Abstract

We demonstrate a compact multi-resonant metamaterial structure based on integrated U- and T-shaped nano-aperture antennas. We investigate the physical origin of the multi-resonant behavior and determine the parameter dependence of the nano-aperture antennas both experimentally and numerically. We also show enhanced field distribution in the apertures at the corresponding resonance wavelengths. Both multi-spectral response and enhanced near field distributions can open up exciting new opportunities in applications ranging from subwavelength optics and optoelectronics to chemical and biosensing.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  2. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
    [CrossRef]
  3. C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
    [CrossRef] [PubMed]
  4. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced non-linear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
    [CrossRef]
  5. J. B. Pendry, “Photonics: metamaterials in the sunshine,” Nat. Mater. 5(8), 599–600 (2006).
    [CrossRef] [PubMed]
  6. G. Lévêque and O. J. F. Martin, “Narrow-band multiresonant plasmon nanostructure for the coherent control of light: an optical analog of the xylophone,” Phys. Rev. Lett. 100(11), 117402 (2008).
    [CrossRef] [PubMed]
  7. C. Zhu, J.-J. Ma, L. Li, and C.-H. Liang, “Multiresonant Metamaterial Based on Asymmetric Triangular Electromagnetic Resonators,” IEEE Antennas Wirel. Propag. Lett. 9, 99–102 (2010).
    [CrossRef]
  8. H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Metamaterial exhibiting left-handed properties over multiple frequency bands,” J. Appl. Phys. 96(9), 5338–5340 (2004).
    [CrossRef]
  9. Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
    [CrossRef]
  10. D. Wang, L. Ran, B. I. Wu, H. Chen, J. Huangfu, T. M. Grzegorczyk, and J. A. Kong, “Multi-frequency resonator based on dual-band S-shaped left-handed material,” Opt. Express 14(25), 12288–12294 (2006).
    [CrossRef] [PubMed]
  11. D.-H. Kwon, D. H. Werner, A. V. Kildishev, and V. M. Shalaev, “Near-infrared metamaterials with dual-band negative-index characteristics,” Opt. Express 15(4), 1647–1652 (2007).
    [CrossRef] [PubMed]
  12. U. K. Chettiar, A. V. Kildishev, H.-K. Yuan, W. Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, “Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm,” Opt. Lett. 32(12), 1671–1673 (2007).
    [CrossRef] [PubMed]
  13. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
    [CrossRef]
  14. A. Degiron and T. W. Ebbesen, “The role of localized surface Plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
    [CrossRef]
  15. M.-W. Tsai, T.-H. Chuang, H.-Y. Chang, and S.-C. Lee, “Bragg scattering of surface plasmon polaritons on extraordinary transmission through silver periodic perforated hole arrays,” Appl. Phys. Lett. 88(21), 213112 (2006).
    [CrossRef]
  16. T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
    [CrossRef] [PubMed]
  17. J.-B. Masson and G. Gallot, “Coupling between surface plasmons in subwavelength hole arrays,” Phys. Rev. B 73(12), 121401 (2006).
    [CrossRef]
  18. B. Hou, Z. H. Hang, W. Wen, C. T. Chan, and P. Sheng, “Microwave transmission through metallic hole arrays: Surface electric field measurements,” Appl. Phys. Lett. 89(13), 131917 (2006).
    [CrossRef]
  19. T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett. 24(4), 256–258 (1999).
    [CrossRef]
  20. A. A. Yanik, X. Wang, S. Erramilli, M. K. Hong, and H. Altug, “Extraordinary midinfrared transmission of rectangular coaxial nanoaperture arrays,” Appl. Phys. Lett. 93(8), 081104 (2008).
    [CrossRef]
  21. T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B 16(10), 1743 (1999).
    [CrossRef]
  22. A. K. Azad, Y. Zhao, and W. Zhang, “Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array,” Appl. Phys. Lett. 86(14), 141102 (2005).
    [CrossRef]
  23. A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327 (2002).
    [CrossRef]
  24. T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  25. A. V. Itagi, D. D. Stancil, J. A. Bain, and T. E. Schlesinger, “Ridge waveguide as a near-field optical source,” Appl. Phys. Lett. 83(22), 4474–4476 (2003).
    [CrossRef]
  26. E. X. Jin and X. Xu, “Finite-difference time-domain studies on optical transmission through planar nano-apertures in a metal film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).
    [CrossRef]
  27. E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006).
    [CrossRef]
  28. The numerical simulations are carried out using a finite-difference-time-domain package, Lumerical FDTD Solutions.
  29. E. D. Palik, “Handbook of Optical Constants of Solids.” (Academic, Orlando, FL, 1985)
  30. M. Huang, A. A. Yanik, T. Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express 17(26), 24224–24233 (2009).
    [CrossRef]
  31. A. A. Yanik, M. Huang, A. Artar, T. Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96(2), 021101 (2010).
    [CrossRef]
  32. S. Aksu, A. A. Yanik, R. Adato, A. Altar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10, 2511–2518 (2010).
    [CrossRef] [PubMed]

2010

C. Zhu, J.-J. Ma, L. Li, and C.-H. Liang, “Multiresonant Metamaterial Based on Asymmetric Triangular Electromagnetic Resonators,” IEEE Antennas Wirel. Propag. Lett. 9, 99–102 (2010).
[CrossRef]

A. A. Yanik, M. Huang, A. Artar, T. Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96(2), 021101 (2010).
[CrossRef]

S. Aksu, A. A. Yanik, R. Adato, A. Altar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10, 2511–2518 (2010).
[CrossRef] [PubMed]

2009

2008

A. A. Yanik, X. Wang, S. Erramilli, M. K. Hong, and H. Altug, “Extraordinary midinfrared transmission of rectangular coaxial nanoaperture arrays,” Appl. Phys. Lett. 93(8), 081104 (2008).
[CrossRef]

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
[CrossRef]

G. Lévêque and O. J. F. Martin, “Narrow-band multiresonant plasmon nanostructure for the coherent control of light: an optical analog of the xylophone,” Phys. Rev. Lett. 100(11), 117402 (2008).
[CrossRef] [PubMed]

2007

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[CrossRef] [PubMed]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[CrossRef]

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[CrossRef] [PubMed]

D.-H. Kwon, D. H. Werner, A. V. Kildishev, and V. M. Shalaev, “Near-infrared metamaterials with dual-band negative-index characteristics,” Opt. Express 15(4), 1647–1652 (2007).
[CrossRef] [PubMed]

U. K. Chettiar, A. V. Kildishev, H.-K. Yuan, W. Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, “Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm,” Opt. Lett. 32(12), 1671–1673 (2007).
[CrossRef] [PubMed]

2006

D. Wang, L. Ran, B. I. Wu, H. Chen, J. Huangfu, T. M. Grzegorczyk, and J. A. Kong, “Multi-frequency resonator based on dual-band S-shaped left-handed material,” Opt. Express 14(25), 12288–12294 (2006).
[CrossRef] [PubMed]

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

J. B. Pendry, “Photonics: metamaterials in the sunshine,” Nat. Mater. 5(8), 599–600 (2006).
[CrossRef] [PubMed]

J.-B. Masson and G. Gallot, “Coupling between surface plasmons in subwavelength hole arrays,” Phys. Rev. B 73(12), 121401 (2006).
[CrossRef]

B. Hou, Z. H. Hang, W. Wen, C. T. Chan, and P. Sheng, “Microwave transmission through metallic hole arrays: Surface electric field measurements,” Appl. Phys. Lett. 89(13), 131917 (2006).
[CrossRef]

M.-W. Tsai, T.-H. Chuang, H.-Y. Chang, and S.-C. Lee, “Bragg scattering of surface plasmon polaritons on extraordinary transmission through silver periodic perforated hole arrays,” Appl. Phys. Lett. 88(21), 213112 (2006).
[CrossRef]

2005

A. Degiron and T. W. Ebbesen, “The role of localized surface Plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
[CrossRef]

A. K. Azad, Y. Zhao, and W. Zhang, “Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array,” Appl. Phys. Lett. 86(14), 141102 (2005).
[CrossRef]

2004

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[CrossRef]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Metamaterial exhibiting left-handed properties over multiple frequency bands,” J. Appl. Phys. 96(9), 5338–5340 (2004).
[CrossRef]

E. X. Jin and X. Xu, “Finite-difference time-domain studies on optical transmission through planar nano-apertures in a metal film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).
[CrossRef]

2003

A. V. Itagi, D. D. Stancil, J. A. Bain, and T. E. Schlesinger, “Ridge waveguide as a near-field optical source,” Appl. Phys. Lett. 83(22), 4474–4476 (2003).
[CrossRef]

2002

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327 (2002).
[CrossRef]

1999

1998

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Adato, R.

S. Aksu, A. A. Yanik, R. Adato, A. Altar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10, 2511–2518 (2010).
[CrossRef] [PubMed]

Agrawal, A.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[CrossRef] [PubMed]

Aksu, S.

S. Aksu, A. A. Yanik, R. Adato, A. Altar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10, 2511–2518 (2010).
[CrossRef] [PubMed]

Altar, A.

S. Aksu, A. A. Yanik, R. Adato, A. Altar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10, 2511–2518 (2010).
[CrossRef] [PubMed]

Altug, H.

S. Aksu, A. A. Yanik, R. Adato, A. Altar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10, 2511–2518 (2010).
[CrossRef] [PubMed]

A. A. Yanik, M. Huang, A. Artar, T. Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96(2), 021101 (2010).
[CrossRef]

M. Huang, A. A. Yanik, T. Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express 17(26), 24224–24233 (2009).
[CrossRef]

A. A. Yanik, X. Wang, S. Erramilli, M. K. Hong, and H. Altug, “Extraordinary midinfrared transmission of rectangular coaxial nanoaperture arrays,” Appl. Phys. Lett. 93(8), 081104 (2008).
[CrossRef]

Artar, A.

A. A. Yanik, M. Huang, A. Artar, T. Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96(2), 021101 (2010).
[CrossRef]

Azad, A. K.

A. K. Azad, Y. Zhao, and W. Zhang, “Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array,” Appl. Phys. Lett. 86(14), 141102 (2005).
[CrossRef]

Bain, J. A.

A. V. Itagi, D. D. Stancil, J. A. Bain, and T. E. Schlesinger, “Ridge waveguide as a near-field optical source,” Appl. Phys. Lett. 83(22), 4474–4476 (2003).
[CrossRef]

Barnes, W. L.

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327 (2002).
[CrossRef]

Bingham, C.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
[CrossRef]

Cai, W.

Chan, C. T.

B. Hou, Z. H. Hang, W. Wen, C. T. Chan, and P. Sheng, “Microwave transmission through metallic hole arrays: Surface electric field measurements,” Appl. Phys. Lett. 89(13), 131917 (2006).
[CrossRef]

Chang, H.-Y.

M.-W. Tsai, T.-H. Chuang, H.-Y. Chang, and S.-C. Lee, “Bragg scattering of surface plasmon polaritons on extraordinary transmission through silver periodic perforated hole arrays,” Appl. Phys. Lett. 88(21), 213112 (2006).
[CrossRef]

Chang, T. Y.

A. A. Yanik, M. Huang, A. Artar, T. Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96(2), 021101 (2010).
[CrossRef]

M. Huang, A. A. Yanik, T. Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express 17(26), 24224–24233 (2009).
[CrossRef]

Chen, H.

D. Wang, L. Ran, B. I. Wu, H. Chen, J. Huangfu, T. M. Grzegorczyk, and J. A. Kong, “Multi-frequency resonator based on dual-band S-shaped left-handed material,” Opt. Express 14(25), 12288–12294 (2006).
[CrossRef] [PubMed]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Metamaterial exhibiting left-handed properties over multiple frequency bands,” J. Appl. Phys. 96(9), 5338–5340 (2004).
[CrossRef]

Chen, K.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Metamaterial exhibiting left-handed properties over multiple frequency bands,” J. Appl. Phys. 96(9), 5338–5340 (2004).
[CrossRef]

Chettiar, U. K.

Chuang, T.-H.

M.-W. Tsai, T.-H. Chuang, H.-Y. Chang, and S.-C. Lee, “Bragg scattering of surface plasmon polaritons on extraordinary transmission through silver periodic perforated hole arrays,” Appl. Phys. Lett. 88(21), 213112 (2006).
[CrossRef]

Cummer, S. A.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
[CrossRef]

Degiron, A.

A. Degiron and T. W. Ebbesen, “The role of localized surface Plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
[CrossRef]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[CrossRef]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327 (2002).
[CrossRef]

Drachev, V. P.

Ebbesen, T. W.

A. Degiron and T. W. Ebbesen, “The role of localized surface Plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
[CrossRef]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[CrossRef]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327 (2002).
[CrossRef]

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B 16(10), 1743 (1999).
[CrossRef]

T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett. 24(4), 256–258 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Erramilli, S.

A. A. Yanik, X. Wang, S. Erramilli, M. K. Hong, and H. Altug, “Extraordinary midinfrared transmission of rectangular coaxial nanoaperture arrays,” Appl. Phys. Lett. 93(8), 081104 (2008).
[CrossRef]

Gallot, G.

J.-B. Masson and G. Gallot, “Coupling between surface plasmons in subwavelength hole arrays,” Phys. Rev. B 73(12), 121401 (2006).
[CrossRef]

Ghaemi, H.

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Ghaemi, H. F.

Grupp, D. E.

Grzegorczyk, T. M.

D. Wang, L. Ran, B. I. Wu, H. Chen, J. Huangfu, T. M. Grzegorczyk, and J. A. Kong, “Multi-frequency resonator based on dual-band S-shaped left-handed material,” Opt. Express 14(25), 12288–12294 (2006).
[CrossRef] [PubMed]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Metamaterial exhibiting left-handed properties over multiple frequency bands,” J. Appl. Phys. 96(9), 5338–5340 (2004).
[CrossRef]

Hand, T. H.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
[CrossRef]

Hang, Z. H.

B. Hou, Z. H. Hang, W. Wen, C. T. Chan, and P. Sheng, “Microwave transmission through metallic hole arrays: Surface electric field measurements,” Appl. Phys. Lett. 89(13), 131917 (2006).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced non-linear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

Hong, M. K.

A. A. Yanik, X. Wang, S. Erramilli, M. K. Hong, and H. Altug, “Extraordinary midinfrared transmission of rectangular coaxial nanoaperture arrays,” Appl. Phys. Lett. 93(8), 081104 (2008).
[CrossRef]

Hou, B.

B. Hou, Z. H. Hang, W. Wen, C. T. Chan, and P. Sheng, “Microwave transmission through metallic hole arrays: Surface electric field measurements,” Appl. Phys. Lett. 89(13), 131917 (2006).
[CrossRef]

Huang, M.

A. A. Yanik, M. Huang, A. Artar, T. Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96(2), 021101 (2010).
[CrossRef]

S. Aksu, A. A. Yanik, R. Adato, A. Altar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10, 2511–2518 (2010).
[CrossRef] [PubMed]

M. Huang, A. A. Yanik, T. Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express 17(26), 24224–24233 (2009).
[CrossRef]

Huangfu, J.

D. Wang, L. Ran, B. I. Wu, H. Chen, J. Huangfu, T. M. Grzegorczyk, and J. A. Kong, “Multi-frequency resonator based on dual-band S-shaped left-handed material,” Opt. Express 14(25), 12288–12294 (2006).
[CrossRef] [PubMed]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Metamaterial exhibiting left-handed properties over multiple frequency bands,” J. Appl. Phys. 96(9), 5338–5340 (2004).
[CrossRef]

Itagi, A. V.

A. V. Itagi, D. D. Stancil, J. A. Bain, and T. E. Schlesinger, “Ridge waveguide as a near-field optical source,” Appl. Phys. Lett. 83(22), 4474–4476 (2003).
[CrossRef]

Jin, E. X.

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006).
[CrossRef]

E. X. Jin and X. Xu, “Finite-difference time-domain studies on optical transmission through planar nano-apertures in a metal film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).
[CrossRef]

Jokerst, N. M.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
[CrossRef]

Kildishev, A. V.

Kim, T. J.

Kong, J. A.

D. Wang, L. Ran, B. I. Wu, H. Chen, J. Huangfu, T. M. Grzegorczyk, and J. A. Kong, “Multi-frequency resonator based on dual-band S-shaped left-handed material,” Opt. Express 14(25), 12288–12294 (2006).
[CrossRef] [PubMed]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Metamaterial exhibiting left-handed properties over multiple frequency bands,” J. Appl. Phys. 96(9), 5338–5340 (2004).
[CrossRef]

Kwon, D.-H.

Lee, S.-C.

M.-W. Tsai, T.-H. Chuang, H.-Y. Chang, and S.-C. Lee, “Bragg scattering of surface plasmon polaritons on extraordinary transmission through silver periodic perforated hole arrays,” Appl. Phys. Lett. 88(21), 213112 (2006).
[CrossRef]

Lévêque, G.

G. Lévêque and O. J. F. Martin, “Narrow-band multiresonant plasmon nanostructure for the coherent control of light: an optical analog of the xylophone,” Phys. Rev. Lett. 100(11), 117402 (2008).
[CrossRef] [PubMed]

Lezec, H. J.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[CrossRef]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327 (2002).
[CrossRef]

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B 16(10), 1743 (1999).
[CrossRef]

T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett. 24(4), 256–258 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Li, L.

C. Zhu, J.-J. Ma, L. Li, and C.-H. Liang, “Multiresonant Metamaterial Based on Asymmetric Triangular Electromagnetic Resonators,” IEEE Antennas Wirel. Propag. Lett. 9, 99–102 (2010).
[CrossRef]

Liang, C.-H.

C. Zhu, J.-J. Ma, L. Li, and C.-H. Liang, “Multiresonant Metamaterial Based on Asymmetric Triangular Electromagnetic Resonators,” IEEE Antennas Wirel. Propag. Lett. 9, 99–102 (2010).
[CrossRef]

Linden, S.

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[CrossRef] [PubMed]

Ma, J.-J.

C. Zhu, J.-J. Ma, L. Li, and C.-H. Liang, “Multiresonant Metamaterial Based on Asymmetric Triangular Electromagnetic Resonators,” IEEE Antennas Wirel. Propag. Lett. 9, 99–102 (2010).
[CrossRef]

Martin, O. J. F.

G. Lévêque and O. J. F. Martin, “Narrow-band multiresonant plasmon nanostructure for the coherent control of light: an optical analog of the xylophone,” Phys. Rev. Lett. 100(11), 117402 (2008).
[CrossRef] [PubMed]

Masson, J.-B.

J.-B. Masson and G. Gallot, “Coupling between surface plasmons in subwavelength hole arrays,” Phys. Rev. B 73(12), 121401 (2006).
[CrossRef]

Matsui, T.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[CrossRef] [PubMed]

Nahata, A.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[CrossRef] [PubMed]

Padilla, W. J.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
[CrossRef]

Palit, S.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
[CrossRef]

Pendry, J. B.

J. B. Pendry, “Photonics: metamaterials in the sunshine,” Nat. Mater. 5(8), 599–600 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced non-linear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

Ran, L.

D. Wang, L. Ran, B. I. Wu, H. Chen, J. Huangfu, T. M. Grzegorczyk, and J. A. Kong, “Multi-frequency resonator based on dual-band S-shaped left-handed material,” Opt. Express 14(25), 12288–12294 (2006).
[CrossRef] [PubMed]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Metamaterial exhibiting left-handed properties over multiple frequency bands,” J. Appl. Phys. 96(9), 5338–5340 (2004).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced non-linear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

Schlesinger, T. E.

A. V. Itagi, D. D. Stancil, J. A. Bain, and T. E. Schlesinger, “Ridge waveguide as a near-field optical source,” Appl. Phys. Lett. 83(22), 4474–4476 (2003).
[CrossRef]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Shalaev, V. M.

Sheng, P.

B. Hou, Z. H. Hang, W. Wen, C. T. Chan, and P. Sheng, “Microwave transmission through metallic hole arrays: Surface electric field measurements,” Appl. Phys. Lett. 89(13), 131917 (2006).
[CrossRef]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Soukoulis, C. M.

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[CrossRef] [PubMed]

Stancil, D. D.

A. V. Itagi, D. D. Stancil, J. A. Bain, and T. E. Schlesinger, “Ridge waveguide as a near-field optical source,” Appl. Phys. Lett. 83(22), 4474–4476 (2003).
[CrossRef]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced non-linear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

Thio, T.

Tsai, M.-W.

M.-W. Tsai, T.-H. Chuang, H.-Y. Chang, and S.-C. Lee, “Bragg scattering of surface plasmon polaritons on extraordinary transmission through silver periodic perforated hole arrays,” Appl. Phys. Lett. 88(21), 213112 (2006).
[CrossRef]

Tyler, T.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
[CrossRef]

Vardeny, Z. V.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[CrossRef] [PubMed]

Wang, D.

Wang, X.

A. A. Yanik, X. Wang, S. Erramilli, M. K. Hong, and H. Altug, “Extraordinary midinfrared transmission of rectangular coaxial nanoaperture arrays,” Appl. Phys. Lett. 93(8), 081104 (2008).
[CrossRef]

Wegener, M.

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[CrossRef] [PubMed]

Wen, W.

B. Hou, Z. H. Hang, W. Wen, C. T. Chan, and P. Sheng, “Microwave transmission through metallic hole arrays: Surface electric field measurements,” Appl. Phys. Lett. 89(13), 131917 (2006).
[CrossRef]

Werner, D. H.

Wolf, P. A.

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Wolff, P. A.

Wu, B. I.

Xiao, S.

Xu, X.

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006).
[CrossRef]

E. X. Jin and X. Xu, “Finite-difference time-domain studies on optical transmission through planar nano-apertures in a metal film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).
[CrossRef]

Yamamoto, N.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[CrossRef]

Yanik, A. A.

A. A. Yanik, M. Huang, A. Artar, T. Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96(2), 021101 (2010).
[CrossRef]

S. Aksu, A. A. Yanik, R. Adato, A. Altar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10, 2511–2518 (2010).
[CrossRef] [PubMed]

M. Huang, A. A. Yanik, T. Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express 17(26), 24224–24233 (2009).
[CrossRef]

A. A. Yanik, X. Wang, S. Erramilli, M. K. Hong, and H. Altug, “Extraordinary midinfrared transmission of rectangular coaxial nanoaperture arrays,” Appl. Phys. Lett. 93(8), 081104 (2008).
[CrossRef]

Yuan, H.-K.

Yuan, Y.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
[CrossRef]

Zhang, W.

A. K. Azad, Y. Zhao, and W. Zhang, “Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array,” Appl. Phys. Lett. 86(14), 141102 (2005).
[CrossRef]

Zhang, X.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Metamaterial exhibiting left-handed properties over multiple frequency bands,” J. Appl. Phys. 96(9), 5338–5340 (2004).
[CrossRef]

Zhao, Y.

A. K. Azad, Y. Zhao, and W. Zhang, “Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array,” Appl. Phys. Lett. 86(14), 141102 (2005).
[CrossRef]

Zhu, C.

C. Zhu, J.-J. Ma, L. Li, and C.-H. Liang, “Multiresonant Metamaterial Based on Asymmetric Triangular Electromagnetic Resonators,” IEEE Antennas Wirel. Propag. Lett. 9, 99–102 (2010).
[CrossRef]

Appl. Phys. Lett.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
[CrossRef]

M.-W. Tsai, T.-H. Chuang, H.-Y. Chang, and S.-C. Lee, “Bragg scattering of surface plasmon polaritons on extraordinary transmission through silver periodic perforated hole arrays,” Appl. Phys. Lett. 88(21), 213112 (2006).
[CrossRef]

B. Hou, Z. H. Hang, W. Wen, C. T. Chan, and P. Sheng, “Microwave transmission through metallic hole arrays: Surface electric field measurements,” Appl. Phys. Lett. 89(13), 131917 (2006).
[CrossRef]

A. A. Yanik, X. Wang, S. Erramilli, M. K. Hong, and H. Altug, “Extraordinary midinfrared transmission of rectangular coaxial nanoaperture arrays,” Appl. Phys. Lett. 93(8), 081104 (2008).
[CrossRef]

A. K. Azad, Y. Zhao, and W. Zhang, “Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array,” Appl. Phys. Lett. 86(14), 141102 (2005).
[CrossRef]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327 (2002).
[CrossRef]

A. V. Itagi, D. D. Stancil, J. A. Bain, and T. E. Schlesinger, “Ridge waveguide as a near-field optical source,” Appl. Phys. Lett. 83(22), 4474–4476 (2003).
[CrossRef]

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006).
[CrossRef]

A. A. Yanik, M. Huang, A. Artar, T. Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96(2), 021101 (2010).
[CrossRef]

IEEE Antennas Wirel. Propag. Lett.

C. Zhu, J.-J. Ma, L. Li, and C.-H. Liang, “Multiresonant Metamaterial Based on Asymmetric Triangular Electromagnetic Resonators,” IEEE Antennas Wirel. Propag. Lett. 9, 99–102 (2010).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced non-linear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

J. Appl. Phys.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Metamaterial exhibiting left-handed properties over multiple frequency bands,” J. Appl. Phys. 96(9), 5338–5340 (2004).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

A. Degiron and T. W. Ebbesen, “The role of localized surface Plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

E. X. Jin and X. Xu, “Finite-difference time-domain studies on optical transmission through planar nano-apertures in a metal film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).
[CrossRef]

Nano Lett.

S. Aksu, A. A. Yanik, R. Adato, A. Altar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10, 2511–2518 (2010).
[CrossRef] [PubMed]

Nat. Mater.

J. B. Pendry, “Photonics: metamaterials in the sunshine,” Nat. Mater. 5(8), 599–600 (2006).
[CrossRef] [PubMed]

Nat. Photonics

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[CrossRef]

Nature

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Opt. Commun.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

J.-B. Masson and G. Gallot, “Coupling between surface plasmons in subwavelength hole arrays,” Phys. Rev. B 73(12), 121401 (2006).
[CrossRef]

Phys. Rev. Lett.

G. Lévêque and O. J. F. Martin, “Narrow-band multiresonant plasmon nanostructure for the coherent control of light: an optical analog of the xylophone,” Phys. Rev. Lett. 100(11), 117402 (2008).
[CrossRef] [PubMed]

Science

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Other

The numerical simulations are carried out using a finite-difference-time-domain package, Lumerical FDTD Solutions.

E. D. Palik, “Handbook of Optical Constants of Solids.” (Academic, Orlando, FL, 1985)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The schematic view of the proposed UT-shaped metamaterial antenna design (a) Top view of the UT-shaped metamaterials including the geometrical parameters: L, the length, H, the height, w, the gap width, and s, the distance between the individual U- and T-shaped apertures. The y-polarized illumination source is indicated in the figure as well. (b) Side view of the proposed antenna geometry: 30 nm thick Au, 5 nm thick Ti, and 80 nm thick SiNx layers.

Fig. 2
Fig. 2

Calculated and measured reflection spectra and SEM image of the proposed UT-shaped metamaterial antenna. (a) Numerical results obtained by FDTD method. (b) Experimental results for the UT-shaped nano-aperture antenna. Three distinct resonance modes are clearly observed both in simulation and experiment (indicated by arrows). The corresponding parameters are s = 180 nm, w = 120 nm, H = 720 nm, and L = 1200 nm. (c) SEM image of the fabricated structures.

Fig. 3
Fig. 3

Fabrication scheme and the SEM images of the UT-shaped nano-aperture antennas. To define a suspended SiNx membrane, (a) Photo lithography and RIE (dry) and KOH (wet) etchings are applied. (b) PMMA is spinned on the free-standing membrane, and then nanostructures are patterned on it by using EBL. (c) Apertures are formed after dry etching and O2 plasma cleaning. (d) Directional metal deposition is used to obtain plasmonic structures with gold deposition of 30 nm-thick Au film after 5 nm-thick prior adhesion Ti layer. (e) SEM images of the UT-shaped nano-aperture array with a zoomed single unit cell.

Fig. 4
Fig. 4

Field distributions (|Hz|2 and |E|2) of the UT-shaped nano-aperture antennas inside the metallic layer (z = 15 nm) at the resonant modes of the structure with the corresponding parameters; s = 210 nm, L = 1200 nm, w = 120 nm and H = 720 nm.

Fig. 5
Fig. 5

Calculated and measured spectra and SEM images of the individual U- and T-shaped nano-aperture antennas. (a) Calculated, (b) measured spectra, and (c) SEM image of the U-shaped nano-aperture antennas (w = 190 nm, H = 800 nm, and L = 1650 nm). (d) Calculated, (e) measured spectra, and (f) SEM image of the T-shaped nano-aperture antennas (w = 190 nm, H = 800 nm, and L = 1620 nm).

Fig. 6
Fig. 6

Calculated reflection spectrum of the UT-shaped nano-aperture antennas for different s values (L = 1200 nm, H = 720 nm, and w = 120 nm).

Fig. 7
Fig. 7

Measured reflection spectra of the UT-shaped nanoaperture antennas for different cases (a) s, L and H are fixed while w is varied (L = 1250 nm, s = 140 nm, and H = 750 nm) (b) s, w and L are fixed while H is varied (L = 1250 nm, s = 140 nm, and w = 230 nm) and (c) s, w, and H are fixed while L is varied (H = 750 nm, s = 140 nm, and w = 230 nm) (d) The three resonance dips (cm−1), λ1, λ2, λ3 as a function of length (nm) (H = 750 nm, s = 140 nm, and w = 230 nm).

Metrics