Abstract

Archimedes micro-screws have been fabricated by three-dimensional two-photon polymerization using a Nd:YAG Q-switched microchip laser at 532nm. Due to their small sizes they can be easily manipulated, and made to rotate using low power optical tweezers. Rotation rates up to 40 Hz are obtained with a laser power of 200 mW, i.e. 0.2 Hz/mW. A photo-driven micropump action in a microfluidic channel is demonstrated with a non-optimized flow rate of 6pL/min. The optofluidic properties of such type of Archimedes micro-screws are quantitatively described by the conservation of momentum that occurs when the laser photons are reflected on the helical micro-screw surface.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  2. E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
    [CrossRef]
  3. R. C. Gauthier, “Ray optics model and numerical computations for the radiation pressure micromotor,” Appl. Phys. Lett. 67(16), 2269–2271 (1995).
    [CrossRef]
  4. E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, and R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps,” J. Appl. Phys. 82(6), 2773–2779 (1997).
    [CrossRef]
  5. R. C. Gauthier, “Laser-trapping properties of dual-component spheres,” Appl. Opt. 41(33), 7135–7144 (2002).
    [CrossRef] [PubMed]
  6. A. Terray, J. Oakey, and D. W. M. Marr, “Microfuidic Control Using Colloidal Devices,” Sci. 296(5574), 1841–1844 (2002).
    [CrossRef]
  7. K. Ladavac and D. G. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12(6), 1144–1149 (2004).
    [CrossRef] [PubMed]
  8. J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
    [CrossRef] [PubMed]
  9. H. Ukita, T. Ohnishi, and Y. Nonohara, “Rotation Rate of a Three-Wing Rotor Illuminated by Upward-Directed Focused Beam in Optical Tweezers,” Opt. Rev. 15(2), 97–104 (2008).
    [CrossRef]
  10. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
    [CrossRef] [PubMed]
  11. P. Galadja and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
    [CrossRef]
  12. P. Galajda and P. Ormos, “Rotors produced and driven in laser tweezers with reversed direction of rotation,” Appl. Phys. Lett. 80(24), 4653–4655 (2002).
    [CrossRef]
  13. K. Ikuta, Y. Sasaki, L. Maegawa, and S. Maruo, “Biochemical IC chip for pretreatment in biochemical experiments,” MEMSYS, IEEE 6th Annu. Int. Conf., 19–23 Jan, 343–346 (2003).
  14. L. Kelemen, S. Valkai, and P. Ormos, “Integrated optical motor,” Appl. Opt. 45(12), 2777–2780 (2006).
    [CrossRef] [PubMed]
  15. S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006).
    [CrossRef]
  16. S. Maruo and H. Inoue, “Optically driven viscous micropump using a rotating microdisk,” Appl. Phys. Lett. 91(8), 84101–84103 (2007).
    [CrossRef]
  17. S. Maruo, A. Takaura, and Y. Saito, “Optically driven micropump with a twin spiral microrotor,” Opt. Express 17(21), 18525–18532 (2009).
    [CrossRef]
  18. I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau, and C. Andraud, “Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser,” Opt. Lett. 27(15), 1348–1350 (2002).
    [CrossRef]
  19. P. L. Baldeck, C.-L. Lin, and C. Andraud, “Two-photon absorption of organics: from spectroscopy to photodriven microsensors,” Studia. Universitatis. Cluj-Napoca. Series. Physica 2, 75–79 (2004).
  20. C.-L. Lin, I. Wang, M. Pierre, I. Colombier, C. Andraud, and P. L. Baldeck, “Rotational properties of micro-slabs driven by linearly polarized light,” J. Nonlinear Opt. Phys. 14(3), 375–382 (2005).
    [CrossRef]
  21. C.-L. Lin, I. Wang, B. Dollet, and P. L. Baldeck, “Velocimetry microsensors driven by linearly polarized optical tweezers,” Opt. Lett. 31(3), 329–331 (2006).
    [CrossRef] [PubMed]
  22. E. Guyon, J.P. Hulin, L. Petit, and C.D. Mitescu, Physical Hydrodynamics (Oxford Univ. Press 8, 2001).
  23. H. El-Sadi and N. Esmail, “Simulation of complex liquids in micropump,” Microelectron. J. 36(7), 657–666 (2005).
    [CrossRef]

2009 (1)

2008 (1)

H. Ukita, T. Ohnishi, and Y. Nonohara, “Rotation Rate of a Three-Wing Rotor Illuminated by Upward-Directed Focused Beam in Optical Tweezers,” Opt. Rev. 15(2), 97–104 (2008).
[CrossRef]

2007 (1)

S. Maruo and H. Inoue, “Optically driven viscous micropump using a rotating microdisk,” Appl. Phys. Lett. 91(8), 84101–84103 (2007).
[CrossRef]

2006 (4)

C.-L. Lin, I. Wang, B. Dollet, and P. L. Baldeck, “Velocimetry microsensors driven by linearly polarized optical tweezers,” Opt. Lett. 31(3), 329–331 (2006).
[CrossRef] [PubMed]

L. Kelemen, S. Valkai, and P. Ormos, “Integrated optical motor,” Appl. Opt. 45(12), 2777–2780 (2006).
[CrossRef] [PubMed]

S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006).
[CrossRef]

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

2005 (2)

H. El-Sadi and N. Esmail, “Simulation of complex liquids in micropump,” Microelectron. J. 36(7), 657–666 (2005).
[CrossRef]

C.-L. Lin, I. Wang, M. Pierre, I. Colombier, C. Andraud, and P. L. Baldeck, “Rotational properties of micro-slabs driven by linearly polarized light,” J. Nonlinear Opt. Phys. 14(3), 375–382 (2005).
[CrossRef]

2004 (2)

P. L. Baldeck, C.-L. Lin, and C. Andraud, “Two-photon absorption of organics: from spectroscopy to photodriven microsensors,” Studia. Universitatis. Cluj-Napoca. Series. Physica 2, 75–79 (2004).

K. Ladavac and D. G. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12(6), 1144–1149 (2004).
[CrossRef] [PubMed]

2002 (4)

R. C. Gauthier, “Laser-trapping properties of dual-component spheres,” Appl. Opt. 41(33), 7135–7144 (2002).
[CrossRef] [PubMed]

A. Terray, J. Oakey, and D. W. M. Marr, “Microfuidic Control Using Colloidal Devices,” Sci. 296(5574), 1841–1844 (2002).
[CrossRef]

I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau, and C. Andraud, “Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser,” Opt. Lett. 27(15), 1348–1350 (2002).
[CrossRef]

P. Galajda and P. Ormos, “Rotors produced and driven in laser tweezers with reversed direction of rotation,” Appl. Phys. Lett. 80(24), 4653–4655 (2002).
[CrossRef]

2001 (1)

P. Galadja and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[CrossRef]

1997 (2)

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
[CrossRef] [PubMed]

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, and R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps,” J. Appl. Phys. 82(6), 2773–2779 (1997).
[CrossRef]

1995 (1)

R. C. Gauthier, “Ray optics model and numerical computations for the radiation pressure micromotor,” Appl. Phys. Lett. 67(16), 2269–2271 (1995).
[CrossRef]

1994 (1)

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[CrossRef]

1986 (1)

Andraud, C.

C.-L. Lin, I. Wang, M. Pierre, I. Colombier, C. Andraud, and P. L. Baldeck, “Rotational properties of micro-slabs driven by linearly polarized light,” J. Nonlinear Opt. Phys. 14(3), 375–382 (2005).
[CrossRef]

P. L. Baldeck, C.-L. Lin, and C. Andraud, “Two-photon absorption of organics: from spectroscopy to photodriven microsensors,” Studia. Universitatis. Cluj-Napoca. Series. Physica 2, 75–79 (2004).

I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau, and C. Andraud, “Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser,” Opt. Lett. 27(15), 1348–1350 (2002).
[CrossRef]

Ashkin, A.

Baldeck, P. L.

C.-L. Lin, I. Wang, B. Dollet, and P. L. Baldeck, “Velocimetry microsensors driven by linearly polarized optical tweezers,” Opt. Lett. 31(3), 329–331 (2006).
[CrossRef] [PubMed]

C.-L. Lin, I. Wang, M. Pierre, I. Colombier, C. Andraud, and P. L. Baldeck, “Rotational properties of micro-slabs driven by linearly polarized light,” J. Nonlinear Opt. Phys. 14(3), 375–382 (2005).
[CrossRef]

P. L. Baldeck, C.-L. Lin, and C. Andraud, “Two-photon absorption of organics: from spectroscopy to photodriven microsensors,” Studia. Universitatis. Cluj-Napoca. Series. Physica 2, 75–79 (2004).

I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau, and C. Andraud, “Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser,” Opt. Lett. 27(15), 1348–1350 (2002).
[CrossRef]

Bjorkholm, J. E.

Bouriau, M.

Chu, S.

Colombier, I.

C.-L. Lin, I. Wang, M. Pierre, I. Colombier, C. Andraud, and P. L. Baldeck, “Rotational properties of micro-slabs driven by linearly polarized light,” J. Nonlinear Opt. Phys. 14(3), 375–382 (2005).
[CrossRef]

Cooper, J.

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

di Leonardo, R.

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

Dollet, B.

Dziedzic, J. M.

El-Sadi, H.

H. El-Sadi and N. Esmail, “Simulation of complex liquids in micropump,” Microelectron. J. 36(7), 657–666 (2005).
[CrossRef]

Esmail, N.

H. El-Sadi and N. Esmail, “Simulation of complex liquids in micropump,” Microelectron. J. 36(7), 657–666 (2005).
[CrossRef]

Galadja, P.

P. Galadja and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[CrossRef]

Galajda, P.

P. Galajda and P. Ormos, “Rotors produced and driven in laser tweezers with reversed direction of rotation,” Appl. Phys. Lett. 80(24), 4653–4655 (2002).
[CrossRef]

Gauthier, R. C.

R. C. Gauthier, “Laser-trapping properties of dual-component spheres,” Appl. Opt. 41(33), 7135–7144 (2002).
[CrossRef] [PubMed]

R. C. Gauthier, “Ray optics model and numerical computations for the radiation pressure micromotor,” Appl. Phys. Lett. 67(16), 2269–2271 (1995).
[CrossRef]

Grier, D. G.

Higurashi, E.

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, and R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps,” J. Appl. Phys. 82(6), 2773–2779 (1997).
[CrossRef]

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[CrossRef]

Inoue, H.

S. Maruo and H. Inoue, “Optically driven viscous micropump using a rotating microdisk,” Appl. Phys. Lett. 91(8), 84101–84103 (2007).
[CrossRef]

S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006).
[CrossRef]

Kawata, S.

Kelemen, L.

Ladavac, K.

Leach, J.

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

Lin, C.-L.

C.-L. Lin, I. Wang, B. Dollet, and P. L. Baldeck, “Velocimetry microsensors driven by linearly polarized optical tweezers,” Opt. Lett. 31(3), 329–331 (2006).
[CrossRef] [PubMed]

C.-L. Lin, I. Wang, M. Pierre, I. Colombier, C. Andraud, and P. L. Baldeck, “Rotational properties of micro-slabs driven by linearly polarized light,” J. Nonlinear Opt. Phys. 14(3), 375–382 (2005).
[CrossRef]

P. L. Baldeck, C.-L. Lin, and C. Andraud, “Two-photon absorption of organics: from spectroscopy to photodriven microsensors,” Studia. Universitatis. Cluj-Napoca. Series. Physica 2, 75–79 (2004).

Marr, D. W. M.

A. Terray, J. Oakey, and D. W. M. Marr, “Microfuidic Control Using Colloidal Devices,” Sci. 296(5574), 1841–1844 (2002).
[CrossRef]

Martineau, C.

Maruo, S.

S. Maruo, A. Takaura, and Y. Saito, “Optically driven micropump with a twin spiral microrotor,” Opt. Express 17(21), 18525–18532 (2009).
[CrossRef]

S. Maruo and H. Inoue, “Optically driven viscous micropump using a rotating microdisk,” Appl. Phys. Lett. 91(8), 84101–84103 (2007).
[CrossRef]

S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006).
[CrossRef]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
[CrossRef] [PubMed]

Mushfique, H.

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

Nakamura, O.

Nonohara, Y.

H. Ukita, T. Ohnishi, and Y. Nonohara, “Rotation Rate of a Three-Wing Rotor Illuminated by Upward-Directed Focused Beam in Optical Tweezers,” Opt. Rev. 15(2), 97–104 (2008).
[CrossRef]

Oakey, J.

A. Terray, J. Oakey, and D. W. M. Marr, “Microfuidic Control Using Colloidal Devices,” Sci. 296(5574), 1841–1844 (2002).
[CrossRef]

Ohguchi, O.

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, and R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps,” J. Appl. Phys. 82(6), 2773–2779 (1997).
[CrossRef]

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[CrossRef]

Ohnishi, T.

H. Ukita, T. Ohnishi, and Y. Nonohara, “Rotation Rate of a Three-Wing Rotor Illuminated by Upward-Directed Focused Beam in Optical Tweezers,” Opt. Rev. 15(2), 97–104 (2008).
[CrossRef]

Ormos, P.

L. Kelemen, S. Valkai, and P. Ormos, “Integrated optical motor,” Appl. Opt. 45(12), 2777–2780 (2006).
[CrossRef] [PubMed]

P. Galajda and P. Ormos, “Rotors produced and driven in laser tweezers with reversed direction of rotation,” Appl. Phys. Lett. 80(24), 4653–4655 (2002).
[CrossRef]

P. Galadja and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[CrossRef]

Padgett, M.

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

Pierre, M.

C.-L. Lin, I. Wang, M. Pierre, I. Colombier, C. Andraud, and P. L. Baldeck, “Rotational properties of micro-slabs driven by linearly polarized light,” J. Nonlinear Opt. Phys. 14(3), 375–382 (2005).
[CrossRef]

Saito, Y.

Sawada, R.

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, and R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps,” J. Appl. Phys. 82(6), 2773–2779 (1997).
[CrossRef]

Takaura, A.

Tamamura, T.

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, and R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps,” J. Appl. Phys. 82(6), 2773–2779 (1997).
[CrossRef]

Tanaka, H.

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[CrossRef]

Terray, A.

A. Terray, J. Oakey, and D. W. M. Marr, “Microfuidic Control Using Colloidal Devices,” Sci. 296(5574), 1841–1844 (2002).
[CrossRef]

Ukita, H.

H. Ukita, T. Ohnishi, and Y. Nonohara, “Rotation Rate of a Three-Wing Rotor Illuminated by Upward-Directed Focused Beam in Optical Tweezers,” Opt. Rev. 15(2), 97–104 (2008).
[CrossRef]

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, and R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps,” J. Appl. Phys. 82(6), 2773–2779 (1997).
[CrossRef]

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[CrossRef]

Valkai, S.

Wang, I.

Appl. Opt. (2)

Appl. Phys. Lett. (6)

S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006).
[CrossRef]

S. Maruo and H. Inoue, “Optically driven viscous micropump using a rotating microdisk,” Appl. Phys. Lett. 91(8), 84101–84103 (2007).
[CrossRef]

P. Galadja and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[CrossRef]

P. Galajda and P. Ormos, “Rotors produced and driven in laser tweezers with reversed direction of rotation,” Appl. Phys. Lett. 80(24), 4653–4655 (2002).
[CrossRef]

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[CrossRef]

R. C. Gauthier, “Ray optics model and numerical computations for the radiation pressure micromotor,” Appl. Phys. Lett. 67(16), 2269–2271 (1995).
[CrossRef]

J. Appl. Phys. (1)

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, and R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps,” J. Appl. Phys. 82(6), 2773–2779 (1997).
[CrossRef]

J. Nonlinear Opt. Phys. (1)

C.-L. Lin, I. Wang, M. Pierre, I. Colombier, C. Andraud, and P. L. Baldeck, “Rotational properties of micro-slabs driven by linearly polarized light,” J. Nonlinear Opt. Phys. 14(3), 375–382 (2005).
[CrossRef]

Lab Chip (1)

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

Microelectron. J. (1)

H. El-Sadi and N. Esmail, “Simulation of complex liquids in micropump,” Microelectron. J. 36(7), 657–666 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Opt. Rev. (1)

H. Ukita, T. Ohnishi, and Y. Nonohara, “Rotation Rate of a Three-Wing Rotor Illuminated by Upward-Directed Focused Beam in Optical Tweezers,” Opt. Rev. 15(2), 97–104 (2008).
[CrossRef]

Sci. (1)

A. Terray, J. Oakey, and D. W. M. Marr, “Microfuidic Control Using Colloidal Devices,” Sci. 296(5574), 1841–1844 (2002).
[CrossRef]

Studia. Universitatis. Cluj-Napoca. Series. Physica (1)

P. L. Baldeck, C.-L. Lin, and C. Andraud, “Two-photon absorption of organics: from spectroscopy to photodriven microsensors,” Studia. Universitatis. Cluj-Napoca. Series. Physica 2, 75–79 (2004).

Other (2)

E. Guyon, J.P. Hulin, L. Petit, and C.D. Mitescu, Physical Hydrodynamics (Oxford Univ. Press 8, 2001).

K. Ikuta, Y. Sasaki, L. Maegawa, and S. Maruo, “Biochemical IC chip for pretreatment in biochemical experiments,” MEMSYS, IEEE 6th Annu. Int. Conf., 19–23 Jan, 343–346 (2003).

Supplementary Material (2)

» Media 1: MPG (5040 KB)     
» Media 2: MPG (4480 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Voxel-based ladder-like element used to fabricate Archimedes micro-screws; (b) Trajectory of the laser focal point: each ladder-like element is scanned after an axial increment (ΔZ) and a radial increment (Δθ); (c) Screw composed of elementary ladder-likes; (d) The photograph of three Archimedes screws (screw number=1.5) floating freely in acetone solution.

Fig. 2
Fig. 2

Demonstration of optical trapping and rotation of an Archimedes micro-screw in an optical tweezers. (Media 1)

Fig. 5
Fig. 5

Ω/Plaser versus 1/N (N: screw number). Theoretical curves are plotted for three different values of the laser beam radius, R0 . We notice that experimental data fits well with R 0 = 0.5 μ m .

Fig. 3
Fig. 3

The dependence of rotational frequency when increasing the laser power for micro-screws with screw numbers: 1.0, 1.5, and 2.0.

Fig. 4
Fig. 4

(a) laser photon reflected on helical micro-screw surface; (b) the screw decomposed to individual wedges; (c) an elementary unit of wedge; (d) schematic representation of the main geometrical parameters: After a turn elevation changes by the pitch, a whatever the value of r. It is clear that α is a function of r and takes the value αο for r=R, i.e. at the border. The total height of the screw is H which corresponds to a rotation of an angle Δθ. This angle can take any value and is here shown as if it were smaller than 2π. For actual screws in this paper, Δθ=Nπ where N=1, 1.5, 2 is the number of turns of the screw.

Fig. 6
Fig. 6

The influence of the different parameters and physical effects is shown here: (a) incidence angle of screw surfaces, (b) averaged reflectivity on these surfaces, (c) total optical torque per unit power, (d) total hydrodynamic torque per unit rotation speed.

Fig. 7
Fig. 7

Schematic of the photo-driven micropump action in a microfluidic microchannel.

Fig. 8
Fig. 8

The optofluidic demonstration of Archimedes micro-screw in a micro-channel (sequence: from left to right). (Media 2)

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

R s / p ( α ) = 1 2 [ R T E ( α ) + R T M ( α ) ]
d 2 f o p t = I h v R s / p o Δ t Δ p Δ t
d 2 M o p t = I n s c R s / p o sin 2 α r d r r d θ
M o p t = 2 I n s c R s / p o H ( α 2 π ) 2 [ 1 t 0 2 ln ( 1 + 1 t 0 2 ) ]
M o p t = M 0 1 2 [ t 0 t 0 3 ln ( 1 + 1 t 0 2 ) ] = M 0 f ( t 0 )
M 0 = 2 I n s c R s / p o R 0 2 ( H t 0 ) = 4 π R 0 3 I n s c R s / p o N
M h y d = 2 G η Ω R 2 H sin ( α R )
R e = ρ η Ω R 2
Ω P = 2 R 0 G η R 2 sin ( α R ) H n s c R s / p o N f ( t 0 )

Metrics