Abstract

In this paper, core-cladding modal beating in a short piece of all-solid photonic bandgap fiber (AS-PBF) is observed in longitudinal propagation direction. It is demonstrated that at the stopband range of AS-PBF, the power could transfer back and forth between the fiber core and the first layer of high-index rods. Both experimental results and the theoretical analysis from transverse coupled mode theory confirm that the 3-dB width of the sharp stopband could be significantly narrowed by multicycles of such core-cladding modal couplings, which is of great benefit to the high-resolution sensing applications. Based on such a guiding regime, a high-temperature sensor head is also made and its response to temperature is tested to be of 59.9 pm/°C.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan, and P. S. Russell, “Photonic bandgap with an index step of one percent,” Opt. Express 13(1), 309–314 (2005).
    [CrossRef] [PubMed]
  2. G. Ren, P. Shum, L. Zhang, X. Yu, W. Tong, and J. Luo, “Low-loss all-solid photonic bandgap fiber,” Opt. Lett. 32(9), 1023–1025 (2007).
    [CrossRef] [PubMed]
  3. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
    [CrossRef]
  4. T. P. White, R. C. McPhedran, C. Martijnde Sterke, N. M. Litchinitser, and B. J. Eggleton, “Resonance and scattering in microstructured optical fibers,” Opt. Lett. 27(22), 1977–1979 (2002).
    [CrossRef]
  5. N. M. Litchinitser and E. Poliakov, “Antiresonant guiding microstructured optical fibers for sensing applications,” Appl. Phys. B 81(2-3), 347–351 (2005).
    [CrossRef]
  6. N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express 12(8), 1540–1550 (2004).
    [CrossRef] [PubMed]
  7. L. Rindorf and O. Bang, “Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing,” J. Opt. Soc. Am. B 25(3), 310–324 (2008).
    [CrossRef]
  8. J. Sun, C. C. Chan, P. Shum, and C. L. Poh, “Experimental analysis of spectral characteristics of antiresonant guiding photonic crystal fibers,” Opt. Lett. 33(8), 809–811 (2008).
    [CrossRef] [PubMed]
  9. D. Noordegraaf, L. Scolari, J. Laegsgaard, T. Tanggaard Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett. 33(9), 986–988 (2008).
    [CrossRef] [PubMed]
  10. G. Ren, P. Shum, L. Zhang, M. Yan, X. Yu, W. Tong, and J. Luo, “Design of All-Solid Bandgap Fiber With Improved Confinement and Bend Losses,” IEEE Photon. Technol. Lett. 18(24), 2560–2562 (2006).
    [CrossRef]
  11. D. K. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
    [CrossRef] [PubMed]
  12. P. Steinvurzel, C. Martijn de Sterke, M. J. Steel, B. T. Kuhlmey, and B. J. Eggleton, “Single scatterer Fano resonances in solid core photonic band gap fibers,” Opt. Express 14(19), 8797–8811 (2006).
    [CrossRef] [PubMed]
  13. X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
    [CrossRef]
  14. G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000 ° C,” Opt. Express 17(24), 21551–21559 (2009).
    [CrossRef] [PubMed]
  15. S. H. Aref, R. Amezcua-Correa, J. P. Carvalho, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, H. Latifi, F. Farahi, L. A. Ferreira, and J. C. Knight, “Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement,” Opt. Express 17(21), 18669–18675 (2009).
    [CrossRef]
  16. C. R. Liao, Y. Wang, D. N. Wang, and L. Jin, “Femtosecond Laser Inscribed Long-Period Gratings in All-Solid Photonic Bandgap Fibers,” IEEE Photon. Technol. Lett. 22(6), 425–427 (2010).
    [CrossRef]
  17. B. Tai, Z. Wang, Y. Liu, J. Xu, B. Liu, H. Wei, and W. Tong, “High order resonances between core mode and cladding supermodes in long period fiber gratings inscribed in photonic bandgap fibers,” Opt. Express 18(15), 15361–15370 (2010).
    [CrossRef] [PubMed]
  18. L. Jin, Z. Wang, Y. Liu, G. Kai, and X. Dong, “Ultraviolet-inscribed long period gratings in all-solid photonic bandgap fibers,” Opt. Express 16(25), 21119–21131 (2008).
    [CrossRef] [PubMed]

2010 (2)

C. R. Liao, Y. Wang, D. N. Wang, and L. Jin, “Femtosecond Laser Inscribed Long-Period Gratings in All-Solid Photonic Bandgap Fibers,” IEEE Photon. Technol. Lett. 22(6), 425–427 (2010).
[CrossRef]

B. Tai, Z. Wang, Y. Liu, J. Xu, B. Liu, H. Wei, and W. Tong, “High order resonances between core mode and cladding supermodes in long period fiber gratings inscribed in photonic bandgap fibers,” Opt. Express 18(15), 15361–15370 (2010).
[CrossRef] [PubMed]

2009 (3)

2008 (4)

2007 (1)

2006 (2)

G. Ren, P. Shum, L. Zhang, M. Yan, X. Yu, W. Tong, and J. Luo, “Design of All-Solid Bandgap Fiber With Improved Confinement and Bend Losses,” IEEE Photon. Technol. Lett. 18(24), 2560–2562 (2006).
[CrossRef]

P. Steinvurzel, C. Martijn de Sterke, M. J. Steel, B. T. Kuhlmey, and B. J. Eggleton, “Single scatterer Fano resonances in solid core photonic band gap fibers,” Opt. Express 14(19), 8797–8811 (2006).
[CrossRef] [PubMed]

2005 (2)

A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan, and P. S. Russell, “Photonic bandgap with an index step of one percent,” Opt. Express 13(1), 309–314 (2005).
[CrossRef] [PubMed]

N. M. Litchinitser and E. Poliakov, “Antiresonant guiding microstructured optical fibers for sensing applications,” Appl. Phys. B 81(2-3), 347–351 (2005).
[CrossRef]

2004 (1)

2002 (3)

Abeeluck, A. K.

Amezcua-Correa, R.

Araújo, F. M.

Aref, S. H.

Argyros, A.

Bang, O.

Bassi, P.

Bennion, I.

Birks, T. A.

Borelli, E.

Caldas, P.

Carvalho, J. P.

Chan, C. C.

Cordeiro, C. M. B.

Coviello, G.

de Sterke, C.

Dong, X.

Dunn, S. C.

Eggleton, B. J.

Farahi, F.

Ferreira, L. A.

Finazzi, V.

Frazão, O.

Headley, C.

Jin, L.

C. R. Liao, Y. Wang, D. N. Wang, and L. Jin, “Femtosecond Laser Inscribed Long-Period Gratings in All-Solid Photonic Bandgap Fibers,” IEEE Photon. Technol. Lett. 22(6), 425–427 (2010).
[CrossRef]

L. Jin, Z. Wang, Y. Liu, G. Kai, and X. Dong, “Ultraviolet-inscribed long period gratings in all-solid photonic bandgap fibers,” Opt. Express 16(25), 21119–21131 (2008).
[CrossRef] [PubMed]

Kai, G.

Knight, J. C.

Kuhlmey, B. T.

Laegsgaard, J.

Latifi, H.

Leon-Saval, S. G.

Li, J.

Liao, C. R.

C. R. Liao, Y. Wang, D. N. Wang, and L. Jin, “Femtosecond Laser Inscribed Long-Period Gratings in All-Solid Photonic Bandgap Fibers,” IEEE Photon. Technol. Lett. 22(6), 425–427 (2010).
[CrossRef]

Litchinitser, N. M.

Liu, B.

Liu, Y.

Luan, F.

Luo, J.

G. Ren, P. Shum, L. Zhang, X. Yu, W. Tong, and J. Luo, “Low-loss all-solid photonic bandgap fiber,” Opt. Lett. 32(9), 1023–1025 (2007).
[CrossRef] [PubMed]

G. Ren, P. Shum, L. Zhang, M. Yan, X. Yu, W. Tong, and J. Luo, “Design of All-Solid Bandgap Fiber With Improved Confinement and Bend Losses,” IEEE Photon. Technol. Lett. 18(24), 2560–2562 (2006).
[CrossRef]

Martijn de Sterke, C.

Martijnde Sterke, C.

McPhedran, R. C.

Noordegraaf, D.

Poh, C. L.

Poliakov, E.

N. M. Litchinitser and E. Poliakov, “Antiresonant guiding microstructured optical fibers for sensing applications,” Appl. Phys. B 81(2-3), 347–351 (2005).
[CrossRef]

Pruneri, V.

Ren, G.

G. Ren, P. Shum, L. Zhang, X. Yu, W. Tong, and J. Luo, “Low-loss all-solid photonic bandgap fiber,” Opt. Lett. 32(9), 1023–1025 (2007).
[CrossRef] [PubMed]

G. Ren, P. Shum, L. Zhang, M. Yan, X. Yu, W. Tong, and J. Luo, “Design of All-Solid Bandgap Fiber With Improved Confinement and Bend Losses,” IEEE Photon. Technol. Lett. 18(24), 2560–2562 (2006).
[CrossRef]

Rindorf, L.

Russell, P. S.

Santos, J. L.

Scolari, L.

Shu, X.

Shum, P.

Steel, M. J.

Steinvurzel, P.

Steinvurzel, P. E.

Sun, J.

Tai, B.

Tanggaard Alkeskjold, T.

Tartarini, G.

Tong, W.

Villatoro, J.

Wang, D. N.

C. R. Liao, Y. Wang, D. N. Wang, and L. Jin, “Femtosecond Laser Inscribed Long-Period Gratings in All-Solid Photonic Bandgap Fibers,” IEEE Photon. Technol. Lett. 22(6), 425–427 (2010).
[CrossRef]

Wang, Y.

C. R. Liao, Y. Wang, D. N. Wang, and L. Jin, “Femtosecond Laser Inscribed Long-Period Gratings in All-Solid Photonic Bandgap Fibers,” IEEE Photon. Technol. Lett. 22(6), 425–427 (2010).
[CrossRef]

Wang, Z.

Wei, H.

White, T. P.

Wu, D. K.

Wu, S. T.

Xu, J.

Yan, M.

G. Ren, P. Shum, L. Zhang, M. Yan, X. Yu, W. Tong, and J. Luo, “Design of All-Solid Bandgap Fiber With Improved Confinement and Bend Losses,” IEEE Photon. Technol. Lett. 18(24), 2560–2562 (2006).
[CrossRef]

Yu, X.

G. Ren, P. Shum, L. Zhang, X. Yu, W. Tong, and J. Luo, “Low-loss all-solid photonic bandgap fiber,” Opt. Lett. 32(9), 1023–1025 (2007).
[CrossRef] [PubMed]

G. Ren, P. Shum, L. Zhang, M. Yan, X. Yu, W. Tong, and J. Luo, “Design of All-Solid Bandgap Fiber With Improved Confinement and Bend Losses,” IEEE Photon. Technol. Lett. 18(24), 2560–2562 (2006).
[CrossRef]

Zhang, L.

Appl. Phys. B (1)

N. M. Litchinitser and E. Poliakov, “Antiresonant guiding microstructured optical fibers for sensing applications,” Appl. Phys. B 81(2-3), 347–351 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

G. Ren, P. Shum, L. Zhang, M. Yan, X. Yu, W. Tong, and J. Luo, “Design of All-Solid Bandgap Fiber With Improved Confinement and Bend Losses,” IEEE Photon. Technol. Lett. 18(24), 2560–2562 (2006).
[CrossRef]

C. R. Liao, Y. Wang, D. N. Wang, and L. Jin, “Femtosecond Laser Inscribed Long-Period Gratings in All-Solid Photonic Bandgap Fibers,” IEEE Photon. Technol. Lett. 22(6), 425–427 (2010).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (7)

N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express 12(8), 1540–1550 (2004).
[CrossRef] [PubMed]

A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan, and P. S. Russell, “Photonic bandgap with an index step of one percent,” Opt. Express 13(1), 309–314 (2005).
[CrossRef] [PubMed]

G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000 ° C,” Opt. Express 17(24), 21551–21559 (2009).
[CrossRef] [PubMed]

S. H. Aref, R. Amezcua-Correa, J. P. Carvalho, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, H. Latifi, F. Farahi, L. A. Ferreira, and J. C. Knight, “Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement,” Opt. Express 17(21), 18669–18675 (2009).
[CrossRef]

B. Tai, Z. Wang, Y. Liu, J. Xu, B. Liu, H. Wei, and W. Tong, “High order resonances between core mode and cladding supermodes in long period fiber gratings inscribed in photonic bandgap fibers,” Opt. Express 18(15), 15361–15370 (2010).
[CrossRef] [PubMed]

L. Jin, Z. Wang, Y. Liu, G. Kai, and X. Dong, “Ultraviolet-inscribed long period gratings in all-solid photonic bandgap fibers,” Opt. Express 16(25), 21119–21131 (2008).
[CrossRef] [PubMed]

P. Steinvurzel, C. Martijn de Sterke, M. J. Steel, B. T. Kuhlmey, and B. J. Eggleton, “Single scatterer Fano resonances in solid core photonic band gap fibers,” Opt. Express 14(19), 8797–8811 (2006).
[CrossRef] [PubMed]

Opt. Lett. (6)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of experimental setup; (b) Cross section of the all-solid photonic bandgap fiber employed; (c) an enlarged unit cell of the high-index rod.

Fig. 2
Fig. 2

Effective index of fundamental core modes (red curve) and transmission spectrum (blue curve) for a 50 cm AS-PBF. The grey region denotes the first and second bandgaps.

Fig. 3
Fig. 3

(a) Spectral evolution of the stopband with different lengths L of AS-PBF. (b) 3-dB bandwidths of the stopband versus the AS-PBF lengths.

Fig. 4
Fig. 4

Light propagation longitudinally (left panel) and the monitored core power (right panel). The incident light is with a wavelength of 1215 nm, and both ends of the AS-PBF are conjunct with 1mm single-mode fibers, respectively.

Fig. 5
Fig. 5

Phase-matching (up-panel) for LP11 supermode and fundamental core mode, and transmission spectra with L = Lc and L = 9Lc (low-panel). The dash line in the up-panel is the linear fitted curve for the core modes.

Fig. 6
Fig. 6

(a) Temperature responses of the transmission dip with and 7.98 mm AS-PBF. The dots are the measured values, and the solid lines are the linear fitting. (b) Spectra shift with temperature increasing.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P c o r e = 1 sin 2 ( L κ 2 + δ 2 ) 1 + δ 2 / κ 2
Δ λ 3-dB = 0.8 λ 0 2 L | n c o g n r o d s g |

Metrics