Abstract

We demonstrate an optical transmitter based on dynamic optical arbitrary waveform generation (OAWG) which is capable of creating high-bandwidth (THz) data waveforms in any modulation format using the parallel synthesis of multiple coherent spectral slices. As an initial demonstration, the transmitter uses only 5.5 GHz of electrical bandwidth and two 10-GHz-wide spectral slices to create 100-ns duration, 20-GHz optical waveforms in various modulation formats including differential phase-shift keying (DPSK), quaternary phase-shift keying (QPSK), and eight phase-shift keying (8PSK) with only changes in software. The experimentally generated waveforms showed clear eye openings and separated constellation points when measured using a real-time digital coherent receiver. Bit-error-rate (BER) performance analysis resulted in a BER < 9.8 × 10−6 for DPSK and QPSK waveforms. Additionally, we experimentally demonstrate three-slice, 4-ns long waveforms that highlight the bandwidth scalable nature of the optical transmitter. The various generated waveforms show that the key transmitter properties (i.e., packet length, modulation format, data rate, and modulation filter shape) are software definable, and that the optical transmitter is capable of acting as a flexible bandwidth transmitter.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Freund, M. Nolle, C. Schmidt-Langhorst, R. Ludwig, C. Schubert, G. Bosco, A. Carena, P. Poggiolini, L. Oxenlowe, M. Galili, H. C. Hansen Mulvad, M. Winter, D. Hillerkuss, R. Schmogrow, W. Freude, J. Leuthold, A. D. Ellis, F. C. Garcia Gunning, J. Zhao, P. Frascella, S. K. Ibrahim, and N. Mac Suibhne, “Single-and multi-carrier techniques to build up Tb/s per channel transmission systems,” in International Conference on Transparent Optical Networks (ICTON) (2010), Tu.D1.4.
  2. W. Shieh and I. Djordjevic, OFDM for Optical Communications (Elsevier, 2010).
  3. H. C. H. Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express 18(2), 1438–1443 (2010).
    [CrossRef]
  4. S. K. Ibrahim, J. Zhao, F. C. Garcia Gunning, P. Frascella, F. H. Peters, and A. D. Ellis, “Towards a practical implementation of coherent WDM: analytical, numerical, and experimental studies,” IEEE Photon. J. 2(5), 833–847 (2010).
    [CrossRef]
  5. J. Zhao and A. D. Ellis, “Electronic impairment mitigation in optically multiplexed multicarrier systems,” J. Lightwave Technol. 29(3), 278–290 (2011).
    [CrossRef]
  6. H. Takahashi, A. Al Amin, S. L. Jansen, I. Morita, and H. Tanaka, “Highly spectrally efficient DWDM transmission at 7.0 b/s/Hz using 8 x 65.1-Gb/s coherent PDM-OFDM,” J. Lightwave Technol. 28(4), 406–414 (2010).
    [CrossRef]
  7. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission with orthogonal-band multiplexing and subwavelength bandwidth access,” J. Lightwave Technol. 28(4), 308–315 (2010).
    [CrossRef]
  8. D. Hillerkuss, T. Schellinger, R. Schmogrow, M. Winter, T. Vallaitis, R. Bonk, A. Marculescu, J. Li, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Single source optical OFDM transmitter and optical FFT receiver demonstrated at line rates of 5.4 and 10.8 Tbit/s,” in Proc. of OFC 2010, (2010), paper PDPC1.
  9. D. Hillerkuss, M. Winter, M. Teschke, A. Marculescu, J. Li, G. Sigurdsson, K. Worms, S. Ben Ezra, N. Narkiss, W. Freude, and J. Leuthold, “Simple all-optical FFT scheme enabling Tbit/s real-time signal processing,” Opt. Express 18(9), 9324–9340 (2010).
    [CrossRef] [PubMed]
  10. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [CrossRef]
  11. M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, Y. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
    [CrossRef]
  12. D. J. Geisler, N. K. Fontaine, T. He, R. P. Scott, L. Paraschis, J. P. Heritage, and S. J. B. Yoo, “Modulation-format agile, reconfigurable Tb/s transmitter based optical arbitrary waveform generation,” Opt. Express 17(18), 15911–15925 (2009).
    [CrossRef] [PubMed]
  13. N. K. Fontaine, D. J. Geisler, R. P. Scott, T. He, J. P. Heritage, and S. J. B. Yoo, “Demonstration of high-fidelity dynamic optical arbitrary waveform generation,” Opt. Express 18(22), 22988–22995 (2010).
    [CrossRef] [PubMed]
  14. Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
    [CrossRef]
  15. M. Akbulut, S. Bhooplapur, I. Ozdur, J. Davila-Rodriguez, and P. J. Delfyett, “Dynamic line-by-line pulse shaping with GHz update rate,” Opt. Express 18(17), 18284–18291 (2010).
    [CrossRef] [PubMed]
  16. J. T. Willits, A. M. Weiner, and S. T. Cundiff, “Theory of rapid-update line-by-line pulse shaping,” Opt. Express 16(1), 315–327 (2008).
    [CrossRef] [PubMed]
  17. T. He, R. P. Scott, D. J. Geisler, N. K. Fontaine, O. Gerstel, L. Paraschis, J. P. Heritage, and S. J. B. Yoo, “Flexible-bandwidth, impairment-aware transmitter based on parallel synthesis of optical frequency combs,” in Optical Fiber Communications Conference (OFC) (2011).
  18. R. P. Scott, N. K. Fontaine, J. P. Heritage, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and measurement,” Opt. Express 18(18), 18655–18670 (2010).
    [CrossRef] [PubMed]
  19. S. Zhang, P. Y. Kam, C. Yu, and J. Chen, “Laser linewidth tolerance of decision-aided maximum likelihood phase estimation in coherent optical M-ary PSK and QAM systems,” IEEE Photon. Technol. Lett. 21(15), 1075–1077 (2009).
    [CrossRef]
  20. C. R. Mercer and G. Beheim, “Fiber optic phase stepping system for interferometry,” Appl. Opt. 30(7), 729–734 (1991).
    [CrossRef] [PubMed]
  21. F. M. Soares, J.-H. Baek, N. K. Fontaine, X. Zhou, Y. Wang, R. P. Scott, J. P. Heritage, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, S. Vatanapradit, L. A. Gruezke, W. T. Tsang, and S. J. B. Yoo, “Monolithically integrated InP wafer- scale 100-channel × 10-GHz AWG and michelson interferometers for 1-THz-bandwidth optical arbitrary waveform generation,” in Proc. of OFC 2010 (2010), OThS1.
  22. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
    [CrossRef] [PubMed]
  23. D.-S. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation,” J. Lightwave Technol. 24(1), 12–21 (2006).
    [CrossRef]
  24. A. Assalini and A. M. Tonello, “Improved nyquist pulses,” IEEE Commun. Lett. 8(2), 87–89 (2004).
    [CrossRef]
  25. S. Benedetto and E. Biglieri, Principles of Digital Transmission: With Wireless Applications (Kluwer Academic Publishers, 1999).
  26. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett. 32(11), 1515–1517 (2007).
    [CrossRef] [PubMed]

2011 (1)

2010 (10)

H. Takahashi, A. Al Amin, S. L. Jansen, I. Morita, and H. Tanaka, “Highly spectrally efficient DWDM transmission at 7.0 b/s/Hz using 8 x 65.1-Gb/s coherent PDM-OFDM,” J. Lightwave Technol. 28(4), 406–414 (2010).
[CrossRef]

Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission with orthogonal-band multiplexing and subwavelength bandwidth access,” J. Lightwave Technol. 28(4), 308–315 (2010).
[CrossRef]

D. Hillerkuss, M. Winter, M. Teschke, A. Marculescu, J. Li, G. Sigurdsson, K. Worms, S. Ben Ezra, N. Narkiss, W. Freude, and J. Leuthold, “Simple all-optical FFT scheme enabling Tbit/s real-time signal processing,” Opt. Express 18(9), 9324–9340 (2010).
[CrossRef] [PubMed]

R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
[CrossRef]

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, Y. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[CrossRef]

H. C. H. Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express 18(2), 1438–1443 (2010).
[CrossRef]

S. K. Ibrahim, J. Zhao, F. C. Garcia Gunning, P. Frascella, F. H. Peters, and A. D. Ellis, “Towards a practical implementation of coherent WDM: analytical, numerical, and experimental studies,” IEEE Photon. J. 2(5), 833–847 (2010).
[CrossRef]

N. K. Fontaine, D. J. Geisler, R. P. Scott, T. He, J. P. Heritage, and S. J. B. Yoo, “Demonstration of high-fidelity dynamic optical arbitrary waveform generation,” Opt. Express 18(22), 22988–22995 (2010).
[CrossRef] [PubMed]

M. Akbulut, S. Bhooplapur, I. Ozdur, J. Davila-Rodriguez, and P. J. Delfyett, “Dynamic line-by-line pulse shaping with GHz update rate,” Opt. Express 18(17), 18284–18291 (2010).
[CrossRef] [PubMed]

R. P. Scott, N. K. Fontaine, J. P. Heritage, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and measurement,” Opt. Express 18(18), 18655–18670 (2010).
[CrossRef] [PubMed]

2009 (2)

S. Zhang, P. Y. Kam, C. Yu, and J. Chen, “Laser linewidth tolerance of decision-aided maximum likelihood phase estimation in coherent optical M-ary PSK and QAM systems,” IEEE Photon. Technol. Lett. 21(15), 1075–1077 (2009).
[CrossRef]

D. J. Geisler, N. K. Fontaine, T. He, R. P. Scott, L. Paraschis, J. P. Heritage, and S. J. B. Yoo, “Modulation-format agile, reconfigurable Tb/s transmitter based optical arbitrary waveform generation,” Opt. Express 17(18), 15911–15925 (2009).
[CrossRef] [PubMed]

2008 (2)

2007 (2)

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett. 32(11), 1515–1517 (2007).
[CrossRef] [PubMed]

Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

2006 (1)

2004 (1)

A. Assalini and A. M. Tonello, “Improved nyquist pulses,” IEEE Commun. Lett. 8(2), 87–89 (2004).
[CrossRef]

1991 (1)

Akbulut, M.

Al Amin, A.

Assalini, A.

A. Assalini and A. M. Tonello, “Improved nyquist pulses,” IEEE Commun. Lett. 8(2), 87–89 (2004).
[CrossRef]

Barros, D. J. F.

Beheim, G.

Ben Ezra, S.

Bhooplapur, S.

Chen, J.

S. Zhang, P. Y. Kam, C. Yu, and J. Chen, “Laser linewidth tolerance of decision-aided maximum likelihood phase estimation in coherent optical M-ary PSK and QAM systems,” IEEE Photon. Technol. Lett. 21(15), 1075–1077 (2009).
[CrossRef]

Chen, S.

Clausen, A. T.

Cundiff, S. T.

Davila-Rodriguez, J.

Delfyett, P. J.

Ellis, A. D.

J. Zhao and A. D. Ellis, “Electronic impairment mitigation in optically multiplexed multicarrier systems,” J. Lightwave Technol. 29(3), 278–290 (2011).
[CrossRef]

S. K. Ibrahim, J. Zhao, F. C. Garcia Gunning, P. Frascella, F. H. Peters, and A. D. Ellis, “Towards a practical implementation of coherent WDM: analytical, numerical, and experimental studies,” IEEE Photon. J. 2(5), 833–847 (2010).
[CrossRef]

Essiambre, R.-J.

Fontaine, N. K.

Foschini, G. J.

Frascella, P.

S. K. Ibrahim, J. Zhao, F. C. Garcia Gunning, P. Frascella, F. H. Peters, and A. D. Ellis, “Towards a practical implementation of coherent WDM: analytical, numerical, and experimental studies,” IEEE Photon. J. 2(5), 833–847 (2010).
[CrossRef]

Freude, W.

Galili, M.

Garcia Gunning, F. C.

S. K. Ibrahim, J. Zhao, F. C. Garcia Gunning, P. Frascella, F. H. Peters, and A. D. Ellis, “Towards a practical implementation of coherent WDM: analytical, numerical, and experimental studies,” IEEE Photon. J. 2(5), 833–847 (2010).
[CrossRef]

Geisler, D. J.

Goebel, B.

He, T.

Heritage, J. P.

Hillerkuss, D.

Hirano, A.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, Y. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[CrossRef]

Hu, H.

Huang, C.

Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

Ibrahim, S. K.

S. K. Ibrahim, J. Zhao, F. C. Garcia Gunning, P. Frascella, F. H. Peters, and A. D. Ellis, “Towards a practical implementation of coherent WDM: analytical, numerical, and experimental studies,” IEEE Photon. J. 2(5), 833–847 (2010).
[CrossRef]

Ip, E.

Izutsu, M.

Jansen, S. L.

Jensen, J. B.

Jeppesen, P.

Jiang, Z.

Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

Jinno, M.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, Y. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[CrossRef]

Kahn, J. M.

Kam, P. Y.

S. Zhang, P. Y. Kam, C. Yu, and J. Chen, “Laser linewidth tolerance of decision-aided maximum likelihood phase estimation in coherent optical M-ary PSK and QAM systems,” IEEE Photon. Technol. Lett. 21(15), 1075–1077 (2009).
[CrossRef]

Katoh, K.

Kawanishi, T.

Kikuchi, K.

Kozicki, B.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, Y. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[CrossRef]

Kramer, G.

Lau, A. P. T.

Leaird, D. E.

Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

Leuthold, J.

Li, J.

Ly-Gagnon, D.-S.

Ma, Y.

Marculescu, A.

Mercer, C. R.

Morita, I.

Mulvad, H. C. H.

Narkiss, N.

Oxenløwe, L. K.

Ozdur, I.

Paraschis, L.

Peters, F. H.

S. K. Ibrahim, J. Zhao, F. C. Garcia Gunning, P. Frascella, F. H. Peters, and A. D. Ellis, “Towards a practical implementation of coherent WDM: analytical, numerical, and experimental studies,” IEEE Photon. J. 2(5), 833–847 (2010).
[CrossRef]

Peucheret, C.

Sakamoto, T.

Scott, R. P.

Shieh, W.

Sigurdsson, G.

Sone, Y.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, Y. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[CrossRef]

Takahashi, H.

Takara, H.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, Y. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[CrossRef]

Tanaka, H.

Tanaka, Y.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, Y. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[CrossRef]

Tang, Y.

Teschke, M.

Tonello, A. M.

A. Assalini and A. M. Tonello, “Improved nyquist pulses,” IEEE Commun. Lett. 8(2), 87–89 (2004).
[CrossRef]

Tsukamoto, S.

Watanabe, A.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, Y. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[CrossRef]

Weiner, A. M.

J. T. Willits, A. M. Weiner, and S. T. Cundiff, “Theory of rapid-update line-by-line pulse shaping,” Opt. Express 16(1), 315–327 (2008).
[CrossRef] [PubMed]

Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

Willits, J. T.

Winter, M.

Winzer, P. J.

Worms, K.

Yang, Q.

Yoo, S. J. B.

Yu, C.

S. Zhang, P. Y. Kam, C. Yu, and J. Chen, “Laser linewidth tolerance of decision-aided maximum likelihood phase estimation in coherent optical M-ary PSK and QAM systems,” IEEE Photon. Technol. Lett. 21(15), 1075–1077 (2009).
[CrossRef]

Zhang, S.

S. Zhang, P. Y. Kam, C. Yu, and J. Chen, “Laser linewidth tolerance of decision-aided maximum likelihood phase estimation in coherent optical M-ary PSK and QAM systems,” IEEE Photon. Technol. Lett. 21(15), 1075–1077 (2009).
[CrossRef]

Zhao, J.

J. Zhao and A. D. Ellis, “Electronic impairment mitigation in optically multiplexed multicarrier systems,” J. Lightwave Technol. 29(3), 278–290 (2011).
[CrossRef]

S. K. Ibrahim, J. Zhao, F. C. Garcia Gunning, P. Frascella, F. H. Peters, and A. D. Ellis, “Towards a practical implementation of coherent WDM: analytical, numerical, and experimental studies,” IEEE Photon. J. 2(5), 833–847 (2010).
[CrossRef]

Appl. Opt. (1)

IEEE Commun. Lett. (1)

A. Assalini and A. M. Tonello, “Improved nyquist pulses,” IEEE Commun. Lett. 8(2), 87–89 (2004).
[CrossRef]

IEEE Commun. Mag. (1)

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, Y. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[CrossRef]

IEEE Photon. J. (1)

S. K. Ibrahim, J. Zhao, F. C. Garcia Gunning, P. Frascella, F. H. Peters, and A. D. Ellis, “Towards a practical implementation of coherent WDM: analytical, numerical, and experimental studies,” IEEE Photon. J. 2(5), 833–847 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Zhang, P. Y. Kam, C. Yu, and J. Chen, “Laser linewidth tolerance of decision-aided maximum likelihood phase estimation in coherent optical M-ary PSK and QAM systems,” IEEE Photon. Technol. Lett. 21(15), 1075–1077 (2009).
[CrossRef]

J. Lightwave Technol. (5)

Nat. Photonics (1)

Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

Opt. Express (8)

J. T. Willits, A. M. Weiner, and S. T. Cundiff, “Theory of rapid-update line-by-line pulse shaping,” Opt. Express 16(1), 315–327 (2008).
[CrossRef] [PubMed]

E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
[CrossRef] [PubMed]

D. J. Geisler, N. K. Fontaine, T. He, R. P. Scott, L. Paraschis, J. P. Heritage, and S. J. B. Yoo, “Modulation-format agile, reconfigurable Tb/s transmitter based optical arbitrary waveform generation,” Opt. Express 17(18), 15911–15925 (2009).
[CrossRef] [PubMed]

H. C. H. Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express 18(2), 1438–1443 (2010).
[CrossRef]

D. Hillerkuss, M. Winter, M. Teschke, A. Marculescu, J. Li, G. Sigurdsson, K. Worms, S. Ben Ezra, N. Narkiss, W. Freude, and J. Leuthold, “Simple all-optical FFT scheme enabling Tbit/s real-time signal processing,” Opt. Express 18(9), 9324–9340 (2010).
[CrossRef] [PubMed]

M. Akbulut, S. Bhooplapur, I. Ozdur, J. Davila-Rodriguez, and P. J. Delfyett, “Dynamic line-by-line pulse shaping with GHz update rate,” Opt. Express 18(17), 18284–18291 (2010).
[CrossRef] [PubMed]

R. P. Scott, N. K. Fontaine, J. P. Heritage, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and measurement,” Opt. Express 18(18), 18655–18670 (2010).
[CrossRef] [PubMed]

N. K. Fontaine, D. J. Geisler, R. P. Scott, T. He, J. P. Heritage, and S. J. B. Yoo, “Demonstration of high-fidelity dynamic optical arbitrary waveform generation,” Opt. Express 18(22), 22988–22995 (2010).
[CrossRef] [PubMed]

Opt. Lett. (1)

Other (6)

S. Benedetto and E. Biglieri, Principles of Digital Transmission: With Wireless Applications (Kluwer Academic Publishers, 1999).

T. He, R. P. Scott, D. J. Geisler, N. K. Fontaine, O. Gerstel, L. Paraschis, J. P. Heritage, and S. J. B. Yoo, “Flexible-bandwidth, impairment-aware transmitter based on parallel synthesis of optical frequency combs,” in Optical Fiber Communications Conference (OFC) (2011).

F. M. Soares, J.-H. Baek, N. K. Fontaine, X. Zhou, Y. Wang, R. P. Scott, J. P. Heritage, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, S. Vatanapradit, L. A. Gruezke, W. T. Tsang, and S. J. B. Yoo, “Monolithically integrated InP wafer- scale 100-channel × 10-GHz AWG and michelson interferometers for 1-THz-bandwidth optical arbitrary waveform generation,” in Proc. of OFC 2010 (2010), OThS1.

D. Hillerkuss, T. Schellinger, R. Schmogrow, M. Winter, T. Vallaitis, R. Bonk, A. Marculescu, J. Li, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Single source optical OFDM transmitter and optical FFT receiver demonstrated at line rates of 5.4 and 10.8 Tbit/s,” in Proc. of OFC 2010, (2010), paper PDPC1.

R. Freund, M. Nolle, C. Schmidt-Langhorst, R. Ludwig, C. Schubert, G. Bosco, A. Carena, P. Poggiolini, L. Oxenlowe, M. Galili, H. C. Hansen Mulvad, M. Winter, D. Hillerkuss, R. Schmogrow, W. Freude, J. Leuthold, A. D. Ellis, F. C. Garcia Gunning, J. Zhao, P. Frascella, S. K. Ibrahim, and N. Mac Suibhne, “Single-and multi-carrier techniques to build up Tb/s per channel transmission systems,” in International Conference on Transparent Optical Networks (ICTON) (2010), Tu.D1.4.

W. Shieh and I. Djordjevic, OFDM for Optical Communications (Elsevier, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Coherent OAWG transmitter concept. Many spectral slices, each created using moderate-speed (<10 GHz) electronics, are combined together to form a high bandwidth, gapless output spectrum. (b) Comb line isolating demultiplexer transmission, (c) comb line modulation using four-quadrature modulation, and (d) gapless multiplexer transmission.

Fig. 2
Fig. 2

DSP algorithm for the case of two spectral slices. (a) Separating target signal into overlapping spectral slices, (b) adding preemphasis for spectral multiplexer transmission, and determining temporal I/Q modulations for each FQM.

Fig. 3
Fig. 3

Two slice experimental arrangement. (a) OAWG transmitter for two spectral slice signal generation with measured (b) spectral demultiplexer, and (c) spectral multiplexer transmission. (d) Coherent receiver for two spectral slice signal measurement. IQM: I/Q modulator. OFCG: optical frequency comb generator.

Fig. 4
Fig. 4

20 GBd DPSK waveform with a spectral efficiency of 1 b/s/Hz (a) spectrum (b) eye diagram, and (c) constellation diagram. 20 GBd QPSK waveform with a spectral efficiency of 2 b/s/Hz (d) spectrum, (e) eye diagrams, and (f) constellation diagram.

Fig. 5
Fig. 5

10 GBd, 8PSK waveform with a spectral efficiency of 1.5 b/s/Hz (a) spectrum, and (b) constellation diagram.

Fig. 6
Fig. 6

14.492 Gsymbols/s DPSK waveform (0.069 ns symbol period) with a spectral efficiency of 1 b/s/Hz (a) spectrum, (b) eye diagram, and (c) constellation diagram.

Fig. 7
Fig. 7

10 GBd centered DPSK with a spectral efficiency of 1 b/s/Hz (a) spectrum, (b) eye diagram, and (c) constellation diagram. 10 GBd spectrally shifted DPSK with a spectral efficiency of 1 b/s/Hz (d) spectrum, (e) eye diagrams, and (f) constellation diagram.

Fig. 8
Fig. 8

10 GBd DPSK waveform with a spectral efficiency of 0.5 b/s/Hz (a) spectrum, (b) eye and (c) constellation diagrams for one data set (17000 bits) measured at the error free point. 10 GBd QPSK waveform with a spectral efficiency of 1 b/s/Hz (d) spectrum, (e) eye diagrams, and (f) constellation diagrams for one data set (34000 bits) measured at the error free point. (g) BER plot of DPSK and QPSK waveform performance for several data sets (102000 bits). Arrows indicate error-free operation based on measured data bits (BER < 9.8 × 10−6).

Fig. 9
Fig. 9

Three slice experimental arrangement. (a) OAWG transmitter for three slice signal generation with measured (b) spectral de-interleaver. Spectral multiplexer transmission is the same as Fig. 3(c). (c) Time interleaving scheme for aligning the three spectral slices. (d) Coherent receiver for three spectral slice signal measurement. IQM: I/Q modulator. AOM: Acousto-optic modulator. OFCG: Optical frequency comb generator.

Fig. 10
Fig. 10

18 GBd, 144-bit, 4 ns, 30 GHz QPSK signal with a spectral efficiency of 1.2 b/s/Hz. (a) Temporal waveform (light gray lines indicate QPSK phase levels), (b) spectrum, (c) eye diagrams, and (d) constellation diagram. Target values are in dark gray. Measurements are averaged over 240 waveforms.

Metrics