Abstract

We demonstrate on-chip stimulated Brillouin scattering (SBS) in an As2S3 chalcogenide rib waveguide. SBS was characterized in a 7cm long waveguide with a cross-section 4μm x 850nm using the backscattered signal and pump-probe technique. The measured Brillouin shift and its full-width at half-maximum (FWHM) linewidth were ~7.7 GHz and 34 MHz, respectively. Probe vs. pump power measurements at the Brillouin shift were used to obtain the gain coefficient from an exponential fit. The Brillouin gain coefficient obtained was 0.715 x 10−9 m/W. A probe gain of 16 dB was obtained for a CW pump power of ~300 mW.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics (Academic Press, 2003).
  2. L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
    [CrossRef]
  3. T. Schneider, K. Jamshidi, and S. Preussler, “Quasi-Light Storage: A Method for the Tunable Storage of Optical Packets With a Potential Delay-Bandwidth Product of Several Thousand Bit,” J. Lightwave Technol. 28(17), 2586–2592 (2010).
    [CrossRef]
  4. M. J. Lee, R. Pant, and M. A. Neifeld, “Improved slow-light delay performance of a broadband stimulated Brillouin scattering system using fiber Bragg gratings,” Appl. Opt. 47(34), 6404–6415 (2008).
    [CrossRef] [PubMed]
  5. R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, “Optimal pump profile designs for broadband SBS slow-light systems,” Opt. Express 16(4), 2764–2777 (2008).
    [CrossRef] [PubMed]
  6. Z. Shi, R. Pant, Z. Zhu, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, and R. W. Boyd, “Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity,” Opt. Lett. 32(14), 1986–1988 (2007).
    [CrossRef] [PubMed]
  7. K. Y. Song, K. S. Abedin, K. Hotate, M. González Herráez, and L. Thévenaz, “Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber,” Opt. Express 14(13), 5860–5865 (2006).
    [CrossRef] [PubMed]
  8. L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-fiber stimulated Brillouin ring laser with submilliwatt pump threshold,” Opt. Lett. 7(10), 509–511 (1982).
    [CrossRef] [PubMed]
  9. K. Y. Song, S. Chin, N. Primerov, and L. Thevenaz, “Time-Domain Distributed Fiber Sensor With 1 cm Spatial Resolution Based on Brillouin Dynamic Grating,” J. Lightwave Technol. 28(14), 2062–2067 (2010).
    [CrossRef]
  10. S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18(21), 22599–22613 (2010).
    [CrossRef] [PubMed]
  11. B. Zhang, L. S. Yan, J. Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple gb/s data channels,” IEEE Photon. Technol. Lett. 19(14), 1081–1083 (2007).
    [CrossRef]
  12. M. D. Pelusi, A. Fu, and B. J. Eggleton, “Multi-channel in-band OSNR monitoring using Stimulated Brillouin Scattering,” Opt. Express 18(9), 9435–9446 (2010).
    [CrossRef] [PubMed]
  13. P. T. Rakich, P. Davids, and Z. Wang, “Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces,” Opt. Express 18(14), 14439–14453 (2010).
    [CrossRef] [PubMed]
  14. J. C. Beugnot, T. Sylvestre, D. Alasia, H. Maillotte, V. Laude, A. Monteville, L. Provino, N. Traynor, S. F. Mafang, and L. Thévenaz, “Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber,” Opt. Express 15(23), 15517–15522 (2007).
    [CrossRef] [PubMed]
  15. P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibre,” Nat. Phys. 2(6), 388–392 (2006).
    [CrossRef]
  16. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide Photonics,” Nat. Photonics 5(3), 141–148 (2011).
    [CrossRef]
  17. B. J. Eggleton, “Chalcogenide photonics: fabrication, devices and applications. Introduction,” Opt. Express 18(25), 26632–26634 (2010).
    [CrossRef] [PubMed]
  18. L. Landau, and E. Lifshitz, Theory of Elasticity (Pergamon Press, 1959).
  19. T. Han, S. Madden, D. Bulla, and B. Luther-Davies, “Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography,” Opt. Express 18(18), 19286–19291 (2010).
    [CrossRef] [PubMed]

2011

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide Photonics,” Nat. Photonics 5(3), 141–148 (2011).
[CrossRef]

2010

B. J. Eggleton, “Chalcogenide photonics: fabrication, devices and applications. Introduction,” Opt. Express 18(25), 26632–26634 (2010).
[CrossRef] [PubMed]

T. Han, S. Madden, D. Bulla, and B. Luther-Davies, “Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography,” Opt. Express 18(18), 19286–19291 (2010).
[CrossRef] [PubMed]

K. Y. Song, S. Chin, N. Primerov, and L. Thevenaz, “Time-Domain Distributed Fiber Sensor With 1 cm Spatial Resolution Based on Brillouin Dynamic Grating,” J. Lightwave Technol. 28(14), 2062–2067 (2010).
[CrossRef]

S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18(21), 22599–22613 (2010).
[CrossRef] [PubMed]

T. Schneider, K. Jamshidi, and S. Preussler, “Quasi-Light Storage: A Method for the Tunable Storage of Optical Packets With a Potential Delay-Bandwidth Product of Several Thousand Bit,” J. Lightwave Technol. 28(17), 2586–2592 (2010).
[CrossRef]

M. D. Pelusi, A. Fu, and B. J. Eggleton, “Multi-channel in-band OSNR monitoring using Stimulated Brillouin Scattering,” Opt. Express 18(9), 9435–9446 (2010).
[CrossRef] [PubMed]

P. T. Rakich, P. Davids, and Z. Wang, “Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces,” Opt. Express 18(14), 14439–14453 (2010).
[CrossRef] [PubMed]

2008

2007

2006

P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibre,” Nat. Phys. 2(6), 388–392 (2006).
[CrossRef]

K. Y. Song, K. S. Abedin, K. Hotate, M. González Herráez, and L. Thévenaz, “Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber,” Opt. Express 14(13), 5860–5865 (2006).
[CrossRef] [PubMed]

1982

Abedin, K. S.

Alasia, D.

Berger, P.

Beugnot, J. C.

Bourderionnet, J.

Boyd, R. W.

Bulla, D.

Capmany, J.

Chin, S.

Chodorow, M.

Dainese, P.

P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibre,” Nat. Phys. 2(6), 388–392 (2006).
[CrossRef]

Davids, P.

Dolfi, D.

Eggleton, B. J.

Fazal, I.

B. Zhang, L. S. Yan, J. Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple gb/s data channels,” IEEE Photon. Technol. Lett. 19(14), 1081–1083 (2007).
[CrossRef]

Fragnito, H. L.

P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibre,” Nat. Phys. 2(6), 388–392 (2006).
[CrossRef]

Fu, A.

Gauthier, D. J.

González Herráez, M.

Han, T.

Hotate, K.

Jamshidi, K.

Joly, N.

P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibre,” Nat. Phys. 2(6), 388–392 (2006).
[CrossRef]

Khelif, A.

P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibre,” Nat. Phys. 2(6), 388–392 (2006).
[CrossRef]

Knight, J. C.

P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibre,” Nat. Phys. 2(6), 388–392 (2006).
[CrossRef]

Laude, V.

J. C. Beugnot, T. Sylvestre, D. Alasia, H. Maillotte, V. Laude, A. Monteville, L. Provino, N. Traynor, S. F. Mafang, and L. Thévenaz, “Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber,” Opt. Express 15(23), 15517–15522 (2007).
[CrossRef] [PubMed]

P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibre,” Nat. Phys. 2(6), 388–392 (2006).
[CrossRef]

Lee, M. J.

Luther-Davies, B.

Madden, S.

Mafang, S. F.

Maillotte, H.

Monteville, A.

Neifeld, M. A.

Pant, R.

Pelusi, M. D.

Preussler, S.

Primerov, N.

Provino, L.

Rakich, P. T.

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide Photonics,” Nat. Photonics 5(3), 141–148 (2011).
[CrossRef]

Russell, P. S. J.

P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibre,” Nat. Phys. 2(6), 388–392 (2006).
[CrossRef]

Sales, S.

Sancho, J.

Schneider, T.

Shaw, H. J.

Shi, Z.

Song, K. Y.

Stenner, M. D.

Stokes, L. F.

Sylvestre, T.

Thevenaz, L.

Thévenaz, L.

Traynor, N.

Wang, Z.

Wiederhecker, G. S.

P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibre,” Nat. Phys. 2(6), 388–392 (2006).
[CrossRef]

Willner, A. E.

B. Zhang, L. S. Yan, J. Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple gb/s data channels,” IEEE Photon. Technol. Lett. 19(14), 1081–1083 (2007).
[CrossRef]

Yan, L. S.

B. Zhang, L. S. Yan, J. Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple gb/s data channels,” IEEE Photon. Technol. Lett. 19(14), 1081–1083 (2007).
[CrossRef]

Yang, J. Y.

B. Zhang, L. S. Yan, J. Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple gb/s data channels,” IEEE Photon. Technol. Lett. 19(14), 1081–1083 (2007).
[CrossRef]

Zhang, B.

B. Zhang, L. S. Yan, J. Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple gb/s data channels,” IEEE Photon. Technol. Lett. 19(14), 1081–1083 (2007).
[CrossRef]

Zhu, Z.

Appl. Opt.

IEEE Photon. Technol. Lett.

B. Zhang, L. S. Yan, J. Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple gb/s data channels,” IEEE Photon. Technol. Lett. 19(14), 1081–1083 (2007).
[CrossRef]

J. Lightwave Technol.

Nat. Photonics

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
[CrossRef]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide Photonics,” Nat. Photonics 5(3), 141–148 (2011).
[CrossRef]

Nat. Phys.

P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibre,” Nat. Phys. 2(6), 388–392 (2006).
[CrossRef]

Opt. Express

B. J. Eggleton, “Chalcogenide photonics: fabrication, devices and applications. Introduction,” Opt. Express 18(25), 26632–26634 (2010).
[CrossRef] [PubMed]

M. D. Pelusi, A. Fu, and B. J. Eggleton, “Multi-channel in-band OSNR monitoring using Stimulated Brillouin Scattering,” Opt. Express 18(9), 9435–9446 (2010).
[CrossRef] [PubMed]

P. T. Rakich, P. Davids, and Z. Wang, “Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces,” Opt. Express 18(14), 14439–14453 (2010).
[CrossRef] [PubMed]

J. C. Beugnot, T. Sylvestre, D. Alasia, H. Maillotte, V. Laude, A. Monteville, L. Provino, N. Traynor, S. F. Mafang, and L. Thévenaz, “Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber,” Opt. Express 15(23), 15517–15522 (2007).
[CrossRef] [PubMed]

R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, “Optimal pump profile designs for broadband SBS slow-light systems,” Opt. Express 16(4), 2764–2777 (2008).
[CrossRef] [PubMed]

S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18(21), 22599–22613 (2010).
[CrossRef] [PubMed]

K. Y. Song, K. S. Abedin, K. Hotate, M. González Herráez, and L. Thévenaz, “Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber,” Opt. Express 14(13), 5860–5865 (2006).
[CrossRef] [PubMed]

T. Han, S. Madden, D. Bulla, and B. Luther-Davies, “Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography,” Opt. Express 18(18), 19286–19291 (2010).
[CrossRef] [PubMed]

Opt. Lett.

Other

R. W. Boyd, Nonlinear Optics (Academic Press, 2003).

L. Landau, and E. Lifshitz, Theory of Elasticity (Pergamon Press, 1959).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Concept diagram of on-chip SBS showing the interaction of the pump signal (solid) of frequency (ωP ) with an acoustic wave of frequency (ΩB ) resulting in the generation of a backscattered signal at the downshifted frequency ωS = ωP - ΩB and SEM image of a typical rib chalcogenide waveguide.

Fig. 2
Fig. 2

Experimental set-up for investigating on-chip SBS using backscattered signal.

Fig. 3
Fig. 3

Characterization of SBS using the backscattered signal showing (a) the spectra for the Rayleigh scattered pump and backscattered Stokes, for different input average pump powers (b) output pump power and filtered Stokes power as a function of the average input pump power.

Fig. 4
Fig. 4

Pump-probe set-up for measuring the SBS gain spectrum.

Fig. 5
Fig. 5

Pump-probe measurements showing (a) the Brillouin gain spectrum obtained using the input pump power of 300 mW while the probe frequency is varied and (b) output probe power, at the Brillouin shift, normalized to the output probe power when the pump is off.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

g B = η 4 π n 8 P 12 2 c ρ ν B Δ ν B λ p 3 ,
I s ( L ) = I s ( 0 ) exp g B P p u m p A L e f f ,
P c r = 21 A e f f K g B L e f f ,

Metrics