Abstract

We have investigated the influence of multimode fiber core (MMFC) diameters and lengths on the sensitivity of an SMS fiber based refractometer. We show that the MMFC diameter has significant influence on the refractive index (RI) sensitivity but the length does not. A refractometer with a lower MMFC diameter has a higher sensitivity. Experimental investigations achieved a maximum sensitivity of 1815 nm/ RIU (refractive index unit) for a refractive index range from 1.342 to 1.437 for a refractometer with a core diameter of 80 μm. The experimental results fit well with the numerical simulation results.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Han, F. W. Guo, and Y. F. Lu, “Optical fiber refractometer based on cladding-mode Bragg grating,” Opt. Lett. 35(3), 399–401 (2010).
    [CrossRef] [PubMed]
  2. T. Guo, H. Y. Tam, P. A. Krug, and J. Albert, “Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling,” Opt. Express 17(7), 5736–5742 (2009).
    [CrossRef] [PubMed]
  3. O. Frazão, T. Martynkien, J. M. Baptista, J. L. Santos, W. Urbanczyk, and J. Wojcik, “Optical refractometer based on a birefringent Bragg grating written in an H-shaped fiber,” Opt. Lett. 34(1), 76–78 (2009).
    [CrossRef]
  4. T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer,” Rev. Sci. Instrum. 73(4), 1702–1705 (2002).
    [CrossRef]
  5. P. Wang, Y. Semenova, Q. Wu, G. Farrell, Y. Ti, and J. Zheng, “Macrobending single-mode fiber-based refractometer,” Appl. Opt. 48(31), 6044–6049 (2009).
    [CrossRef] [PubMed]
  6. H. M. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. C. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators B Chem. 149(1), 212–220 (2010).
    [CrossRef]
  7. O. Frazão, P. Caldas, J. L. Santos, P. V. S. Marques, C. Turck, D. J. Lougnot, and O. Soppera, “Fabry-Perot refractometer based on an end-of-fiber polymer tip,” Opt. Lett. 34(16), 2474–2476 (2009).
    [CrossRef] [PubMed]
  8. C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors (Basel Switzerland) 10(5), 4794–4804 (2010).
    [CrossRef]
  9. Q. Wang and G. Farrell, “All-fiber multimode-interference-based refractometer sensor: proposal and design,” Opt. Lett. 31(3), 317–319 (2006).
    [CrossRef] [PubMed]
  10. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
    [CrossRef]
  11. Q. Wang, G. Farrell, and W. Yan, “Investigation on single-mode-multimode-single-mode fiber structure,” J. Lightwave Technol. 26(5), 512–519 (2008).
    [CrossRef]
  12. W. S. Mohammed, A. Mehta, and E. G. Johnson, “Wavelength tunable fiber lens based on multimode interference,” J. Lightwave Technol. 22(2), 469–477 (2004).
    [CrossRef]
  13. Q. Wu, Y. Semenova, A. M. Hatta, P. Wang, and G. Farrell, “Bent SMS fiber structure for temperature measurement,” Electron. Lett. 46(16), 1129–1130 (2010).
    [CrossRef]
  14. Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011).
    [CrossRef]
  15. D. P. Zhou, L. Wei, W. K. Liu, and J. W. Y. Lit, “Simultaneous strain and temperature measurement with fiber Bragg grating and multimode fibers using an intensity-based interrogation method,” IEEE Photon. Technol. Lett. 21(7), 468–470 (2009).
    [CrossRef]
  16. S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, and J.-P. Meunier, “Strain and temperature sensing characteristics of single-mode-multimode-single-mode structures,” J. Lightwave Technol. 27(13), 2348–2356 (2009).
    [CrossRef]
  17. Q. Wu, A. Muhammad Hatta, Y. Semenova, and G. Farrell, “Use of a single-multiple-single-mode fiber filter for interrogating fiber Bragg grating strain sensors with dynamic temperature compensation,” Appl. Opt. 48(29), 5451–5458 (2009).
    [CrossRef] [PubMed]
  18. J. E. Antonio-Lopez, J. G. Aguilar-Soto, and D. A. May-Arrioja, P. LiKamWa, and J. J. Sanchez-Mondragon, “Optofluidically tunable MMI filter,” CLEO/IQEC 2009, Baltimore, Maryland (2009), pp. 1–2.

2011 (1)

Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011).
[CrossRef]

2010 (4)

Q. Wu, Y. Semenova, A. M. Hatta, P. Wang, and G. Farrell, “Bent SMS fiber structure for temperature measurement,” Electron. Lett. 46(16), 1129–1130 (2010).
[CrossRef]

M. Han, F. W. Guo, and Y. F. Lu, “Optical fiber refractometer based on cladding-mode Bragg grating,” Opt. Lett. 35(3), 399–401 (2010).
[CrossRef] [PubMed]

H. M. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. C. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators B Chem. 149(1), 212–220 (2010).
[CrossRef]

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors (Basel Switzerland) 10(5), 4794–4804 (2010).
[CrossRef]

2009 (7)

O. Frazão, P. Caldas, J. L. Santos, P. V. S. Marques, C. Turck, D. J. Lougnot, and O. Soppera, “Fabry-Perot refractometer based on an end-of-fiber polymer tip,” Opt. Lett. 34(16), 2474–2476 (2009).
[CrossRef] [PubMed]

T. Guo, H. Y. Tam, P. A. Krug, and J. Albert, “Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling,” Opt. Express 17(7), 5736–5742 (2009).
[CrossRef] [PubMed]

O. Frazão, T. Martynkien, J. M. Baptista, J. L. Santos, W. Urbanczyk, and J. Wojcik, “Optical refractometer based on a birefringent Bragg grating written in an H-shaped fiber,” Opt. Lett. 34(1), 76–78 (2009).
[CrossRef]

P. Wang, Y. Semenova, Q. Wu, G. Farrell, Y. Ti, and J. Zheng, “Macrobending single-mode fiber-based refractometer,” Appl. Opt. 48(31), 6044–6049 (2009).
[CrossRef] [PubMed]

D. P. Zhou, L. Wei, W. K. Liu, and J. W. Y. Lit, “Simultaneous strain and temperature measurement with fiber Bragg grating and multimode fibers using an intensity-based interrogation method,” IEEE Photon. Technol. Lett. 21(7), 468–470 (2009).
[CrossRef]

S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, and J.-P. Meunier, “Strain and temperature sensing characteristics of single-mode-multimode-single-mode structures,” J. Lightwave Technol. 27(13), 2348–2356 (2009).
[CrossRef]

Q. Wu, A. Muhammad Hatta, Y. Semenova, and G. Farrell, “Use of a single-multiple-single-mode fiber filter for interrogating fiber Bragg grating strain sensors with dynamic temperature compensation,” Appl. Opt. 48(29), 5451–5458 (2009).
[CrossRef] [PubMed]

2008 (1)

2006 (1)

2004 (1)

2002 (1)

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer,” Rev. Sci. Instrum. 73(4), 1702–1705 (2002).
[CrossRef]

1995 (1)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

Albert, J.

Allsop, T.

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer,” Rev. Sci. Instrum. 73(4), 1702–1705 (2002).
[CrossRef]

Baptista, J. M.

Bennion, I.

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer,” Rev. Sci. Instrum. 73(4), 1702–1705 (2002).
[CrossRef]

Caldas, P.

Chen, C. H.

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors (Basel Switzerland) 10(5), 4794–4804 (2010).
[CrossRef]

Farrell, G.

Frazão, O.

Granqvist, N.

H. M. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. C. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators B Chem. 149(1), 212–220 (2010).
[CrossRef]

Guo, F. W.

Guo, T.

Han, M.

Hatta, A. M.

Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011).
[CrossRef]

Q. Wu, Y. Semenova, A. M. Hatta, P. Wang, and G. Farrell, “Bent SMS fiber structure for temperature measurement,” Electron. Lett. 46(16), 1129–1130 (2010).
[CrossRef]

Johnson, E. G.

Krug, P. A.

Kumar, A.

Kumar, Y. B. P.

Liang, H. M.

H. M. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. C. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators B Chem. 149(1), 212–220 (2010).
[CrossRef]

Lit, J. W. Y.

D. P. Zhou, L. Wei, W. K. Liu, and J. W. Y. Lit, “Simultaneous strain and temperature measurement with fiber Bragg grating and multimode fibers using an intensity-based interrogation method,” IEEE Photon. Technol. Lett. 21(7), 468–470 (2009).
[CrossRef]

Liu, W. K.

D. P. Zhou, L. Wei, W. K. Liu, and J. W. Y. Lit, “Simultaneous strain and temperature measurement with fiber Bragg grating and multimode fibers using an intensity-based interrogation method,” IEEE Photon. Technol. Lett. 21(7), 468–470 (2009).
[CrossRef]

Lougnot, D. J.

Lu, Y. F.

Marin, E.

Marques, P. V. S.

Martynkien, T.

Mehta, A.

Meunier, J.-P.

Miranto, H.

H. M. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. C. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators B Chem. 149(1), 212–220 (2010).
[CrossRef]

Mohammed, W. S.

Muhammad Hatta, A.

Neal, R.

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer,” Rev. Sci. Instrum. 73(4), 1702–1705 (2002).
[CrossRef]

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

Reeves, R.

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer,” Rev. Sci. Instrum. 73(4), 1702–1705 (2002).
[CrossRef]

Sadowski, J. W.

H. M. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. C. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators B Chem. 149(1), 212–220 (2010).
[CrossRef]

Santos, J. L.

Semenova, Y.

Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011).
[CrossRef]

Q. Wu, Y. Semenova, A. M. Hatta, P. Wang, and G. Farrell, “Bent SMS fiber structure for temperature measurement,” Electron. Lett. 46(16), 1129–1130 (2010).
[CrossRef]

P. Wang, Y. Semenova, Q. Wu, G. Farrell, Y. Ti, and J. Zheng, “Macrobending single-mode fiber-based refractometer,” Appl. Opt. 48(31), 6044–6049 (2009).
[CrossRef] [PubMed]

Q. Wu, A. Muhammad Hatta, Y. Semenova, and G. Farrell, “Use of a single-multiple-single-mode fiber filter for interrogating fiber Bragg grating strain sensors with dynamic temperature compensation,” Appl. Opt. 48(29), 5451–5458 (2009).
[CrossRef] [PubMed]

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

Soppera, O.

Tam, H. Y.

Tang, J. L.

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors (Basel Switzerland) 10(5), 4794–4804 (2010).
[CrossRef]

Ti, Y.

Tripathi, S. M.

Tsao, T. C.

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors (Basel Switzerland) 10(5), 4794–4804 (2010).
[CrossRef]

Turck, C.

Urbanczyk, W.

Varshney, R. K.

Viitala, T.

H. M. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. C. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators B Chem. 149(1), 212–220 (2010).
[CrossRef]

Wang, B. C.

H. M. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. C. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators B Chem. 149(1), 212–220 (2010).
[CrossRef]

Wang, P.

Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011).
[CrossRef]

Q. Wu, Y. Semenova, A. M. Hatta, P. Wang, and G. Farrell, “Bent SMS fiber structure for temperature measurement,” Electron. Lett. 46(16), 1129–1130 (2010).
[CrossRef]

P. Wang, Y. Semenova, Q. Wu, G. Farrell, Y. Ti, and J. Zheng, “Macrobending single-mode fiber-based refractometer,” Appl. Opt. 48(31), 6044–6049 (2009).
[CrossRef] [PubMed]

Wang, Q.

Webb, D. J.

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer,” Rev. Sci. Instrum. 73(4), 1702–1705 (2002).
[CrossRef]

Wei, L.

D. P. Zhou, L. Wei, W. K. Liu, and J. W. Y. Lit, “Simultaneous strain and temperature measurement with fiber Bragg grating and multimode fibers using an intensity-based interrogation method,” IEEE Photon. Technol. Lett. 21(7), 468–470 (2009).
[CrossRef]

Wojcik, J.

Wu, Q.

Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011).
[CrossRef]

Q. Wu, Y. Semenova, A. M. Hatta, P. Wang, and G. Farrell, “Bent SMS fiber structure for temperature measurement,” Electron. Lett. 46(16), 1129–1130 (2010).
[CrossRef]

P. Wang, Y. Semenova, Q. Wu, G. Farrell, Y. Ti, and J. Zheng, “Macrobending single-mode fiber-based refractometer,” Appl. Opt. 48(31), 6044–6049 (2009).
[CrossRef] [PubMed]

Q. Wu, A. Muhammad Hatta, Y. Semenova, and G. Farrell, “Use of a single-multiple-single-mode fiber filter for interrogating fiber Bragg grating strain sensors with dynamic temperature compensation,” Appl. Opt. 48(29), 5451–5458 (2009).
[CrossRef] [PubMed]

Wu, W. T.

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors (Basel Switzerland) 10(5), 4794–4804 (2010).
[CrossRef]

Yan, W.

Yliperttula, M.

H. M. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. C. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators B Chem. 149(1), 212–220 (2010).
[CrossRef]

Zheng, J.

Zhou, D. P.

D. P. Zhou, L. Wei, W. K. Liu, and J. W. Y. Lit, “Simultaneous strain and temperature measurement with fiber Bragg grating and multimode fibers using an intensity-based interrogation method,” IEEE Photon. Technol. Lett. 21(7), 468–470 (2009).
[CrossRef]

Appl. Opt. (2)

Electron. Lett. (1)

Q. Wu, Y. Semenova, A. M. Hatta, P. Wang, and G. Farrell, “Bent SMS fiber structure for temperature measurement,” Electron. Lett. 46(16), 1129–1130 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011).
[CrossRef]

D. P. Zhou, L. Wei, W. K. Liu, and J. W. Y. Lit, “Simultaneous strain and temperature measurement with fiber Bragg grating and multimode fibers using an intensity-based interrogation method,” IEEE Photon. Technol. Lett. 21(7), 468–470 (2009).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Express (1)

Opt. Lett. (4)

Rev. Sci. Instrum. (1)

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer,” Rev. Sci. Instrum. 73(4), 1702–1705 (2002).
[CrossRef]

Sens. Actuators B Chem. (1)

H. M. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. C. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators B Chem. 149(1), 212–220 (2010).
[CrossRef]

Sensors (Basel Switzerland) (1)

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors (Basel Switzerland) 10(5), 4794–4804 (2010).
[CrossRef]

Other (1)

J. E. Antonio-Lopez, J. G. Aguilar-Soto, and D. A. May-Arrioja, P. LiKamWa, and J. J. Sanchez-Mondragon, “Optofluidically tunable MMI filter,” CLEO/IQEC 2009, Baltimore, Maryland (2009), pp. 1–2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Configuration of the SMS structure refractometer.

Fig. 2
Fig. 2

Light propagation along the MMFC.

Fig. 3
Fig. 3

Spectral response of the two SMS fiber structure based refractometers for surrounding liquids with various refractive indices.

Fig. 4
Fig. 4

Calculated central wavelength shift vs. cladding refractive index.

Fig. 5
Fig. 5

Calculated sensitivity for the three cases.

Fig. 6
Fig. 6

(a) A microscope image of the etched joint between AFS105/125Y multimode fiber with a core diameter of 80 μm and SMF28 and (b) measured spectral response of this structure at different surrounding refractive indices.

Fig. 7
Fig. 7

Measured spectral response shifts vs. surrounding refractive index.

Fig. 8
Fig. 8

Calculated sensitivities for the both cases.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E ( r , 0 ) = m = 1 M b m Ψ m ( r )
b m = 0 E ( r , 0 ) Ψ m ( r ) r d r 0 Ψ m ( r ) Ψ m ( r ) r d r
E ( r , z ) = m = 1 M b m Ψ m ( r ) exp ( j β m z )
L s ( z ) = 10 log 10 ( | 0 E ( r , z ) E 0 ( r ) r d r | 2 0 | E ( r , z ) | 2 r d r 0 | E 0 ( r ) | 2 r d r )

Metrics