Abstract

We have calculated photoionization rates in alkali lasers. The photoionization of alkali atoms in the gain medium of alkali lasers can significantly degrade the laser performance by reducing the neutral alkali density and with it the gain. For a ten atmosphere Rb laser and a Cs exciplex laser, the photoionization induced alkali atom loss rates are greater than 105 sec−1. These high loss rates will quickly deplete the neutral alkali density, reducing gain, and may require fast, possibly, supersonic flow rates to sufficiently replenish the neutral medium for CW operation.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, “End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling,” J. Opt. Soc. Am. B 21(12), 2151–2163 (2004).
    [CrossRef]
  2. S. S. Wu, T. F. Soules, R. H. Page, S. C. Mitchell, V. K. Kanz, and R. J. Beach, “Hydrocarbon-free resonance transition 795-nm rubidium laser,” Opt. Lett. 32(16), 2423–2425 (2007).
    [CrossRef] [PubMed]
  3. B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly Efficient Optically Pumped Cesium Vapor Laser,” Opt. Commun. 260(2), 696–698 (2006).
    [CrossRef]
  4. B. V. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32(15), 2167–2169 (2007).
    [CrossRef] [PubMed]
  5. B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple Laser Diode Array Pumped Cs laser with 48 W Output Power,” Electron. Lett. 44(9), 582–583 (2008).
    [CrossRef]
  6. J. D. Readle, C. J. Wagner, J. T. Verdeyen, Carroll, and D. L. Eden, “Lasing in alkali atoms pumped by the dissociation of the alkali-rare gas exciplexes (excimers),” Proc. SPIE 7196, 71960D-7 - 1960D-8 (2009).
    [CrossRef]
  7. J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Excimer Pumped alkali vapor lasers: a new class of photoassociation lasers,” Proc. SPIE 7581, 75810K–1 - 75810K–9 (2010).
    [CrossRef]
  8. J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Pumping of atomic alkali lasers by photoexcitation of a resonance line blue satellite and alkali-rare gas excimer dissociation,” Appl. Phys. Lett . 94, 251112–1 – 2511121–3 (2009).
    [CrossRef]
  9. D. Budker, D. Kimball, and D. DeMille, Atomic Physics and exploration through problems and solutions (Oxford University Press, New York, 142–144, 2004).
  10. M. S. Safronova and C. W. Clark, “Inconsistencies between lifetime and polarizability measurements in Cs,” Phys. Rev. A 69, 040501–1 -, 040501–4 (R) (2004).
    [CrossRef]
  11. M. S. Safronova, C. J. Williams, and C. W. Clark, “Relativistic many-body calculations of electric-dipole matrix elements, lifetimes, and polarizabilities in rubidium,” Phys. Rev. A 69, 022509–1 – 022509–8 (2004).
    [CrossRef]
  12. J. E. Sansonetti, “Wavelengths, Transition Probabilities, and Energy Levels for the Spectra of Potassium (K I through K XIX),” J. Phys. Chem. Ref. Data 37(1), 7–96 (2008).
    [CrossRef]
  13. M. Głódź, A. Huzandrov, M. S. Safronova, I. Sydoryk, and J. Szonert, “Experimental and theoretical study of the nf-level lifetimes of potassium,” Phys. Rev. A 77, 022503–1 - 022503–8 (2008).
  14. O. S. Heavens, “Radiative transition probabilities of the lower excited states of the alkali metals,” J. Opt. Soc. Am. 51(10), 1058–1061 (1961).
    [CrossRef]
  15. R. Kachru, T. W. Mossberg, and S. R. Hartmann, “Nobel-gas-induced broadening of transitions to Rydberg S and D states in atomic sodium,” Phys. Rev. A 21(4), 1124–1133 (1980).
    [CrossRef]
  16. J. F. Kielkopf and R. B. Knollenberg, “Broadening and shift of the sodium diffuse series by noble gas,” Phys. Rev. A 12(2), 559–566 (1975).
    [CrossRef]
  17. G. A. Pitz, D. E. Wertepny, and G. P. Perram, “Pressure broadening and shift of the cesium D1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, CF4, and 3He,” Phys. Rev. A 80, 062718–1 - 062718–8 (2009).
  18. F. Rostas and J. L. Lemaire, “Low pressure measurement of the broadening and shift of the caesium 4555Å and 4593Å lines by helium and argon,” J. Phys. B 4(4), 555–564 (1971).
    [CrossRef]
  19. B. C. Duncan, V. Sanchez-Villicana, P. L. Gould, and H. R. Sadeghpour, “Measurement of the Rb(5D(5/2)) photoionization cross section using trapped atoms,” Phys. Rev. A 63, 043411–1 - 043411–7 (2001).
    [CrossRef]
  20. B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically Pumped Potassium Laser,” Opt. Commun. 270(2Issue 2), 353–355 (2007).
    [CrossRef]
  21. M. A. Mahmoud, “Effect of energy pooling collisions in formation of a cesium plasma by continuous wave resonance excitation,” Optica Applicata XL(1), 129–141 (2010).
  22. D. I. A. Shen Yi-Fan, “Kang, MU Boa-Xia, Wang Shu-Ying, CUI Xiu-Hua, “Energy pooling collisions in rubidium: 5P3/2+5P3/2 → 5S+(nl=5D,7S),” Chin. Phys. Lett. 22, 2805 (2005).
    [CrossRef]
  23. R. K. Namiotka, J. Huennekens, and M. Allegrini, “Energy pooling collisions in potassium: 4PJ+4PJ → 4S+(nl=5P, 6S, 4D),” Phys. Rev. A 56(1), 514–520 (1997).
    [CrossRef]
  24. S. Wane and M. Aymar, “Excited state photoionization and radiative recombination for ions of the potassium isoelectronic sequence,” J. Phys. B 20(12), 2657–2675 (1987).
    [CrossRef]
  25. S. Wane, “Radiative recombination in rubidium,” J. Phys. B 18(19), 3881–3893 (1985).
    [CrossRef]
  26. E. Arimondo, F. Giammanco, A. Sasso, and M. I. Schisano, “Laser ionization and time resolved ion collection in cesium vapor,” Opt. Commun. 55(5), 329–334 (1985).
    [CrossRef]
  27. Y. Momozaki and M. S. El-Genk, “Dissociative recombination coefficient for low temperature equilibrium cesium plasma,” J. Appl. Phys. 92(2), 690–697 (2002).
    [CrossRef]
  28. L. P. Harris, “Ionization and recombination in cesium seeded plasmas near thermal equilibrium,” J. Appl. Phys. 36(5), 1543–1553 (1965).
    [CrossRef]
  29. A. C. Tam, “Quasiresonant laser produced plasma: An efficient mechanism for localized breakdown,” J. Appl. Phys. 51(9), 4682–4687 (1980).
    [CrossRef]
  30. A. C. Tam and W. Happer, “Plasma production in a cs vapor by a weak CW laser beam at 6010Å,” Opt. Commun. 21(3), 403–407 (1977).
    [CrossRef]
  31. Q. Zhu, B. Pan, L. Chena, Y. Wanga, and X. Zhanga, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283(11), 2406–2410 (2010).
    [CrossRef]
  32. W. Happer, “Optical Pumping,” Rev. Mod. Phys. 44(2), 169–249 (1972).
    [CrossRef]
  33. B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Cs laser with unstable cavity transversely pumped by multiple diode lasers,” Opt. Express 17(17), 14767–14770 (2009).
    [CrossRef] [PubMed]

2010

M. A. Mahmoud, “Effect of energy pooling collisions in formation of a cesium plasma by continuous wave resonance excitation,” Optica Applicata XL(1), 129–141 (2010).

Q. Zhu, B. Pan, L. Chena, Y. Wanga, and X. Zhanga, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283(11), 2406–2410 (2010).
[CrossRef]

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Excimer Pumped alkali vapor lasers: a new class of photoassociation lasers,” Proc. SPIE 7581, 75810K–1 - 75810K–9 (2010).
[CrossRef]

2009

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Pumping of atomic alkali lasers by photoexcitation of a resonance line blue satellite and alkali-rare gas excimer dissociation,” Appl. Phys. Lett . 94, 251112–1 – 2511121–3 (2009).
[CrossRef]

J. D. Readle, C. J. Wagner, J. T. Verdeyen, Carroll, and D. L. Eden, “Lasing in alkali atoms pumped by the dissociation of the alkali-rare gas exciplexes (excimers),” Proc. SPIE 7196, 71960D-7 - 1960D-8 (2009).
[CrossRef]

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Cs laser with unstable cavity transversely pumped by multiple diode lasers,” Opt. Express 17(17), 14767–14770 (2009).
[CrossRef] [PubMed]

G. A. Pitz, D. E. Wertepny, and G. P. Perram, “Pressure broadening and shift of the cesium D1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, CF4, and 3He,” Phys. Rev. A 80, 062718–1 - 062718–8 (2009).

2008

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple Laser Diode Array Pumped Cs laser with 48 W Output Power,” Electron. Lett. 44(9), 582–583 (2008).
[CrossRef]

J. E. Sansonetti, “Wavelengths, Transition Probabilities, and Energy Levels for the Spectra of Potassium (K I through K XIX),” J. Phys. Chem. Ref. Data 37(1), 7–96 (2008).
[CrossRef]

M. Głódź, A. Huzandrov, M. S. Safronova, I. Sydoryk, and J. Szonert, “Experimental and theoretical study of the nf-level lifetimes of potassium,” Phys. Rev. A 77, 022503–1 - 022503–8 (2008).

2007

2006

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly Efficient Optically Pumped Cesium Vapor Laser,” Opt. Commun. 260(2), 696–698 (2006).
[CrossRef]

2005

D. I. A. Shen Yi-Fan, “Kang, MU Boa-Xia, Wang Shu-Ying, CUI Xiu-Hua, “Energy pooling collisions in rubidium: 5P3/2+5P3/2 → 5S+(nl=5D,7S),” Chin. Phys. Lett. 22, 2805 (2005).
[CrossRef]

2004

M. S. Safronova and C. W. Clark, “Inconsistencies between lifetime and polarizability measurements in Cs,” Phys. Rev. A 69, 040501–1 -, 040501–4 (R) (2004).
[CrossRef]

M. S. Safronova, C. J. Williams, and C. W. Clark, “Relativistic many-body calculations of electric-dipole matrix elements, lifetimes, and polarizabilities in rubidium,” Phys. Rev. A 69, 022509–1 – 022509–8 (2004).
[CrossRef]

R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, “End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling,” J. Opt. Soc. Am. B 21(12), 2151–2163 (2004).
[CrossRef]

2002

Y. Momozaki and M. S. El-Genk, “Dissociative recombination coefficient for low temperature equilibrium cesium plasma,” J. Appl. Phys. 92(2), 690–697 (2002).
[CrossRef]

2001

B. C. Duncan, V. Sanchez-Villicana, P. L. Gould, and H. R. Sadeghpour, “Measurement of the Rb(5D(5/2)) photoionization cross section using trapped atoms,” Phys. Rev. A 63, 043411–1 - 043411–7 (2001).
[CrossRef]

1997

R. K. Namiotka, J. Huennekens, and M. Allegrini, “Energy pooling collisions in potassium: 4PJ+4PJ → 4S+(nl=5P, 6S, 4D),” Phys. Rev. A 56(1), 514–520 (1997).
[CrossRef]

1987

S. Wane and M. Aymar, “Excited state photoionization and radiative recombination for ions of the potassium isoelectronic sequence,” J. Phys. B 20(12), 2657–2675 (1987).
[CrossRef]

1985

S. Wane, “Radiative recombination in rubidium,” J. Phys. B 18(19), 3881–3893 (1985).
[CrossRef]

E. Arimondo, F. Giammanco, A. Sasso, and M. I. Schisano, “Laser ionization and time resolved ion collection in cesium vapor,” Opt. Commun. 55(5), 329–334 (1985).
[CrossRef]

1980

R. Kachru, T. W. Mossberg, and S. R. Hartmann, “Nobel-gas-induced broadening of transitions to Rydberg S and D states in atomic sodium,” Phys. Rev. A 21(4), 1124–1133 (1980).
[CrossRef]

A. C. Tam, “Quasiresonant laser produced plasma: An efficient mechanism for localized breakdown,” J. Appl. Phys. 51(9), 4682–4687 (1980).
[CrossRef]

1977

A. C. Tam and W. Happer, “Plasma production in a cs vapor by a weak CW laser beam at 6010Å,” Opt. Commun. 21(3), 403–407 (1977).
[CrossRef]

1975

J. F. Kielkopf and R. B. Knollenberg, “Broadening and shift of the sodium diffuse series by noble gas,” Phys. Rev. A 12(2), 559–566 (1975).
[CrossRef]

1972

W. Happer, “Optical Pumping,” Rev. Mod. Phys. 44(2), 169–249 (1972).
[CrossRef]

1971

F. Rostas and J. L. Lemaire, “Low pressure measurement of the broadening and shift of the caesium 4555Å and 4593Å lines by helium and argon,” J. Phys. B 4(4), 555–564 (1971).
[CrossRef]

1965

L. P. Harris, “Ionization and recombination in cesium seeded plasmas near thermal equilibrium,” J. Appl. Phys. 36(5), 1543–1553 (1965).
[CrossRef]

1961

Allegrini, M.

R. K. Namiotka, J. Huennekens, and M. Allegrini, “Energy pooling collisions in potassium: 4PJ+4PJ → 4S+(nl=5P, 6S, 4D),” Phys. Rev. A 56(1), 514–520 (1997).
[CrossRef]

Arimondo, E.

E. Arimondo, F. Giammanco, A. Sasso, and M. I. Schisano, “Laser ionization and time resolved ion collection in cesium vapor,” Opt. Commun. 55(5), 329–334 (1985).
[CrossRef]

Aymar, M.

S. Wane and M. Aymar, “Excited state photoionization and radiative recombination for ions of the potassium isoelectronic sequence,” J. Phys. B 20(12), 2657–2675 (1987).
[CrossRef]

Beach, R. J.

Carroll,

J. D. Readle, C. J. Wagner, J. T. Verdeyen, Carroll, and D. L. Eden, “Lasing in alkali atoms pumped by the dissociation of the alkali-rare gas exciplexes (excimers),” Proc. SPIE 7196, 71960D-7 - 1960D-8 (2009).
[CrossRef]

Carroll, D. L.

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Excimer Pumped alkali vapor lasers: a new class of photoassociation lasers,” Proc. SPIE 7581, 75810K–1 - 75810K–9 (2010).
[CrossRef]

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Pumping of atomic alkali lasers by photoexcitation of a resonance line blue satellite and alkali-rare gas excimer dissociation,” Appl. Phys. Lett . 94, 251112–1 – 2511121–3 (2009).
[CrossRef]

Chena, L.

Q. Zhu, B. Pan, L. Chena, Y. Wanga, and X. Zhanga, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283(11), 2406–2410 (2010).
[CrossRef]

Clark, C. W.

M. S. Safronova and C. W. Clark, “Inconsistencies between lifetime and polarizability measurements in Cs,” Phys. Rev. A 69, 040501–1 -, 040501–4 (R) (2004).
[CrossRef]

M. S. Safronova, C. J. Williams, and C. W. Clark, “Relativistic many-body calculations of electric-dipole matrix elements, lifetimes, and polarizabilities in rubidium,” Phys. Rev. A 69, 022509–1 – 022509–8 (2004).
[CrossRef]

Dubinskii, M. A.

Duncan, B. C.

B. C. Duncan, V. Sanchez-Villicana, P. L. Gould, and H. R. Sadeghpour, “Measurement of the Rb(5D(5/2)) photoionization cross section using trapped atoms,” Phys. Rev. A 63, 043411–1 - 043411–7 (2001).
[CrossRef]

Eden, D. L.

J. D. Readle, C. J. Wagner, J. T. Verdeyen, Carroll, and D. L. Eden, “Lasing in alkali atoms pumped by the dissociation of the alkali-rare gas exciplexes (excimers),” Proc. SPIE 7196, 71960D-7 - 1960D-8 (2009).
[CrossRef]

Eden, J. G.

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Excimer Pumped alkali vapor lasers: a new class of photoassociation lasers,” Proc. SPIE 7581, 75810K–1 - 75810K–9 (2010).
[CrossRef]

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Pumping of atomic alkali lasers by photoexcitation of a resonance line blue satellite and alkali-rare gas excimer dissociation,” Appl. Phys. Lett . 94, 251112–1 – 2511121–3 (2009).
[CrossRef]

Ehrenreich, T.

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically Pumped Potassium Laser,” Opt. Commun. 270(2Issue 2), 353–355 (2007).
[CrossRef]

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly Efficient Optically Pumped Cesium Vapor Laser,” Opt. Commun. 260(2), 696–698 (2006).
[CrossRef]

El-Genk, M. S.

Y. Momozaki and M. S. El-Genk, “Dissociative recombination coefficient for low temperature equilibrium cesium plasma,” J. Appl. Phys. 92(2), 690–697 (2002).
[CrossRef]

Flusche, B.

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically Pumped Potassium Laser,” Opt. Commun. 270(2Issue 2), 353–355 (2007).
[CrossRef]

Giammanco, F.

E. Arimondo, F. Giammanco, A. Sasso, and M. I. Schisano, “Laser ionization and time resolved ion collection in cesium vapor,” Opt. Commun. 55(5), 329–334 (1985).
[CrossRef]

Glódz, M.

M. Głódź, A. Huzandrov, M. S. Safronova, I. Sydoryk, and J. Szonert, “Experimental and theoretical study of the nf-level lifetimes of potassium,” Phys. Rev. A 77, 022503–1 - 022503–8 (2008).

Gould, P. L.

B. C. Duncan, V. Sanchez-Villicana, P. L. Gould, and H. R. Sadeghpour, “Measurement of the Rb(5D(5/2)) photoionization cross section using trapped atoms,” Phys. Rev. A 63, 043411–1 - 043411–7 (2001).
[CrossRef]

Happer, W.

A. C. Tam and W. Happer, “Plasma production in a cs vapor by a weak CW laser beam at 6010Å,” Opt. Commun. 21(3), 403–407 (1977).
[CrossRef]

W. Happer, “Optical Pumping,” Rev. Mod. Phys. 44(2), 169–249 (1972).
[CrossRef]

Harris, L. P.

L. P. Harris, “Ionization and recombination in cesium seeded plasmas near thermal equilibrium,” J. Appl. Phys. 36(5), 1543–1553 (1965).
[CrossRef]

Hartmann, S. R.

R. Kachru, T. W. Mossberg, and S. R. Hartmann, “Nobel-gas-induced broadening of transitions to Rydberg S and D states in atomic sodium,” Phys. Rev. A 21(4), 1124–1133 (1980).
[CrossRef]

Havko, A.

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically Pumped Potassium Laser,” Opt. Commun. 270(2Issue 2), 353–355 (2007).
[CrossRef]

Heavens, O. S.

Huennekens, J.

R. K. Namiotka, J. Huennekens, and M. Allegrini, “Energy pooling collisions in potassium: 4PJ+4PJ → 4S+(nl=5P, 6S, 4D),” Phys. Rev. A 56(1), 514–520 (1997).
[CrossRef]

Huzandrov, A.

M. Głódź, A. Huzandrov, M. S. Safronova, I. Sydoryk, and J. Szonert, “Experimental and theoretical study of the nf-level lifetimes of potassium,” Phys. Rev. A 77, 022503–1 - 022503–8 (2008).

Kachru, R.

R. Kachru, T. W. Mossberg, and S. R. Hartmann, “Nobel-gas-induced broadening of transitions to Rydberg S and D states in atomic sodium,” Phys. Rev. A 21(4), 1124–1133 (1980).
[CrossRef]

Kanz, V. K.

Kielkopf, J. F.

J. F. Kielkopf and R. B. Knollenberg, “Broadening and shift of the sodium diffuse series by noble gas,” Phys. Rev. A 12(2), 559–566 (1975).
[CrossRef]

Knize, R. J.

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Cs laser with unstable cavity transversely pumped by multiple diode lasers,” Opt. Express 17(17), 14767–14770 (2009).
[CrossRef] [PubMed]

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple Laser Diode Array Pumped Cs laser with 48 W Output Power,” Electron. Lett. 44(9), 582–583 (2008).
[CrossRef]

B. V. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32(15), 2167–2169 (2007).
[CrossRef] [PubMed]

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically Pumped Potassium Laser,” Opt. Commun. 270(2Issue 2), 353–355 (2007).
[CrossRef]

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly Efficient Optically Pumped Cesium Vapor Laser,” Opt. Commun. 260(2), 696–698 (2006).
[CrossRef]

Knollenberg, R. B.

J. F. Kielkopf and R. B. Knollenberg, “Broadening and shift of the sodium diffuse series by noble gas,” Phys. Rev. A 12(2), 559–566 (1975).
[CrossRef]

Koval, N.

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically Pumped Potassium Laser,” Opt. Commun. 270(2Issue 2), 353–355 (2007).
[CrossRef]

Krupke, W. F.

Lemaire, J. L.

F. Rostas and J. L. Lemaire, “Low pressure measurement of the broadening and shift of the caesium 4555Å and 4593Å lines by helium and argon,” J. Phys. B 4(4), 555–564 (1971).
[CrossRef]

Maes, C.

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically Pumped Potassium Laser,” Opt. Commun. 270(2Issue 2), 353–355 (2007).
[CrossRef]

Mahmoud, M. A.

M. A. Mahmoud, “Effect of energy pooling collisions in formation of a cesium plasma by continuous wave resonance excitation,” Optica Applicata XL(1), 129–141 (2010).

Meeker, T.

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically Pumped Potassium Laser,” Opt. Commun. 270(2Issue 2), 353–355 (2007).
[CrossRef]

Merkle, L. D.

Mitchell, S. C.

Momozaki, Y.

Y. Momozaki and M. S. El-Genk, “Dissociative recombination coefficient for low temperature equilibrium cesium plasma,” J. Appl. Phys. 92(2), 690–697 (2002).
[CrossRef]

Mossberg, T. W.

R. Kachru, T. W. Mossberg, and S. R. Hartmann, “Nobel-gas-induced broadening of transitions to Rydberg S and D states in atomic sodium,” Phys. Rev. A 21(4), 1124–1133 (1980).
[CrossRef]

Namiotka, R. K.

R. K. Namiotka, J. Huennekens, and M. Allegrini, “Energy pooling collisions in potassium: 4PJ+4PJ → 4S+(nl=5P, 6S, 4D),” Phys. Rev. A 56(1), 514–520 (1997).
[CrossRef]

Page, R. H.

Pan, B.

Q. Zhu, B. Pan, L. Chena, Y. Wanga, and X. Zhanga, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283(11), 2406–2410 (2010).
[CrossRef]

Payne, S. A.

Perram, G. P.

G. A. Pitz, D. E. Wertepny, and G. P. Perram, “Pressure broadening and shift of the cesium D1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, CF4, and 3He,” Phys. Rev. A 80, 062718–1 - 062718–8 (2009).

Pitz, G. A.

G. A. Pitz, D. E. Wertepny, and G. P. Perram, “Pressure broadening and shift of the cesium D1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, CF4, and 3He,” Phys. Rev. A 80, 062718–1 - 062718–8 (2009).

Readle, J. D.

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Excimer Pumped alkali vapor lasers: a new class of photoassociation lasers,” Proc. SPIE 7581, 75810K–1 - 75810K–9 (2010).
[CrossRef]

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Pumping of atomic alkali lasers by photoexcitation of a resonance line blue satellite and alkali-rare gas excimer dissociation,” Appl. Phys. Lett . 94, 251112–1 – 2511121–3 (2009).
[CrossRef]

J. D. Readle, C. J. Wagner, J. T. Verdeyen, Carroll, and D. L. Eden, “Lasing in alkali atoms pumped by the dissociation of the alkali-rare gas exciplexes (excimers),” Proc. SPIE 7196, 71960D-7 - 1960D-8 (2009).
[CrossRef]

Rostas, F.

F. Rostas and J. L. Lemaire, “Low pressure measurement of the broadening and shift of the caesium 4555Å and 4593Å lines by helium and argon,” J. Phys. B 4(4), 555–564 (1971).
[CrossRef]

Sadeghpour, H. R.

B. C. Duncan, V. Sanchez-Villicana, P. L. Gould, and H. R. Sadeghpour, “Measurement of the Rb(5D(5/2)) photoionization cross section using trapped atoms,” Phys. Rev. A 63, 043411–1 - 043411–7 (2001).
[CrossRef]

Safronova, M. S.

M. Głódź, A. Huzandrov, M. S. Safronova, I. Sydoryk, and J. Szonert, “Experimental and theoretical study of the nf-level lifetimes of potassium,” Phys. Rev. A 77, 022503–1 - 022503–8 (2008).

M. S. Safronova, C. J. Williams, and C. W. Clark, “Relativistic many-body calculations of electric-dipole matrix elements, lifetimes, and polarizabilities in rubidium,” Phys. Rev. A 69, 022509–1 – 022509–8 (2004).
[CrossRef]

M. S. Safronova and C. W. Clark, “Inconsistencies between lifetime and polarizability measurements in Cs,” Phys. Rev. A 69, 040501–1 -, 040501–4 (R) (2004).
[CrossRef]

Sanchez-Villicana, V.

B. C. Duncan, V. Sanchez-Villicana, P. L. Gould, and H. R. Sadeghpour, “Measurement of the Rb(5D(5/2)) photoionization cross section using trapped atoms,” Phys. Rev. A 63, 043411–1 - 043411–7 (2001).
[CrossRef]

Sansonetti, J. E.

J. E. Sansonetti, “Wavelengths, Transition Probabilities, and Energy Levels for the Spectra of Potassium (K I through K XIX),” J. Phys. Chem. Ref. Data 37(1), 7–96 (2008).
[CrossRef]

Sasso, A.

E. Arimondo, F. Giammanco, A. Sasso, and M. I. Schisano, “Laser ionization and time resolved ion collection in cesium vapor,” Opt. Commun. 55(5), 329–334 (1985).
[CrossRef]

Schisano, M. I.

E. Arimondo, F. Giammanco, A. Sasso, and M. I. Schisano, “Laser ionization and time resolved ion collection in cesium vapor,” Opt. Commun. 55(5), 329–334 (1985).
[CrossRef]

Sell, J.

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple Laser Diode Array Pumped Cs laser with 48 W Output Power,” Electron. Lett. 44(9), 582–583 (2008).
[CrossRef]

Shaffer, M. K.

Shen Yi-Fan, D. I. A.

D. I. A. Shen Yi-Fan, “Kang, MU Boa-Xia, Wang Shu-Ying, CUI Xiu-Hua, “Energy pooling collisions in rubidium: 5P3/2+5P3/2 → 5S+(nl=5D,7S),” Chin. Phys. Lett. 22, 2805 (2005).
[CrossRef]

Soules, T. F.

Spinka, T. M.

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Excimer Pumped alkali vapor lasers: a new class of photoassociation lasers,” Proc. SPIE 7581, 75810K–1 - 75810K–9 (2010).
[CrossRef]

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Pumping of atomic alkali lasers by photoexcitation of a resonance line blue satellite and alkali-rare gas excimer dissociation,” Appl. Phys. Lett . 94, 251112–1 – 2511121–3 (2009).
[CrossRef]

Sydoryk, I.

M. Głódź, A. Huzandrov, M. S. Safronova, I. Sydoryk, and J. Szonert, “Experimental and theoretical study of the nf-level lifetimes of potassium,” Phys. Rev. A 77, 022503–1 - 022503–8 (2008).

Szonert, J.

M. Głódź, A. Huzandrov, M. S. Safronova, I. Sydoryk, and J. Szonert, “Experimental and theoretical study of the nf-level lifetimes of potassium,” Phys. Rev. A 77, 022503–1 - 022503–8 (2008).

Tam, A. C.

A. C. Tam, “Quasiresonant laser produced plasma: An efficient mechanism for localized breakdown,” J. Appl. Phys. 51(9), 4682–4687 (1980).
[CrossRef]

A. C. Tam and W. Happer, “Plasma production in a cs vapor by a weak CW laser beam at 6010Å,” Opt. Commun. 21(3), 403–407 (1977).
[CrossRef]

Verdeyen, J. T.

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Excimer Pumped alkali vapor lasers: a new class of photoassociation lasers,” Proc. SPIE 7581, 75810K–1 - 75810K–9 (2010).
[CrossRef]

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Pumping of atomic alkali lasers by photoexcitation of a resonance line blue satellite and alkali-rare gas excimer dissociation,” Appl. Phys. Lett . 94, 251112–1 – 2511121–3 (2009).
[CrossRef]

J. D. Readle, C. J. Wagner, J. T. Verdeyen, Carroll, and D. L. Eden, “Lasing in alkali atoms pumped by the dissociation of the alkali-rare gas exciplexes (excimers),” Proc. SPIE 7196, 71960D-7 - 1960D-8 (2009).
[CrossRef]

Wagner, C. J.

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Excimer Pumped alkali vapor lasers: a new class of photoassociation lasers,” Proc. SPIE 7581, 75810K–1 - 75810K–9 (2010).
[CrossRef]

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Pumping of atomic alkali lasers by photoexcitation of a resonance line blue satellite and alkali-rare gas excimer dissociation,” Appl. Phys. Lett . 94, 251112–1 – 2511121–3 (2009).
[CrossRef]

J. D. Readle, C. J. Wagner, J. T. Verdeyen, Carroll, and D. L. Eden, “Lasing in alkali atoms pumped by the dissociation of the alkali-rare gas exciplexes (excimers),” Proc. SPIE 7196, 71960D-7 - 1960D-8 (2009).
[CrossRef]

Wane, S.

S. Wane and M. Aymar, “Excited state photoionization and radiative recombination for ions of the potassium isoelectronic sequence,” J. Phys. B 20(12), 2657–2675 (1987).
[CrossRef]

S. Wane, “Radiative recombination in rubidium,” J. Phys. B 18(19), 3881–3893 (1985).
[CrossRef]

Wanga, Y.

Q. Zhu, B. Pan, L. Chena, Y. Wanga, and X. Zhanga, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283(11), 2406–2410 (2010).
[CrossRef]

Wertepny, D. E.

G. A. Pitz, D. E. Wertepny, and G. P. Perram, “Pressure broadening and shift of the cesium D1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, CF4, and 3He,” Phys. Rev. A 80, 062718–1 - 062718–8 (2009).

Williams, C. J.

M. S. Safronova, C. J. Williams, and C. W. Clark, “Relativistic many-body calculations of electric-dipole matrix elements, lifetimes, and polarizabilities in rubidium,” Phys. Rev. A 69, 022509–1 – 022509–8 (2004).
[CrossRef]

Worker, B.

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically Pumped Potassium Laser,” Opt. Commun. 270(2Issue 2), 353–355 (2007).
[CrossRef]

Wu, S. S.

Zhanga, X.

Q. Zhu, B. Pan, L. Chena, Y. Wanga, and X. Zhanga, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283(11), 2406–2410 (2010).
[CrossRef]

Zhdanov, B.

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically Pumped Potassium Laser,” Opt. Commun. 270(2Issue 2), 353–355 (2007).
[CrossRef]

Zhdanov, B. V.

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Cs laser with unstable cavity transversely pumped by multiple diode lasers,” Opt. Express 17(17), 14767–14770 (2009).
[CrossRef] [PubMed]

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple Laser Diode Array Pumped Cs laser with 48 W Output Power,” Electron. Lett. 44(9), 582–583 (2008).
[CrossRef]

B. V. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32(15), 2167–2169 (2007).
[CrossRef] [PubMed]

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly Efficient Optically Pumped Cesium Vapor Laser,” Opt. Commun. 260(2), 696–698 (2006).
[CrossRef]

Zhu, Q.

Q. Zhu, B. Pan, L. Chena, Y. Wanga, and X. Zhanga, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283(11), 2406–2410 (2010).
[CrossRef]

,” Proc. SPIE

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Excimer Pumped alkali vapor lasers: a new class of photoassociation lasers,” Proc. SPIE 7581, 75810K–1 - 75810K–9 (2010).
[CrossRef]

Appl. Phys. Lett

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Pumping of atomic alkali lasers by photoexcitation of a resonance line blue satellite and alkali-rare gas excimer dissociation,” Appl. Phys. Lett . 94, 251112–1 – 2511121–3 (2009).
[CrossRef]

Chin. Phys. Lett.

D. I. A. Shen Yi-Fan, “Kang, MU Boa-Xia, Wang Shu-Ying, CUI Xiu-Hua, “Energy pooling collisions in rubidium: 5P3/2+5P3/2 → 5S+(nl=5D,7S),” Chin. Phys. Lett. 22, 2805 (2005).
[CrossRef]

Electron. Lett.

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple Laser Diode Array Pumped Cs laser with 48 W Output Power,” Electron. Lett. 44(9), 582–583 (2008).
[CrossRef]

J. Appl. Phys.

Y. Momozaki and M. S. El-Genk, “Dissociative recombination coefficient for low temperature equilibrium cesium plasma,” J. Appl. Phys. 92(2), 690–697 (2002).
[CrossRef]

L. P. Harris, “Ionization and recombination in cesium seeded plasmas near thermal equilibrium,” J. Appl. Phys. 36(5), 1543–1553 (1965).
[CrossRef]

A. C. Tam, “Quasiresonant laser produced plasma: An efficient mechanism for localized breakdown,” J. Appl. Phys. 51(9), 4682–4687 (1980).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

J. Phys. B

S. Wane and M. Aymar, “Excited state photoionization and radiative recombination for ions of the potassium isoelectronic sequence,” J. Phys. B 20(12), 2657–2675 (1987).
[CrossRef]

S. Wane, “Radiative recombination in rubidium,” J. Phys. B 18(19), 3881–3893 (1985).
[CrossRef]

F. Rostas and J. L. Lemaire, “Low pressure measurement of the broadening and shift of the caesium 4555Å and 4593Å lines by helium and argon,” J. Phys. B 4(4), 555–564 (1971).
[CrossRef]

J. Phys. Chem. Ref. Data

J. E. Sansonetti, “Wavelengths, Transition Probabilities, and Energy Levels for the Spectra of Potassium (K I through K XIX),” J. Phys. Chem. Ref. Data 37(1), 7–96 (2008).
[CrossRef]

Opt. Commun.

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly Efficient Optically Pumped Cesium Vapor Laser,” Opt. Commun. 260(2), 696–698 (2006).
[CrossRef]

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically Pumped Potassium Laser,” Opt. Commun. 270(2Issue 2), 353–355 (2007).
[CrossRef]

E. Arimondo, F. Giammanco, A. Sasso, and M. I. Schisano, “Laser ionization and time resolved ion collection in cesium vapor,” Opt. Commun. 55(5), 329–334 (1985).
[CrossRef]

A. C. Tam and W. Happer, “Plasma production in a cs vapor by a weak CW laser beam at 6010Å,” Opt. Commun. 21(3), 403–407 (1977).
[CrossRef]

Q. Zhu, B. Pan, L. Chena, Y. Wanga, and X. Zhanga, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283(11), 2406–2410 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Optica Applicata

M. A. Mahmoud, “Effect of energy pooling collisions in formation of a cesium plasma by continuous wave resonance excitation,” Optica Applicata XL(1), 129–141 (2010).

Phys. Rev. A

R. K. Namiotka, J. Huennekens, and M. Allegrini, “Energy pooling collisions in potassium: 4PJ+4PJ → 4S+(nl=5P, 6S, 4D),” Phys. Rev. A 56(1), 514–520 (1997).
[CrossRef]

B. C. Duncan, V. Sanchez-Villicana, P. L. Gould, and H. R. Sadeghpour, “Measurement of the Rb(5D(5/2)) photoionization cross section using trapped atoms,” Phys. Rev. A 63, 043411–1 - 043411–7 (2001).
[CrossRef]

R. Kachru, T. W. Mossberg, and S. R. Hartmann, “Nobel-gas-induced broadening of transitions to Rydberg S and D states in atomic sodium,” Phys. Rev. A 21(4), 1124–1133 (1980).
[CrossRef]

J. F. Kielkopf and R. B. Knollenberg, “Broadening and shift of the sodium diffuse series by noble gas,” Phys. Rev. A 12(2), 559–566 (1975).
[CrossRef]

G. A. Pitz, D. E. Wertepny, and G. P. Perram, “Pressure broadening and shift of the cesium D1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, CF4, and 3He,” Phys. Rev. A 80, 062718–1 - 062718–8 (2009).

M. S. Safronova and C. W. Clark, “Inconsistencies between lifetime and polarizability measurements in Cs,” Phys. Rev. A 69, 040501–1 -, 040501–4 (R) (2004).
[CrossRef]

M. S. Safronova, C. J. Williams, and C. W. Clark, “Relativistic many-body calculations of electric-dipole matrix elements, lifetimes, and polarizabilities in rubidium,” Phys. Rev. A 69, 022509–1 – 022509–8 (2004).
[CrossRef]

M. Głódź, A. Huzandrov, M. S. Safronova, I. Sydoryk, and J. Szonert, “Experimental and theoretical study of the nf-level lifetimes of potassium,” Phys. Rev. A 77, 022503–1 - 022503–8 (2008).

Proc. SPIE

J. D. Readle, C. J. Wagner, J. T. Verdeyen, Carroll, and D. L. Eden, “Lasing in alkali atoms pumped by the dissociation of the alkali-rare gas exciplexes (excimers),” Proc. SPIE 7196, 71960D-7 - 1960D-8 (2009).
[CrossRef]

Rev. Mod. Phys.

W. Happer, “Optical Pumping,” Rev. Mod. Phys. 44(2), 169–249 (1972).
[CrossRef]

Other

D. Budker, D. Kimball, and D. DeMille, Atomic Physics and exploration through problems and solutions (Oxford University Press, New York, 142–144, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

An abbreviated energy diagram of Rb, shows the lower levels important for pumping, lasing and photoionization. K and Cs have similar energy diagrams.

Tables (3)

Tables Icon

Table 1 Tabulated are the Relevant Values for the Wavelengths λ, Fractional Population η, Lifetime τ, Absorption Cross Sections σ and Detunings Δ from the D1 and D2 Light for the K, Rb, and Cs.

Tables Icon

Table 2 The Total Loss Rate Due to Photoionization, RTotal, for the Considered Alkali Lasers are Summarized Along with the Contributions to the Loss Rate From Various Transitions. All Loss Rate Values are in Inits of s−1. Z+ Denotes the Alkali Ion.

Tables Icon

Table 3 For the total photoionization loss rates for each alkali laser, the nominal flow rates of neutral alkali are tabulated for 1/e replenishment of the gain medium. This is done for a mode diameter of 0.1 and 1.0 cm, neglecting recombination effects.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

σ o = λ 21 2 A 21  g 2 /   ( 2 π A Total g 1 )
E ij =  I D2 σ o (  f n / f b ) / ( 1 + 4 Δ i 2 / f b 2 )
P j =   ( I D2  + I D1 )   σ i
R ( D1 )   =   η P3 / 2 ( E P3 / 2 , D5 / 2 P D5 / 2 τ D5 / 2 +  E P3 / 2 , D3 / 2 P D3 / 2   τ D3 / 2 +  E P3 / 2 , S1 / 2 P S1 / 2   τ S1 / 2 )     + η P1 / 2 ( E P3 / 2 , D5 / 2 P D5 / 2 τ D5 / 2 +  E P3 / 2 , D3 / 2 P D3 / 2   τ D3 / 2 +  E P3 / 2 , S1 / 2 P S1 / 2   τ S1 / 2 )
R Total =  R ( D1 )   +  R ( D2 )
6P 3 / 2 +  6P 3 / 2  6S 1 / 2 +  6D 3 / 2
E ij =   η i k ij N
R =   η i   E i j P j τ j
R =   η i 2 k ij ( I D2  + I D1 )   σ i τ j        
A +   +  A  +  M   A 2 + +  M
A 2 + +  e  A  +  A *
τ D = L 2 / D

Metrics