Abstract

Interferometric range measurements using a wavelength-tunable source form the basis of several measurement techniques, including optical frequency domain reflectometry (OFDR), swept-source optical coherence tomography (SS-OCT), and frequency-modulated continuous wave (FMCW) lidar. We present a phase-sensitive and self-referenced approach to swept-source interferometry that yields absolute range measurements with axial precision three orders of magnitude better than the transform-limited axial resolution of the system. As an example application, we implement the proposed method for a simultaneous measurement of group refractive index and thickness of an optical glass sample.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367 (2003).
    [CrossRef] [PubMed]
  3. R. C. Youngquist, S. Carr, and D. E. N. Davies, “Optical coherence-domain reflectometry: a new optical evaluation technique,” Opt. Lett. 12, 158–160 (1987).
    [CrossRef] [PubMed]
  4. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
    [CrossRef] [PubMed]
  5. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953–2963 (2003).
    [CrossRef] [PubMed]
  6. M. E. Brezinkski, Optical Coherence Tomography: Principles and Applications (Elsevier, 2006).
  7. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russel, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
    [CrossRef]
  8. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005).
    [CrossRef] [PubMed]
  9. M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett. 31(10), 1462–1464 (2006).
    [CrossRef] [PubMed]
  10. D. C. Adler, R. Huber, and J. G. Fujimoto, “Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers,” Opt. Lett. 32(6), 626–628 (2007).
    [CrossRef] [PubMed]
  11. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett. 30(16), 2131–2133 (2005).
    [CrossRef] [PubMed]
  12. M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, “Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy,” J. Biomed. Opt. 11(2), 024014 (2006).
    [CrossRef] [PubMed]
  13. B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005).
    [CrossRef] [PubMed]
  14. W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4(1), 105–107 (1992).
    [CrossRef]
  15. H.-C. Cheng and Y.-C. Liu, “Simultaneous measurement of group refractive index and thickness of optical samples using optical coherence tomography,” Appl. Opt. 49, 790–797 (2010).
    [CrossRef] [PubMed]
  16. J. Na, H. Y. Choi, E. S. Choi, C. Lee, and B. H. Lee, “Self-referenced spectral interferometry for simultaneous measurements of thickness and refractive index,” Appl. Opt. 48(13), 2461–2467 (2009).
    [CrossRef] [PubMed]
  17. U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11, 1377–1384 (1993).
    [CrossRef]
  18. T.-J. Ahn, J. Y. Lee, and D. Y. Kim, “Suppression of nonlinear frequency sweep in an optical frequency-domain reflectometer by use of Hilbert transformation,” Appl. Opt. 44, 7630–7634 (2005).
    [CrossRef] [PubMed]
  19. E. D. Moore and R. R. McLeod, “Correction of sampling errors due to laser tuning rate fluctuations in swept-wavelength interferometry,” Opt. Express 16, 13139–13149 (2008).
    [CrossRef] [PubMed]
  20. J. W. Goodman, Introduction to Fourier Optics , 2nd ed. (McGraw-Hill, 1996).
  21. W. C. Swann and S. L. Gilbert, “Accuracy limits for simple molecular absorption based wavelength references,” in Technical Digest: Symposium on Optical Fiber Measurements, 2004 . (NIST, 2004), pp. 15–18.
  22. P. E. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt. 35(9), 1566–1573 (1996).
    [CrossRef] [PubMed]
  23. P. E. Ciddor and R. J. Hill, “Refractive index of air. 2. Group index,” Appl. Opt. 38(9), 1663–1667 (1999).
    [CrossRef]
  24. D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE 6273, 62732K (2006).
    [CrossRef]

2010

2009

2008

2007

2006

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, “Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy,” J. Biomed. Opt. 11(2), 024014 (2006).
[CrossRef] [PubMed]

M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett. 31(10), 1462–1464 (2006).
[CrossRef] [PubMed]

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE 6273, 62732K (2006).
[CrossRef]

2005

2003

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953–2963 (2003).
[CrossRef] [PubMed]

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367 (2003).
[CrossRef] [PubMed]

2002

1999

1997

1996

1993

U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11, 1377–1384 (1993).
[CrossRef]

1992

W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4(1), 105–107 (1992).
[CrossRef]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1987

Adler, D. C.

Ahn, T.-J.

Akkin, T.

Apolonski, A.

Bizheva, K.

Bouma, B. E.

Brezinkski, M. E.

M. E. Brezinkski, Optical Coherence Tomography: Principles and Applications (Elsevier, 2006).

Brinkmeyer, E.

U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11, 1377–1384 (1993).
[CrossRef]

Carr, S.

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Cheng, H.-C.

Chinn, S. R.

Choi, E. S.

Choi, H. Y.

Choma, M. A.

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, “Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy,” J. Biomed. Opt. 11(2), 024014 (2006).
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005).
[CrossRef] [PubMed]

Ciddor, P. E.

Creazzo, T. L.

Davies, D. E. N.

de Boer, J. F.

Drexler, W.

Ellerbee, A. K.

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, “Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy,” J. Biomed. Opt. 11(2), 024014 (2006).
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005).
[CrossRef] [PubMed]

Fercher, A.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Frey, B. J.

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE 6273, 62732K (2006).
[CrossRef]

Fujimoto, J. G.

D. C. Adler, R. Huber, and J. G. Fujimoto, “Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers,” Opt. Lett. 32(6), 626–628 (2007).
[CrossRef] [PubMed]

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367 (2003).
[CrossRef] [PubMed]

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gilbert, S. L.

W. C. Swann and S. L. Gilbert, “Accuracy limits for simple molecular absorption based wavelength references,” in Technical Digest: Symposium on Optical Fiber Measurements, 2004 . (NIST, 2004), pp. 15–18.

Glombitza, U.

U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11, 1377–1384 (1993).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics , 2nd ed. (McGraw-Hill, 1996).

Gray, D. F.

W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4(1), 105–107 (1992).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

Hill, R. J.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Huber, R.

Iftimia, N.

Izatt, J. A.

Joo, C.

Kim, D. Y.

Knight, J. C.

Lee, B. H.

Lee, C.

Lee, J. Y.

Leviton, D. B.

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE 6273, 62732K (2006).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, Y.-C.

McLeod, R. R.

Moore, E. D.

Na, J.

Park, B. H.

Povazay, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Russel, P. S. J.

Sarunic, M. V.

Sattmann, H.

Scherzer, E.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Sorin, W. V.

W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4(1), 105–107 (1992).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swann, W. C.

W. C. Swann and S. L. Gilbert, “Accuracy limits for simple molecular absorption based wavelength references,” in Technical Digest: Symposium on Optical Fiber Measurements, 2004 . (NIST, 2004), pp. 15–18.

Swanson, E. A.

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

Unterhuber, A.

Vakoc, B. J.

Vetterlein, M.

Wadsworth, W. J.

Weinberg, S.

Yang, C.

Yazdanfar, S.

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, “Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy,” J. Biomed. Opt. 11(2), 024014 (2006).
[CrossRef] [PubMed]

Youngquist, R. C.

Yun, S. H.

Appl. Opt.

IEEE Photon. Technol. Lett.

W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4(1), 105–107 (1992).
[CrossRef]

J. Biomed. Opt.

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, “Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy,” J. Biomed. Opt. 11(2), 024014 (2006).
[CrossRef] [PubMed]

J. Lightwave Technol.

U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11, 1377–1384 (1993).
[CrossRef]

Nat. Biotechnol.

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. SPIE

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE 6273, 62732K (2006).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other

J. W. Goodman, Introduction to Fourier Optics , 2nd ed. (McGraw-Hill, 1996).

W. C. Swann and S. L. Gilbert, “Accuracy limits for simple molecular absorption based wavelength references,” in Technical Digest: Symposium on Optical Fiber Measurements, 2004 . (NIST, 2004), pp. 15–18.

M. E. Brezinkski, Optical Coherence Tomography: Principles and Applications (Elsevier, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(Color online) Plots illustrating the processing steps for precision range measurements using phase-sensitive swept-source optical coherence tomography. (a) Simulated A-scan data for a single reflector at a relative group delay of exactly τ 0 = 0.14 ns, corresponding to a path length difference between the reference and sample arms of approximately 4.2 cm. Both the positive- (+) and aliased negative-delay (−) peaks are shown. (b) The digitally filtered reflection peak with a maximum value located at τ 0, q = 0.13994 ns, yielding an error in the axial location of 9.0 μm in air. (c) The frequency domain phase for the filtered subset. Prior to the inverse Fourier transform, a Hanning window was applied to reduce truncation effects and the peak was shifted to the DC location in the data array. The linear fit excluded data points at the extremities due to residual truncation effects. The resulting slope of the linear fit corresponds to a group delay correction of τ 0, a = 0.00006 ns, which is the precise correction needed to recover the exact value of τ 0 = 0.14 ns as shown in (d).

Fig. 2
Fig. 2

(Color online) Uncertainty in the A-scan sampling grid as a function of path length difference for an interferometer calibrated using the R20 and P20 absorption lines of a 100-Torr H13CN wavelength reference. The three curves correspond to fringe counting uncertainties of 1, 0.1, and 0.01.

Fig. 3
Fig. 3

(Color online) Schematic diagram of the experimental swept-source optical coherence tomography system. 3dB, 3dB fiber coupler; DL, fiber delay line; L, collimation lens; M, mirror; PC, polarization controller; PBS, polarization beam splitter; PD, photodetector; SUT, sample under test.

Fig. 4
Fig. 4

(Color online) A-scans with (black) and without (red) the fused silica test plate in place. The reflection peaks correspond to the fiber end facet (τ 0), the front (τ 1) and rear (τ 2) of the fused silica test plate, and the reference mirror (τ 3 and τ 4). Zero delay has been defined to correspond with the fiber end facet.

Fig. 5
Fig. 5

Repeated measurements of relative group delays defined in Fig. 4. Note that the standard deviations for the unreferenced group delays, τ 0 and τ 3 (presented in units of fs = 10−15s), are three orders of magnitude larger than the standard deviations for the referenced group delays (presented in units of as = 10−18s).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

U ( ν ) = 2 U 0 i = 1 M | r i | cos ( 2 π ν τ i + ξ i ) ,
U ˜ i ( τ ) = U 0 | r i | Δ ν sin c [ Δ ν ( τ τ i ) ] e j ( 2 π ν 0 τ ψ i ) ,
1 2 π d ϕ d ν = τ i , a
u ( τ i , q ) = k u ( δ τ ) = k u ( Δ τ ) N ,
u ( Δ τ ) = u ( m Δ ν c ) = m Δ ν c [ ( u ( m ) m ) 2 + ( u ( Δ ν c ) Δ ν c ) 2 ] 1 / 2 .
T = c n g τ 21 2 ,
n g = τ 21 τ 21 τ 43 n g , air .
u ( τ 21 ) = { [ int ( τ 21 Δ τ N ) u ( δ τ ) ] 2 + σ 21 2 } 1 2 ,
u ( τ 21 ) τ 21 Δ τ u ( Δ τ ) .

Metrics