Abstract

We proposed an Upstream Multi-Wavelength Shared (UMWS) PON architecture based on a tunable self-seeding Fabry-Perot laser diode (FP-LD) at ONU. The performances of the wavelength and power stability, side-mode suppression ratio (SMSR), tuning range for the proposed tunable self-seeding laser module at ONU are experimentally investigated. The BER is measured with direct modulation on FP-LD of 1.25 Gbps upstream data. The extensive simulations not only evaluate the enhanced performance from the upstream wavelength-sharing, but also for the first time investigate the impact of channel Switch Latency (SL) on the network performance.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Kramer and G. Pesavento, “Ethernet passive optical network (EPON): building a next-generation optical access network,” IEEE Commun. Mag. 40(2), 66–73 (2002).
    [CrossRef]
  2. K. Ohara, A. Tagami, H. Tanaka, M. Suzuki, T. Miyaoka, T. Kodate, “Traffic analysis of Ethernet-PON in FTTH trial service,” OFC/NFOEC 2003 (Optical Society of America, 2003), paper ThAA2.
  3. B. McDonald, “EPON deployment challenges – now and the future,” OFC/NFOEC 2007 (Optical Society of America, 2007), paper JWA96.
  4. Y.-L. Hsueh, W.-T. Shaw, L. G. Kazovsky, A. Agata, and S. Yamamoto, “Success PON demonstrator: experimental exploration of next generation optical access networks,” IEEE Commun. Mag. 43(8), S26–S33 (2005).
    [CrossRef]
  5. T. Jayasinghe, C. J. Chae, and R. S. Tucker, “Scalability of RSOA-based multi-wavelength ethernet PON architecture with dual feeder fiber,” J. Opt. Netw. 6(8), 1025–1040 (2007).
    [CrossRef]
  6. M. Attygalle, Y. J. Wen, J. Shankar, A. Nirmalathas, X. Cheng, and Y. Wang, “Increasing upstream capacity in TDM-PON with multiple-wavelength transmission using Fabry-Perot laser diodes,” Opt. Express 15(16), 10247–10252 (2007).
    [CrossRef] [PubMed]
  7. C. H. Yeh, C. W. Chow, C. H. Wang, F. Y. Shih, Y. F. Wu, and S. Chi, “Using four wavelength-multiplexed self-seeding Fabry-Perot lasers for 10 Gbps upstream traffic in TDM-PON,” Opt. Express 16(23), 18857–18862 (2008).
    [CrossRef]
  8. C. H. Yeh, F. Y. Shih, C. H. Wang, C. W. Chow, and S. Chi, “Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode,” Opt. Express 16(1), 435–439 (2008).
    [CrossRef] [PubMed]
  9. D. J. Shin, D. K. Jung, H. S. Shin, J. W. Kwon, S. Hwang, Y. Oh, and C. Shim, “Hybrid WDM/TDM-PON with wavelength-selection-free transmitters,” J. Lightwave Technol. 23(1), 187–195 (2005).
    [CrossRef]
  10. G. Talli and P. D. Townsend, “Hybrid DWDM-TDM long-reach PON for next-generation optical access,” J. Lightwave Technol. 24(7), 2827–2834 (2006).
    [CrossRef]
  11. G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved polling with adaptive cycle time (IPACT): a dynamic bandwidth distribution scheme in an optical access network,” Photon. Netw. Commun. 4(1), 89–107 (2002).
    [CrossRef]
  12. T. Amano, F. Koyama, T. Hino, M. Arai, and A. Mastutani, “Design and fabrication of GaAs-GaAlAs micromachined tunable filter with thermal strain control,” J. Lightwave Technol. 21(3), 596–601 (2003).
    [CrossRef]
  13. M. Schell, D. Huhse, W. Utz, J. Kaessner, D. Bimberg, and I. S. Tarasov, “Jitter and dynamics of self-seeded Fabry–Perot laser diodes,” IEEE J. Sel. Top. Quantum Electron. 1(2), 528–534 (1995).
    [CrossRef]
  14. M. P. McGarry, M. Reisslein, and M. Maier, “WDM Ethernet passive optical networks,” IEEE Commun. Mag. 44(2), 15–22 (2006).
    [CrossRef]
  15. K. Park and W. Willinger, “Self-similar network traffic: an overview,” Self-Similar Network Traffic and Performance Evaluation, K. Park and W. Willinger, eds. (Wiley Interscience, 2000).

2008 (2)

2007 (2)

2006 (2)

M. P. McGarry, M. Reisslein, and M. Maier, “WDM Ethernet passive optical networks,” IEEE Commun. Mag. 44(2), 15–22 (2006).
[CrossRef]

G. Talli and P. D. Townsend, “Hybrid DWDM-TDM long-reach PON for next-generation optical access,” J. Lightwave Technol. 24(7), 2827–2834 (2006).
[CrossRef]

2005 (2)

Y.-L. Hsueh, W.-T. Shaw, L. G. Kazovsky, A. Agata, and S. Yamamoto, “Success PON demonstrator: experimental exploration of next generation optical access networks,” IEEE Commun. Mag. 43(8), S26–S33 (2005).
[CrossRef]

D. J. Shin, D. K. Jung, H. S. Shin, J. W. Kwon, S. Hwang, Y. Oh, and C. Shim, “Hybrid WDM/TDM-PON with wavelength-selection-free transmitters,” J. Lightwave Technol. 23(1), 187–195 (2005).
[CrossRef]

2003 (1)

2002 (2)

G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved polling with adaptive cycle time (IPACT): a dynamic bandwidth distribution scheme in an optical access network,” Photon. Netw. Commun. 4(1), 89–107 (2002).
[CrossRef]

G. Kramer and G. Pesavento, “Ethernet passive optical network (EPON): building a next-generation optical access network,” IEEE Commun. Mag. 40(2), 66–73 (2002).
[CrossRef]

1995 (1)

M. Schell, D. Huhse, W. Utz, J. Kaessner, D. Bimberg, and I. S. Tarasov, “Jitter and dynamics of self-seeded Fabry–Perot laser diodes,” IEEE J. Sel. Top. Quantum Electron. 1(2), 528–534 (1995).
[CrossRef]

Agata, A.

Y.-L. Hsueh, W.-T. Shaw, L. G. Kazovsky, A. Agata, and S. Yamamoto, “Success PON demonstrator: experimental exploration of next generation optical access networks,” IEEE Commun. Mag. 43(8), S26–S33 (2005).
[CrossRef]

Amano, T.

Arai, M.

Attygalle, M.

Bimberg, D.

M. Schell, D. Huhse, W. Utz, J. Kaessner, D. Bimberg, and I. S. Tarasov, “Jitter and dynamics of self-seeded Fabry–Perot laser diodes,” IEEE J. Sel. Top. Quantum Electron. 1(2), 528–534 (1995).
[CrossRef]

Chae, C. J.

Cheng, X.

Chi, S.

Chow, C. W.

Hino, T.

Hsueh, Y.-L.

Y.-L. Hsueh, W.-T. Shaw, L. G. Kazovsky, A. Agata, and S. Yamamoto, “Success PON demonstrator: experimental exploration of next generation optical access networks,” IEEE Commun. Mag. 43(8), S26–S33 (2005).
[CrossRef]

Huhse, D.

M. Schell, D. Huhse, W. Utz, J. Kaessner, D. Bimberg, and I. S. Tarasov, “Jitter and dynamics of self-seeded Fabry–Perot laser diodes,” IEEE J. Sel. Top. Quantum Electron. 1(2), 528–534 (1995).
[CrossRef]

Hwang, S.

Jayasinghe, T.

Jung, D. K.

Kaessner, J.

M. Schell, D. Huhse, W. Utz, J. Kaessner, D. Bimberg, and I. S. Tarasov, “Jitter and dynamics of self-seeded Fabry–Perot laser diodes,” IEEE J. Sel. Top. Quantum Electron. 1(2), 528–534 (1995).
[CrossRef]

Kazovsky, L. G.

Y.-L. Hsueh, W.-T. Shaw, L. G. Kazovsky, A. Agata, and S. Yamamoto, “Success PON demonstrator: experimental exploration of next generation optical access networks,” IEEE Commun. Mag. 43(8), S26–S33 (2005).
[CrossRef]

Koyama, F.

Kramer, G.

G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved polling with adaptive cycle time (IPACT): a dynamic bandwidth distribution scheme in an optical access network,” Photon. Netw. Commun. 4(1), 89–107 (2002).
[CrossRef]

G. Kramer and G. Pesavento, “Ethernet passive optical network (EPON): building a next-generation optical access network,” IEEE Commun. Mag. 40(2), 66–73 (2002).
[CrossRef]

Kwon, J. W.

Maier, M.

M. P. McGarry, M. Reisslein, and M. Maier, “WDM Ethernet passive optical networks,” IEEE Commun. Mag. 44(2), 15–22 (2006).
[CrossRef]

Mastutani, A.

McGarry, M. P.

M. P. McGarry, M. Reisslein, and M. Maier, “WDM Ethernet passive optical networks,” IEEE Commun. Mag. 44(2), 15–22 (2006).
[CrossRef]

Mukherjee, B.

G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved polling with adaptive cycle time (IPACT): a dynamic bandwidth distribution scheme in an optical access network,” Photon. Netw. Commun. 4(1), 89–107 (2002).
[CrossRef]

Nirmalathas, A.

Oh, Y.

Pesavento, G.

G. Kramer and G. Pesavento, “Ethernet passive optical network (EPON): building a next-generation optical access network,” IEEE Commun. Mag. 40(2), 66–73 (2002).
[CrossRef]

G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved polling with adaptive cycle time (IPACT): a dynamic bandwidth distribution scheme in an optical access network,” Photon. Netw. Commun. 4(1), 89–107 (2002).
[CrossRef]

Reisslein, M.

M. P. McGarry, M. Reisslein, and M. Maier, “WDM Ethernet passive optical networks,” IEEE Commun. Mag. 44(2), 15–22 (2006).
[CrossRef]

Schell, M.

M. Schell, D. Huhse, W. Utz, J. Kaessner, D. Bimberg, and I. S. Tarasov, “Jitter and dynamics of self-seeded Fabry–Perot laser diodes,” IEEE J. Sel. Top. Quantum Electron. 1(2), 528–534 (1995).
[CrossRef]

Shankar, J.

Shaw, W.-T.

Y.-L. Hsueh, W.-T. Shaw, L. G. Kazovsky, A. Agata, and S. Yamamoto, “Success PON demonstrator: experimental exploration of next generation optical access networks,” IEEE Commun. Mag. 43(8), S26–S33 (2005).
[CrossRef]

Shih, F. Y.

Shim, C.

Shin, D. J.

Shin, H. S.

Talli, G.

Tarasov, I. S.

M. Schell, D. Huhse, W. Utz, J. Kaessner, D. Bimberg, and I. S. Tarasov, “Jitter and dynamics of self-seeded Fabry–Perot laser diodes,” IEEE J. Sel. Top. Quantum Electron. 1(2), 528–534 (1995).
[CrossRef]

Townsend, P. D.

Tucker, R. S.

Utz, W.

M. Schell, D. Huhse, W. Utz, J. Kaessner, D. Bimberg, and I. S. Tarasov, “Jitter and dynamics of self-seeded Fabry–Perot laser diodes,” IEEE J. Sel. Top. Quantum Electron. 1(2), 528–534 (1995).
[CrossRef]

Wang, C. H.

Wang, Y.

Wen, Y. J.

Wu, Y. F.

Yamamoto, S.

Y.-L. Hsueh, W.-T. Shaw, L. G. Kazovsky, A. Agata, and S. Yamamoto, “Success PON demonstrator: experimental exploration of next generation optical access networks,” IEEE Commun. Mag. 43(8), S26–S33 (2005).
[CrossRef]

Yeh, C. H.

IEEE Commun. Mag. (3)

G. Kramer and G. Pesavento, “Ethernet passive optical network (EPON): building a next-generation optical access network,” IEEE Commun. Mag. 40(2), 66–73 (2002).
[CrossRef]

Y.-L. Hsueh, W.-T. Shaw, L. G. Kazovsky, A. Agata, and S. Yamamoto, “Success PON demonstrator: experimental exploration of next generation optical access networks,” IEEE Commun. Mag. 43(8), S26–S33 (2005).
[CrossRef]

M. P. McGarry, M. Reisslein, and M. Maier, “WDM Ethernet passive optical networks,” IEEE Commun. Mag. 44(2), 15–22 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Schell, D. Huhse, W. Utz, J. Kaessner, D. Bimberg, and I. S. Tarasov, “Jitter and dynamics of self-seeded Fabry–Perot laser diodes,” IEEE J. Sel. Top. Quantum Electron. 1(2), 528–534 (1995).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Netw. (1)

Opt. Express (3)

Photon. Netw. Commun. (1)

G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved polling with adaptive cycle time (IPACT): a dynamic bandwidth distribution scheme in an optical access network,” Photon. Netw. Commun. 4(1), 89–107 (2002).
[CrossRef]

Other (3)

K. Ohara, A. Tagami, H. Tanaka, M. Suzuki, T. Miyaoka, T. Kodate, “Traffic analysis of Ethernet-PON in FTTH trial service,” OFC/NFOEC 2003 (Optical Society of America, 2003), paper ThAA2.

B. McDonald, “EPON deployment challenges – now and the future,” OFC/NFOEC 2007 (Optical Society of America, 2007), paper JWA96.

K. Park and W. Willinger, “Self-similar network traffic: an overview,” Self-Similar Network Traffic and Performance Evaluation, K. Park and W. Willinger, eds. (Wiley Interscience, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Proposed UMWS-PON system based on a tunable self-seeding FP-LD at ONUs. Three ONU transmitter structures are displayed in the inset ONU-1, ONU-2, ONU-n, respectively.

Fig. 2
Fig. 2

(a) Original output spectrum of MLM FP-LD operated at 30 mA in the temperature of 25°C. (b) SLM output is obtained while the TBF is set at 1555.3nm. (c) Complex output spectra of proposed laser module in the wavelength range of 1544.69nm–1563.39 nm with tuning step of 1.34 nm.

Fig. 3
Fig. 3

(a) Output power and SMSR spectra in the wavelength range of 1544.69nm–1563.39 nm with a 1.34nm tuning step. (b) Output variations of central wavelength and power at 1554.08 nm over 30 min.

Fig. 4
Fig. 4

BER and eye diagrams for the upstream traffic with BTB and 25km transmission.

Fig. 5
Fig. 5

Performance gain of UMWS PON in the (a) Average Delay and (b) Average Queue length compared with the conventional TDM-over-WDM PON.

Fig. 6
Fig. 6

Channel Switch Ratio (CSR) with different SL values under the ONU load variations.

Fig. 7
Fig. 7

(a) Average delay and (b) packet loss ratio versus the ONU load with different SL values.

Fig. 8
Fig. 8

Channel Switch Ratio (CSR) versus on-line ONU number with different ONU load.

Fig. 9
Fig. 9

(a) Average delay and (b) Packet loss ratio versus the on-line ONU number under different ONU load.

Tables (2)

Tables Icon

Table 1 Power Margin Calculation for Upstream Data with Different Split Ratios

Tables Icon

Table 2 Reference System Simulation Parameters

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L o a d _ H e t e r o g e n e i t y i = l o a d i max / l o a d i a v e
C S R = N u m b e r   o f   c h a n n e l   s w i t c h   t i m e s N u m b e r   o f   G A T E   m e s s a g e s   ( during 2 0 s simulation time )

Metrics