]
  6. R. Lu, Z. Ge, and S.-T. Wu, “Wide-view and single cell gap transflective liquid crystal display using slit-induced multidomain structure,” Appl. Phys. Lett. 92(19), 191102 (2008).
    [CrossRef]
  7. C.-J. Yu, D.-W. Kim, and S.-D. Lee, “Multimode transflective liquid crystal display with a single cell gap using a self-masking process of photoalignment,” Appl. Phys. Lett. 85(22), 5146–5148 (2004).
    [CrossRef]
  8. Y.-J. Lee, T.-H. Lee, J.-W. Jung, H.-R. Kim, Y. Choi, S.-G. Kang, Y.-C. Yang, S. Shin, and J.-H. Kim, “Transflective liquid crystal display with single cell gap in patterned vertically aligned mode,” Jpn. J. Appl. Phys. 45(No. 10A), 7827–7830 (2006).
    [CrossRef]
  9. J. Kim, Y.-W. Lim, and S.-D. Lee, “Brightness-enhanced transflective liquid crystal display having single-cell gap in vetically aligned configuration,” Jpn. J. Appl. Phys. 45(No. 2A), 810–812 (2006).
    [CrossRef]
  10. W. J. Fritz, Z. J. Lu, D.-K. Yang, and W. D. St. John, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 51(2), 1191–1198 (1995).
    [CrossRef] [PubMed]
  11. D. W. Berreman and T. J. Scheffer, “Reflection and transmission by single-domain cholesteric liquid crystal films: theory and verification,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 11(4), 395–405 (1970).
    [CrossRef]
  12. Y. Hisatake, T. Ohtake, A. Oono, and Y. Higuchi, “A novel transflective TFT-LCD using cholesteric half reflector,” Proceeding of the 2001 International Display Workshop 129–132 (2001).
  13. D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
    [CrossRef]
  14. R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
    [CrossRef]
  15. C. Binet, M. Mitov, and M. Mauzac, “Switchable broadband light reflection in polymer-stabilized cholsteric liquid crystals,” J. Appl. Phys. 90(4), 1730–1734 (2001).
    [CrossRef]
  16. T. Qian, J.-H. Kim, S. Kumar, and P. L. Taylor, “Phase-separated composite films: experiment and theory,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(44 Pt B), 4007–4010 (2000).
    [CrossRef] [PubMed]
  17. V. Vorflusev and S. Kumar, “Phase-separated composite films for liquid crystal displays,” Science 283(5409), 1903–1905 (1999).
    [CrossRef] [PubMed]

2008

R. Lu, Z. Ge, and S.-T. Wu, “Wide-view and single cell gap transflective liquid crystal display using slit-induced multidomain structure,” Appl. Phys. Lett. 92(19), 191102 (2008).
[CrossRef]

2007

Z. Ge, X. Zhu, R. Lu, T. X. Wu, and S.-T. Wu, “Transflective liquid crystal display using commonly biased reflectors,” Appl. Phys. Lett. 90(22), 221111 (2007).
[CrossRef]

H. Y. Kim, Z. Ge, S.-T. Wu, and S. H. Lee, “Wide view transflective liquid crystal display for mobile applications,” Appl. Phys. Lett. 91(23), 231108 (2007).
[CrossRef]

2006

Y.-J. Lee, T.-H. Lee, J.-W. Jung, H.-R. Kim, Y. Choi, S.-G. Kang, Y.-C. Yang, S. Shin, and J.-H. Kim, “Transflective liquid crystal display with single cell gap in patterned vertically aligned mode,” Jpn. J. Appl. Phys. 45(No. 10A), 7827–7830 (2006).
[CrossRef]

J. Kim, Y.-W. Lim, and S.-D. Lee, “Brightness-enhanced transflective liquid crystal display having single-cell gap in vetically aligned configuration,” Jpn. J. Appl. Phys. 45(No. 2A), 810–812 (2006).
[CrossRef]

2004

C.-L. Yang, “Electro-optics of a transflective liquid crystal display with hybrid-aligned liquid crystal texture,” Jpn. J. Appl. Phys. 43(No. 7A), 4273–4275 (2004).
[CrossRef]

J. Kim, D.-W. Kim, C.-J. Yu, and S.-D. Lee, “New configuration of a transflective liquid crystal display having a single cell gap and a single liquid crystal mode,” Jpn. J. Appl. Phys. 43(No. 10B), L1369–L1371 (2004).
[CrossRef]

C.-J. Yu, D.-W. Kim, and S.-D. Lee, “Multimode transflective liquid crystal display with a single cell gap using a self-masking process of photoalignment,” Appl. Phys. Lett. 85(22), 5146–5148 (2004).
[CrossRef]

2001

C. Binet, M. Mitov, and M. Mauzac, “Switchable broadband light reflection in polymer-stabilized cholsteric liquid crystals,” J. Appl. Phys. 90(4), 1730–1734 (2001).
[CrossRef]

2000

T. Qian, J.-H. Kim, S. Kumar, and P. L. Taylor, “Phase-separated composite films: experiment and theory,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(44 Pt B), 4007–4010 (2000).
[CrossRef] [PubMed]

1999

V. Vorflusev and S. Kumar, “Phase-separated composite films for liquid crystal displays,” Science 283(5409), 1903–1905 (1999).
[CrossRef] [PubMed]

1998

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
[CrossRef]

1995

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[CrossRef]

W. J. Fritz, Z. J. Lu, D.-K. Yang, and W. D. St. John, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 51(2), 1191–1198 (1995).
[CrossRef] [PubMed]

1970

D. W. Berreman and T. J. Scheffer, “Reflection and transmission by single-domain cholesteric liquid crystal films: theory and verification,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 11(4), 395–405 (1970).
[CrossRef]

Berreman, D. W.

D. W. Berreman and T. J. Scheffer, “Reflection and transmission by single-domain cholesteric liquid crystal films: theory and verification,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 11(4), 395–405 (1970).
[CrossRef]

Binet, C.

C. Binet, M. Mitov, and M. Mauzac, “Switchable broadband light reflection in polymer-stabilized cholsteric liquid crystals,” J. Appl. Phys. 90(4), 1730–1734 (2001).
[CrossRef]

Broer, D. J.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[CrossRef]

Choi, Y.

Y.-J. Lee, T.-H. Lee, J.-W. Jung, H.-R. Kim, Y. Choi, S.-G. Kang, Y.-C. Yang, S. Shin, and J.-H. Kim, “Transflective liquid crystal display with single cell gap in patterned vertically aligned mode,” Jpn. J. Appl. Phys. 45(No. 10A), 7827–7830 (2006).
[CrossRef]

Fritz, W. J.

W. J. Fritz, Z. J. Lu, D.-K. Yang, and W. D. St. John, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 51(2), 1191–1198 (1995).
[CrossRef] [PubMed]

Ge, Z.

R. Lu, Z. Ge, and S.-T. Wu, “Wide-view and single cell gap transflective liquid crystal display using slit-induced multidomain structure,” Appl. Phys. Lett. 92(19), 191102 (2008).
[CrossRef]

Z. Ge, X. Zhu, R. Lu, T. X. Wu, and S.-T. Wu, “Transflective liquid crystal display using commonly biased reflectors,” Appl. Phys. Lett. 90(22), 221111 (2007).
[CrossRef]

H. Y. Kim, Z. Ge, S.-T. Wu, and S. H. Lee, “Wide view transflective liquid crystal display for mobile applications,” Appl. Phys. Lett. 91(23), 231108 (2007).
[CrossRef]

Hikmet, R. A. M.

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
[CrossRef]

Jung, J.-W.

Y.-J. Lee, T.-H. Lee, J.-W. Jung, H.-R. Kim, Y. Choi, S.-G. Kang, Y.-C. Yang, S. Shin, and J.-H. Kim, “Transflective liquid crystal display with single cell gap in patterned vertically aligned mode,” Jpn. J. Appl. Phys. 45(No. 10A), 7827–7830 (2006).
[CrossRef]

Kang, S.-G.

Y.-J. Lee, T.-H. Lee, J.-W. Jung, H.-R. Kim, Y. Choi, S.-G. Kang, Y.-C. Yang, S. Shin, and J.-H. Kim, “Transflective liquid crystal display with single cell gap in patterned vertically aligned mode,” Jpn. J. Appl. Phys. 45(No. 10A), 7827–7830 (2006).
[CrossRef]

Kemperman, H.

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
[CrossRef]

Kim, D.-W.

C.-J. Yu, D.-W. Kim, and S.-D. Lee, “Multimode transflective liquid crystal display with a single cell gap using a self-masking process of photoalignment,” Appl. Phys. Lett. 85(22), 5146–5148 (2004).
[CrossRef]

J. Kim, D.-W. Kim, C.-J. Yu, and S.-D. Lee, “New configuration of a transflective liquid crystal display having a single cell gap and a single liquid crystal mode,” Jpn. J. Appl. Phys. 43(No. 10B), L1369–L1371 (2004).
[CrossRef]

Kim, H. Y.

H. Y. Kim, Z. Ge, S.-T. Wu, and S. H. Lee, “Wide view transflective liquid crystal display for mobile applications,” Appl. Phys. Lett. 91(23), 231108 (2007).
[CrossRef]

Kim, H.-R.

Y.-J. Lee, T.-H. Lee, J.-W. Jung, H.-R. Kim, Y. Choi, S.-G. Kang, Y.-C. Yang, S. Shin, and J.-H. Kim, “Transflective liquid crystal display with single cell gap in patterned vertically aligned mode,” Jpn. J. Appl. Phys. 45(No. 10A), 7827–7830 (2006).
[CrossRef]

Kim, J.

J. Kim, Y.-W. Lim, and S.-D. Lee, “Brightness-enhanced transflective liquid crystal display having single-cell gap in vetically aligned configuration,” Jpn. J. Appl. Phys. 45(No. 2A), 810–812 (2006).
[CrossRef]

J. Kim, D.-W. Kim, C.-J. Yu, and S.-D. Lee, “New configuration of a transflective liquid crystal display having a single cell gap and a single liquid crystal mode,” Jpn. J. Appl. Phys. 43(No. 10B), L1369–L1371 (2004).
[CrossRef]

Kim, J.-H.

Y.-J. Lee, T.-H. Lee, J.-W. Jung, H.-R. Kim, Y. Choi, S.-G. Kang, Y.-C. Yang, S. Shin, and J.-H. Kim, “Transflective liquid crystal display with single cell gap in patterned vertically aligned mode,” Jpn. J. Appl. Phys. 45(No. 10A), 7827–7830 (2006).
[CrossRef]

T. Qian, J.-H. Kim, S. Kumar, and P. L. Taylor, “Phase-separated composite films: experiment and theory,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(44 Pt B), 4007–4010 (2000).
[CrossRef] [PubMed]

Kumar, S.

T. Qian, J.-H. Kim, S. Kumar, and P. L. Taylor, “Phase-separated composite films: experiment and theory,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(44 Pt B), 4007–4010 (2000).
[CrossRef] [PubMed]

V. Vorflusev and S. Kumar, “Phase-separated composite films for liquid crystal displays,” Science 283(5409), 1903–1905 (1999).
[CrossRef] [PubMed]

Lee, S. H.

H. Y. Kim, Z. Ge, S.-T. Wu, and S. H. Lee, “Wide view transflective liquid crystal display for mobile applications,” Appl. Phys. Lett. 91(23), 231108 (2007).
[CrossRef]

Lee, S.-D.

J. Kim, Y.-W. Lim, and S.-D. Lee, “Brightness-enhanced transflective liquid crystal display having single-cell gap in vetically aligned configuration,” Jpn. J. Appl. Phys. 45(No. 2A), 810–812 (2006).
[CrossRef]

C.-J. Yu, D.-W. Kim, and S.-D. Lee, “Multimode transflective liquid crystal display with a single cell gap using a self-masking process of photoalignment,” Appl. Phys. Lett. 85(22), 5146–5148 (2004).
[CrossRef]

J. Kim, D.-W. Kim, C.-J. Yu, and S.-D. Lee, “New configuration of a transflective liquid crystal display having a single cell gap and a single liquid crystal mode,” Jpn. J. Appl. Phys. 43(No. 10B), L1369–L1371 (2004).
[CrossRef]

Lee, T.-H.

Y.-J. Lee, T.-H. Lee, J.-W. Jung, H.-R. Kim, Y. Choi, S.-G. Kang, Y.-C. Yang, S. Shin, and J.-H. Kim, “Transflective liquid crystal display with single cell gap in patterned vertically aligned mode,” Jpn. J. Appl. Phys. 45(No. 10A), 7827–7830 (2006).
[CrossRef]

Lee, Y.-J.

Y.-J. Lee, T.-H. Lee, J.-W. Jung, H.-R. Kim, Y. Choi, S.-G. Kang, Y.-C. Yang, S. Shin, and J.-H. Kim, “Transflective liquid crystal display with single cell gap in patterned vertically aligned mode,” Jpn. J. Appl. Phys. 45(No. 10A), 7827–7830 (2006).
[CrossRef]

Lim, Y.-W.

J. Kim, Y.-W. Lim, and S.-D. Lee, “Brightness-enhanced transflective liquid crystal display having single-cell gap in vetically aligned configuration,” Jpn. J. Appl. Phys. 45(No. 2A), 810–812 (2006).
[CrossRef]

Lu, R.

R. Lu, Z. Ge, and S.-T. Wu, “Wide-view and single cell gap transflective liquid crystal display using slit-induced multidomain structure,” Appl. Phys. Lett. 92(19), 191102 (2008).
[CrossRef]

Z. Ge, X. Zhu, R. Lu, T. X. Wu, and S.-T. Wu, “Transflective liquid crystal display using commonly biased reflectors,” Appl. Phys. Lett. 90(22), 221111 (2007).
[CrossRef]

Lu, Z. J.

W. J. Fritz, Z. J. Lu, D.-K. Yang, and W. D. St. John, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 51(2), 1191–1198 (1995).
[CrossRef] [PubMed]

Lub, J.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[CrossRef]

Mauzac, M.

C. Binet, M. Mitov, and M. Mauzac, “Switchable broadband light reflection in polymer-stabilized cholsteric liquid crystals,” J. Appl. Phys. 90(4), 1730–1734 (2001).
[CrossRef]

Mitov, M.

C. Binet, M. Mitov, and M. Mauzac, “Switchable broadband light reflection in polymer-stabilized cholsteric liquid crystals,” J. Appl. Phys. 90(4), 1730–1734 (2001).
[CrossRef]

Mol, G. N.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[CrossRef]

Qian, T.

T. Qian, J.-H. Kim, S. Kumar, and P. L. Taylor, “Phase-separated composite films: experiment and theory,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(44 Pt B), 4007–4010 (2000).
[CrossRef] [PubMed]

Scheffer, T. J.

D. W. Berreman and T. J. Scheffer, “Reflection and transmission by single-domain cholesteric liquid crystal films: theory and verification,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 11(4), 395–405 (1970).
[CrossRef]

Shin, S.

Y.-J. Lee, T.-H. Lee, J.-W. Jung, H.-R. Kim, Y. Choi, S.-G. Kang, Y.-C. Yang, S. Shin, and J.-H. Kim, “Transflective liquid crystal display with single cell gap in patterned vertically aligned mode,” Jpn. J. Appl. Phys. 45(No. 10A), 7827–7830 (2006).
[CrossRef]

St. John, W. D.

W. J. Fritz, Z. J. Lu, D.-K. Yang, and W. D. St. John, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 51(2), 1191–1198 (1995).
[CrossRef] [PubMed]

Taylor, P. L.

T. Qian, J.-H. Kim, S. Kumar, and P. L. Taylor, “Phase-separated composite films: experiment and theory,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(44 Pt B), 4007–4010 (2000).
[CrossRef] [PubMed]

Vorflusev, V.

V. Vorflusev and S. Kumar, “Phase-separated composite films for liquid crystal displays,” Science 283(5409), 1903–1905 (1999).
[CrossRef] [PubMed]

Wu, S.-T.

R. Lu, Z. Ge, and S.-T. Wu, “Wide-view and single cell gap transflective liquid crystal display using slit-induced multidomain structure,” Appl. Phys. Lett. 92(19), 191102 (2008).
[CrossRef]

Z. Ge, X. Zhu, R. Lu, T. X. Wu, and S.-T. Wu, “Transflective liquid crystal display using commonly biased reflectors,” Appl. Phys. Lett. 90(22), 221111 (2007).
[CrossRef]

H. Y. Kim, Z. Ge, S.-T. Wu, and S. H. Lee, “Wide view transflective liquid crystal display for mobile applications,” Appl. Phys. Lett. 91(23), 231108 (2007).
[CrossRef]

Wu, T. X.

Z. Ge, X. Zhu, R. Lu, T. X. Wu, and S.-T. Wu, “Transflective liquid crystal display using commonly biased reflectors,” Appl. Phys. Lett. 90(22), 221111 (2007).
[CrossRef]

Yang, C.-L.

C.-L. Yang, “Electro-optics of a transflective liquid crystal display with hybrid-aligned liquid crystal texture,” Jpn. J. Appl. Phys. 43(No. 7A), 4273–4275 (2004).
[CrossRef]

Yang, D.-K.

W. J. Fritz, Z. J. Lu, D.-K. Yang, and W. D. St. John, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 51(2), 1191–1198 (1995).
[CrossRef] [PubMed]

Yang, Y.-C.

Y.-J. Lee, T.-H. Lee, J.-W. Jung, H.-R. Kim, Y. Choi, S.-G. Kang, Y.-C. Yang, S. Shin, and J.-H. Kim, “Transflective liquid crystal display with single cell gap in patterned vertically aligned mode,” Jpn. J. Appl. Phys. 45(No. 10A), 7827–7830 (2006).
[CrossRef]

Yu, C.-J.

J. Kim, D.-W. Kim, C.-J. Yu, and S.-D. Lee, “New configuration of a transflective liquid crystal display having a single cell gap and a single liquid crystal mode,” Jpn. J. Appl. Phys. 43(No. 10B), L1369–L1371 (2004).
[CrossRef]

C.-J. Yu, D.-W. Kim, and S.-D. Lee, “Multimode transflective liquid crystal display with a single cell gap using a self-masking process of photoalignment,” Appl. Phys. Lett. 85(22), 5146–5148 (2004).
[CrossRef]

Zhu, X.

Z. Ge, X. Zhu, R. Lu, T. X. Wu, and S.-T. Wu, “Transflective liquid crystal display using commonly biased reflectors,” Appl. Phys. Lett. 90(22), 221111 (2007).
[CrossRef]

Appl. Phys. Lett.

Z. Ge, X. Zhu, R. Lu, T. X. Wu, and S.-T. Wu, “Transflective liquid crystal display using commonly biased reflectors,” Appl. Phys. Lett. 90(22), 221111 (2007).
[CrossRef]

H. Y. Kim, Z. Ge, S.-T. Wu, and S. H. Lee, “Wide view transflective liquid crystal display for mobile applications,” Appl. Phys. Lett. 91(23), 231108 (2007).
[CrossRef]

R. Lu, Z. Ge, and S.-T. Wu, “Wide-view and single cell gap transflective liquid crystal display using slit-induced multidomain structure,” Appl. Phys. Lett. 92(19), 191102 (2008).
[CrossRef]

C.-J. Yu, D.-W. Kim, and S.-D. Lee, “Multimode transflective liquid crystal display with a single cell gap using a self-masking process of photoalignment,” Appl. Phys. Lett. 85(22), 5146–5148 (2004).
[CrossRef]

J. Appl. Phys.

C. Binet, M. Mitov, and M. Mauzac, “Switchable broadband light reflection in polymer-stabilized cholsteric liquid crystals,” J. Appl. Phys. 90(4), 1730–1734 (2001).
[CrossRef]

Jpn. J. Appl. Phys.

J. Kim, D.-W. Kim, C.-J. Yu, and S.-D. Lee, “New configuration of a transflective liquid crystal display having a single cell gap and a single liquid crystal mode,” Jpn. J. Appl. Phys. 43(No. 10B), L1369–L1371 (2004).
[CrossRef]

Y.-J. Lee, T.-H. Lee, J.-W. Jung, H.-R. Kim, Y. Choi, S.-G. Kang, Y.-C. Yang, S. Shin, and J.-H. Kim, “Transflective liquid crystal display with single cell gap in patterned vertically aligned mode,” Jpn. J. Appl. Phys. 45(No. 10A), 7827–7830 (2006).
[CrossRef]

J. Kim, Y.-W. Lim, and S.-D. Lee, “Brightness-enhanced transflective liquid crystal display having single-cell gap in vetically aligned configuration,” Jpn. J. Appl. Phys. 45(No. 2A), 810–812 (2006).
[CrossRef]

C.-L. Yang, “Electro-optics of a transflective liquid crystal display with hybrid-aligned liquid crystal texture,” Jpn. J. Appl. Phys. 43(No. 7A), 4273–4275 (2004).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.)

D. W. Berreman and T. J. Scheffer, “Reflection and transmission by single-domain cholesteric liquid crystal films: theory and verification,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 11(4), 395–405 (1970).
[CrossRef]

Nature

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[CrossRef]

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
[CrossRef]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics

T. Qian, J.-H. Kim, S. Kumar, and P. L. Taylor, “Phase-separated composite films: experiment and theory,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(44 Pt B), 4007–4010 (2000).
[CrossRef] [PubMed]

W. J. Fritz, Z. J. Lu, D.-K. Yang, and W. D. St. John, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 51(2), 1191–1198 (1995).
[CrossRef] [PubMed]

Science

V. Vorflusev and S. Kumar, “Phase-separated composite films for liquid crystal displays,” Science 283(5409), 1903–1905 (1999).
[CrossRef] [PubMed]

Other

Y. Hisatake, T. Ohtake, A. Oono, and Y. Higuchi, “A novel transflective TFT-LCD using cholesteric half reflector,” Proceeding of the 2001 International Display Workshop 129–132 (2001).

Y.-T. Kim, J.-H. Hong, H. Kim, and S.-D. Lee, “Single mode transflective liquid crystal display with dual cell gap,” Digest of Technical Papers of 2009 Society for Information Display International Symposium, 1662–1664 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of our proposed transflective LCD consisting of the cross-polarized nematic LCD as a conventional light modulator and the BCLCF as a half mirror. The BCLCF was performed by the helical structure with the pitch gradient covering entire visible range through the polymerized RMs.

Fig. 2
Fig. 2

Optical pathways for the (a) bright and (b) dark states in the transmissive mode, and for the (c) bright and (d) dark states in the reflective mode represented on the Poincaré Sphere. Here, the dashed arrows represent the polarization transition with intensity reduction. Red arrows represent the polarization transition from rear to front panels, while blue ones show the polarization paths from front to rear panels.

Fig. 3
Fig. 3

Measured spectra of the BCLCF in the transmissive (transmittance) and reflective (reflectance) modes.

Fig. 4
Fig. 4

Measured electrooptic properties and corresponding microscopic textures in the (a) transmissive and (b) reflective modes.

Fig. 5
Fig. 5

2-inch prototype of our single mode transflective LCD operated at the (a) transmissive and (b) reflective modes. The external electric field was applied in the “HYU DDLAB” parts.

Metrics