Abstract

The properties of integrated-photonics directional couplers composed of near-field-coupled arrays of metal nanoparticles are analyzed theoretically. It is found that it is possible to generate very compact, submicron length, high field-confinement and functionality devices with very low switch energies. The analysis is carried out for a hypothetical lossless silver to demonstrate the potential of this type of circuits for applications in telecom and interconnects. Employing losses of real silver, standalone devices with the above properties are still feasible in optimized metal nanoparticle structures.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali and S. J. Fathpour, “Silicon photonics,” Lightwave Technol. 24(12), 4600–4615 (2006).
    [CrossRef]
  2. L. Thylén, S. He, L. Wosinski, and D. Dai, “The Moore’s law for photonic integrated circuits,” J. Zhejiang Univ. Sci. A 7(12), 1961–1967 (2006).
    [CrossRef]
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
  4. F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
    [CrossRef] [PubMed]
  5. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - A route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
    [CrossRef]
  6. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23(17), 1331–1333 (1998).
    [CrossRef]
  7. W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004).
    [CrossRef]
  8. A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006).
    [CrossRef]
  9. D. S. Citrin, “Plasmon-polariton transport in metal-nanoparticle chains embedded in a gain medium,” Opt. Lett. 31(1), 98–100 (2006).
    [CrossRef] [PubMed]
  10. K. H. Fung and C. T. Chan, “Plasmonic modes in periodic metal nanoparticle chains: a direct dynamic eigenmode analysis,” Opt. Lett. 32(8), 973–975 (2007).
    [CrossRef] [PubMed]
  11. J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,” Appl. Phys. Lett. 96(18), 181102 (2010).
    [CrossRef]
  12. T. G. Mackay and A. Lakhtakia, “Comment on “criterion for negative refraction with low optical losses from a fundamental principle of causality”,” Phys. Rev. Lett. 99(18), 189701, author reply 189702 (2007).
    [CrossRef] [PubMed]
  13. P. Holmström, L. Thylen, and A. M. Bratkovsky, “Composite metal/quantum-dot nanoparticle-array waveguides with compensated loss,” Appl. Phys. Lett. 97(7), 073110 (2010).
    [CrossRef]
  14. T. Tamir, ed., Guided-Wave Optoelectronics (Springer-Verlag, Berlin, 1988).
  15. E. J. Murphy, ed., Integrated Optical Circuits and Components: Design and Applications (Marcel Dekker, New York, 1999).
  16. S. Yang, Q. Liu, J. Yuan, and S. Zhou, “Fast and optimal design of a k-band transmit-receive active antenna array,” Prog. Electromagn. Res. B 9, 281–299 (2008).
    [CrossRef]
  17. X. Q. Sheng and E. K. N. Yung, “Implementation and experiments of a hybrid algorithm of the MLFMA-enhanced FE-BI method for open-region inhomogeneous electromagnetic problems,” IEEE Trans. Antenn. Propag. 50(2), 163–167 (2002).
    [CrossRef]
  18. J. M. Song and W. C. Chew, “Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering,” Microw. Opt. Technol. Lett. 10(1), 14–19 (1995).
    [CrossRef]
  19. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  20. C. J. Setterlind and L. Thylen, “Directional coupler switches with optical gain,” IEEE J. Quantum Electron. 22(5), 595–602 (1986) (and references therein).
    [CrossRef]
  21. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photon. Technol. Lett. 17(3), 585–587 (2005).
    [CrossRef]
  22. D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33(2), 147–149 (2008).
    [CrossRef] [PubMed]
  23. P. Mulvaney, J. Pérez-Juste, M. Giersig, L. M. Liz-Marzán, and C. Pecharromán, “Drastic surface plasmon mode shifts in gold nanorods due to electron charging,” Plasmonics 1(1), 61–66 (2006).
    [CrossRef]
  24. Z. L. Sámson, S.-C. Yen, K. F. MacDonald, K. Knight, S. Li, D. W. Hewak, D.-P. Tsai, and N. I. Zheludev, “Chalcogenide glasses in active plasmonics,” Phys. Stat. Sol. RRL 4(10), 274–276 (2010).
    [CrossRef]
  25. Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368–369 (2010).
    [CrossRef]
  26. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000).
    [CrossRef]
  27. S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714 (2002).
    [CrossRef]
  28. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
    [CrossRef] [PubMed]
  29. Z. Wang, N. Zhu, Y. Tang, L. Wosinski, D. Dai, and S. He, “Ultracompact low-loss coupler between strip and slot waveguides,” Opt. Lett. 34(10), 1498–1500 (2009).
    [CrossRef] [PubMed]
  30. L. Thylen, P. Holmström, A. Bratkovsky, J. Li, and S.-Y. Wang, “Limits on integration as determined by power dissipation and signal-to-noise ratio in loss-compensated photonic integrated circuits based on metal/quantum-dot materials,” IEEE J. Quantum Electron. 46(4), 518–524 (2010).
    [CrossRef]

2010

J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,” Appl. Phys. Lett. 96(18), 181102 (2010).
[CrossRef]

P. Holmström, L. Thylen, and A. M. Bratkovsky, “Composite metal/quantum-dot nanoparticle-array waveguides with compensated loss,” Appl. Phys. Lett. 97(7), 073110 (2010).
[CrossRef]

Z. L. Sámson, S.-C. Yen, K. F. MacDonald, K. Knight, S. Li, D. W. Hewak, D.-P. Tsai, and N. I. Zheludev, “Chalcogenide glasses in active plasmonics,” Phys. Stat. Sol. RRL 4(10), 274–276 (2010).
[CrossRef]

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368–369 (2010).
[CrossRef]

L. Thylen, P. Holmström, A. Bratkovsky, J. Li, and S.-Y. Wang, “Limits on integration as determined by power dissipation and signal-to-noise ratio in loss-compensated photonic integrated circuits based on metal/quantum-dot materials,” IEEE J. Quantum Electron. 46(4), 518–524 (2010).
[CrossRef]

2009

2008

D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33(2), 147–149 (2008).
[CrossRef] [PubMed]

S. Yang, Q. Liu, J. Yuan, and S. Zhou, “Fast and optimal design of a k-band transmit-receive active antenna array,” Prog. Electromagn. Res. B 9, 281–299 (2008).
[CrossRef]

2007

T. G. Mackay and A. Lakhtakia, “Comment on “criterion for negative refraction with low optical losses from a fundamental principle of causality”,” Phys. Rev. Lett. 99(18), 189701, author reply 189702 (2007).
[CrossRef] [PubMed]

K. H. Fung and C. T. Chan, “Plasmonic modes in periodic metal nanoparticle chains: a direct dynamic eigenmode analysis,” Opt. Lett. 32(8), 973–975 (2007).
[CrossRef] [PubMed]

2006

D. S. Citrin, “Plasmon-polariton transport in metal-nanoparticle chains embedded in a gain medium,” Opt. Lett. 31(1), 98–100 (2006).
[CrossRef] [PubMed]

P. Mulvaney, J. Pérez-Juste, M. Giersig, L. M. Liz-Marzán, and C. Pecharromán, “Drastic surface plasmon mode shifts in gold nanorods due to electron charging,” Plasmonics 1(1), 61–66 (2006).
[CrossRef]

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006).
[CrossRef]

B. Jalali and S. J. Fathpour, “Silicon photonics,” Lightwave Technol. 24(12), 4600–4615 (2006).
[CrossRef]

L. Thylén, S. He, L. Wosinski, and D. Dai, “The Moore’s law for photonic integrated circuits,” J. Zhejiang Univ. Sci. A 7(12), 1961–1967 (2006).
[CrossRef]

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
[CrossRef] [PubMed]

2005

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photon. Technol. Lett. 17(3), 585–587 (2005).
[CrossRef]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

2004

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004).
[CrossRef]

2002

X. Q. Sheng and E. K. N. Yung, “Implementation and experiments of a hybrid algorithm of the MLFMA-enhanced FE-BI method for open-region inhomogeneous electromagnetic problems,” IEEE Trans. Antenn. Propag. 50(2), 163–167 (2002).
[CrossRef]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714 (2002).
[CrossRef]

2001

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - A route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[CrossRef]

2000

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000).
[CrossRef]

1998

1995

J. M. Song and W. C. Chew, “Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering,” Microw. Opt. Technol. Lett. 10(1), 14–19 (1995).
[CrossRef]

1986

C. J. Setterlind and L. Thylen, “Directional coupler switches with optical gain,” IEEE J. Quantum Electron. 22(5), 595–602 (1986) (and references therein).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Arakawa, Y.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photon. Technol. Lett. 17(3), 585–587 (2005).
[CrossRef]

Atwater, H. A.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714 (2002).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - A route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000).
[CrossRef]

Aussenegg, F. R.

Beggs, D. M.

Bratkovsky, A.

L. Thylen, P. Holmström, A. Bratkovsky, J. Li, and S.-Y. Wang, “Limits on integration as determined by power dissipation and signal-to-noise ratio in loss-compensated photonic integrated circuits based on metal/quantum-dot materials,” IEEE J. Quantum Electron. 46(4), 518–524 (2010).
[CrossRef]

Bratkovsky, A. M.

P. Holmström, L. Thylen, and A. M. Bratkovsky, “Composite metal/quantum-dot nanoparticle-array waveguides with compensated loss,” Appl. Phys. Lett. 97(7), 073110 (2010).
[CrossRef]

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - A route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000).
[CrossRef]

Brueck, S. R. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Chan, C. T.

Chew, W. C.

J. M. Song and W. C. Chew, “Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering,” Microw. Opt. Technol. Lett. 10(1), 14–19 (1995).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Chu, T.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photon. Technol. Lett. 17(3), 585–587 (2005).
[CrossRef]

Citrin, D. S.

Dai, D.

Z. Wang, N. Zhu, Y. Tang, L. Wosinski, D. Dai, and S. He, “Ultracompact low-loss coupler between strip and slot waveguides,” Opt. Lett. 34(10), 1498–1500 (2009).
[CrossRef] [PubMed]

L. Thylén, S. He, L. Wosinski, and D. Dai, “The Moore’s law for photonic integrated circuits,” J. Zhejiang Univ. Sci. A 7(12), 1961–1967 (2006).
[CrossRef]

Fan, W.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Fathpour, S. J.

B. Jalali and S. J. Fathpour, “Silicon photonics,” Lightwave Technol. 24(12), 4600–4615 (2006).
[CrossRef]

Ford, G. W.

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004).
[CrossRef]

Fung, K. H.

Giersig, M.

P. Mulvaney, J. Pérez-Juste, M. Giersig, L. M. Liz-Marzán, and C. Pecharromán, “Drastic surface plasmon mode shifts in gold nanorods due to electron charging,” Plasmonics 1(1), 61–66 (2006).
[CrossRef]

Hartman, J. W.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000).
[CrossRef]

He, S.

Z. Wang, N. Zhu, Y. Tang, L. Wosinski, D. Dai, and S. He, “Ultracompact low-loss coupler between strip and slot waveguides,” Opt. Lett. 34(10), 1498–1500 (2009).
[CrossRef] [PubMed]

L. Thylén, S. He, L. Wosinski, and D. Dai, “The Moore’s law for photonic integrated circuits,” J. Zhejiang Univ. Sci. A 7(12), 1961–1967 (2006).
[CrossRef]

Hewak, D. W.

Z. L. Sámson, S.-C. Yen, K. F. MacDonald, K. Knight, S. Li, D. W. Hewak, D.-P. Tsai, and N. I. Zheludev, “Chalcogenide glasses in active plasmonics,” Phys. Stat. Sol. RRL 4(10), 274–276 (2010).
[CrossRef]

Holmström, P.

L. Thylen, P. Holmström, A. Bratkovsky, J. Li, and S.-Y. Wang, “Limits on integration as determined by power dissipation and signal-to-noise ratio in loss-compensated photonic integrated circuits based on metal/quantum-dot materials,” IEEE J. Quantum Electron. 46(4), 518–524 (2010).
[CrossRef]

P. Holmström, L. Thylen, and A. M. Bratkovsky, “Composite metal/quantum-dot nanoparticle-array waveguides with compensated loss,” Appl. Phys. Lett. 97(7), 073110 (2010).
[CrossRef]

Ikuma, Y.

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368–369 (2010).
[CrossRef]

Ishida, S.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photon. Technol. Lett. 17(3), 585–587 (2005).
[CrossRef]

Jalali, B.

B. Jalali and S. J. Fathpour, “Silicon photonics,” Lightwave Technol. 24(12), 4600–4615 (2006).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Kawashima, H.

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368–369 (2010).
[CrossRef]

Khurgin, J. B.

J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,” Appl. Phys. Lett. 96(18), 181102 (2010).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714 (2002).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - A route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[CrossRef]

Kintaka, K.

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368–369 (2010).
[CrossRef]

Knight, K.

Z. L. Sámson, S.-C. Yen, K. F. MacDonald, K. Knight, S. Li, D. W. Hewak, D.-P. Tsai, and N. I. Zheludev, “Chalcogenide glasses in active plasmonics,” Phys. Stat. Sol. RRL 4(10), 274–276 (2010).
[CrossRef]

Koenderink, A. F.

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006).
[CrossRef]

Krauss, T. F.

Krenn, J. R.

Kuwahara, M.

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368–369 (2010).
[CrossRef]

Lakhtakia, A.

T. G. Mackay and A. Lakhtakia, “Comment on “criterion for negative refraction with low optical losses from a fundamental principle of causality”,” Phys. Rev. Lett. 99(18), 189701, author reply 189702 (2007).
[CrossRef] [PubMed]

Leitner, A.

Li, J.

L. Thylen, P. Holmström, A. Bratkovsky, J. Li, and S.-Y. Wang, “Limits on integration as determined by power dissipation and signal-to-noise ratio in loss-compensated photonic integrated circuits based on metal/quantum-dot materials,” IEEE J. Quantum Electron. 46(4), 518–524 (2010).
[CrossRef]

Li, S.

Z. L. Sámson, S.-C. Yen, K. F. MacDonald, K. Knight, S. Li, D. W. Hewak, D.-P. Tsai, and N. I. Zheludev, “Chalcogenide glasses in active plasmonics,” Phys. Stat. Sol. RRL 4(10), 274–276 (2010).
[CrossRef]

Liu, Q.

S. Yang, Q. Liu, J. Yuan, and S. Zhou, “Fast and optimal design of a k-band transmit-receive active antenna array,” Prog. Electromagn. Res. B 9, 281–299 (2008).
[CrossRef]

Liz-Marzán, L. M.

P. Mulvaney, J. Pérez-Juste, M. Giersig, L. M. Liz-Marzán, and C. Pecharromán, “Drastic surface plasmon mode shifts in gold nanorods due to electron charging,” Plasmonics 1(1), 61–66 (2006).
[CrossRef]

MacDonald, K. F.

Z. L. Sámson, S.-C. Yen, K. F. MacDonald, K. Knight, S. Li, D. W. Hewak, D.-P. Tsai, and N. I. Zheludev, “Chalcogenide glasses in active plasmonics,” Phys. Stat. Sol. RRL 4(10), 274–276 (2010).
[CrossRef]

Mackay, T. G.

T. G. Mackay and A. Lakhtakia, “Comment on “criterion for negative refraction with low optical losses from a fundamental principle of causality”,” Phys. Rev. Lett. 99(18), 189701, author reply 189702 (2007).
[CrossRef] [PubMed]

Maier, S. A.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714 (2002).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - A route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[CrossRef]

Malloy, K. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Meltzer, S.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - A route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[CrossRef]

Mulvaney, P.

P. Mulvaney, J. Pérez-Juste, M. Giersig, L. M. Liz-Marzán, and C. Pecharromán, “Drastic surface plasmon mode shifts in gold nanorods due to electron charging,” Plasmonics 1(1), 61–66 (2006).
[CrossRef]

O’Faolain, L.

Osgood, R. M.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Panoiu, N. C.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Pecharromán, C.

P. Mulvaney, J. Pérez-Juste, M. Giersig, L. M. Liz-Marzán, and C. Pecharromán, “Drastic surface plasmon mode shifts in gold nanorods due to electron charging,” Plasmonics 1(1), 61–66 (2006).
[CrossRef]

Pérez-Juste, J.

P. Mulvaney, J. Pérez-Juste, M. Giersig, L. M. Liz-Marzán, and C. Pecharromán, “Drastic surface plasmon mode shifts in gold nanorods due to electron charging,” Plasmonics 1(1), 61–66 (2006).
[CrossRef]

Polman, A.

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006).
[CrossRef]

Quinten, M.

Requicha, A. A. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - A route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[CrossRef]

Sámson, Z. L.

Z. L. Sámson, S.-C. Yen, K. F. MacDonald, K. Knight, S. Li, D. W. Hewak, D.-P. Tsai, and N. I. Zheludev, “Chalcogenide glasses in active plasmonics,” Phys. Stat. Sol. RRL 4(10), 274–276 (2010).
[CrossRef]

Setterlind, C. J.

C. J. Setterlind and L. Thylen, “Directional coupler switches with optical gain,” IEEE J. Quantum Electron. 22(5), 595–602 (1986) (and references therein).
[CrossRef]

Shen, Y. R.

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
[CrossRef] [PubMed]

Sheng, X. Q.

X. Q. Sheng and E. K. N. Yung, “Implementation and experiments of a hybrid algorithm of the MLFMA-enhanced FE-BI method for open-region inhomogeneous electromagnetic problems,” IEEE Trans. Antenn. Propag. 50(2), 163–167 (2002).
[CrossRef]

Shoji, Y.

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368–369 (2010).
[CrossRef]

Song, J. M.

J. M. Song and W. C. Chew, “Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering,” Microw. Opt. Technol. Lett. 10(1), 14–19 (1995).
[CrossRef]

Sun, G.

J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,” Appl. Phys. Lett. 96(18), 181102 (2010).
[CrossRef]

Tanaka, D.

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368–369 (2010).
[CrossRef]

Tang, Y.

Thylen, L.

P. Holmström, L. Thylen, and A. M. Bratkovsky, “Composite metal/quantum-dot nanoparticle-array waveguides with compensated loss,” Appl. Phys. Lett. 97(7), 073110 (2010).
[CrossRef]

L. Thylen, P. Holmström, A. Bratkovsky, J. Li, and S.-Y. Wang, “Limits on integration as determined by power dissipation and signal-to-noise ratio in loss-compensated photonic integrated circuits based on metal/quantum-dot materials,” IEEE J. Quantum Electron. 46(4), 518–524 (2010).
[CrossRef]

C. J. Setterlind and L. Thylen, “Directional coupler switches with optical gain,” IEEE J. Quantum Electron. 22(5), 595–602 (1986) (and references therein).
[CrossRef]

Thylén, L.

L. Thylén, S. He, L. Wosinski, and D. Dai, “The Moore’s law for photonic integrated circuits,” J. Zhejiang Univ. Sci. A 7(12), 1961–1967 (2006).
[CrossRef]

Tsai, D.-P.

Z. L. Sámson, S.-C. Yen, K. F. MacDonald, K. Knight, S. Li, D. W. Hewak, D.-P. Tsai, and N. I. Zheludev, “Chalcogenide glasses in active plasmonics,” Phys. Stat. Sol. RRL 4(10), 274–276 (2010).
[CrossRef]

Tsuda, H.

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368–369 (2010).
[CrossRef]

Wang, F.

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
[CrossRef] [PubMed]

Wang, S.-Y.

L. Thylen, P. Holmström, A. Bratkovsky, J. Li, and S.-Y. Wang, “Limits on integration as determined by power dissipation and signal-to-noise ratio in loss-compensated photonic integrated circuits based on metal/quantum-dot materials,” IEEE J. Quantum Electron. 46(4), 518–524 (2010).
[CrossRef]

Wang, X.

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368–369 (2010).
[CrossRef]

Wang, Z.

Weber, W. H.

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004).
[CrossRef]

White, T. P.

Wosinski, L.

Z. Wang, N. Zhu, Y. Tang, L. Wosinski, D. Dai, and S. He, “Ultracompact low-loss coupler between strip and slot waveguides,” Opt. Lett. 34(10), 1498–1500 (2009).
[CrossRef] [PubMed]

L. Thylén, S. He, L. Wosinski, and D. Dai, “The Moore’s law for photonic integrated circuits,” J. Zhejiang Univ. Sci. A 7(12), 1961–1967 (2006).
[CrossRef]

Yamada, H.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photon. Technol. Lett. 17(3), 585–587 (2005).
[CrossRef]

Yang, S.

S. Yang, Q. Liu, J. Yuan, and S. Zhou, “Fast and optimal design of a k-band transmit-receive active antenna array,” Prog. Electromagn. Res. B 9, 281–299 (2008).
[CrossRef]

Yen, S.-C.

Z. L. Sámson, S.-C. Yen, K. F. MacDonald, K. Knight, S. Li, D. W. Hewak, D.-P. Tsai, and N. I. Zheludev, “Chalcogenide glasses in active plasmonics,” Phys. Stat. Sol. RRL 4(10), 274–276 (2010).
[CrossRef]

Yuan, J.

S. Yang, Q. Liu, J. Yuan, and S. Zhou, “Fast and optimal design of a k-band transmit-receive active antenna array,” Prog. Electromagn. Res. B 9, 281–299 (2008).
[CrossRef]

Yung, E. K. N.

X. Q. Sheng and E. K. N. Yung, “Implementation and experiments of a hybrid algorithm of the MLFMA-enhanced FE-BI method for open-region inhomogeneous electromagnetic problems,” IEEE Trans. Antenn. Propag. 50(2), 163–167 (2002).
[CrossRef]

Zhang, S.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Zheludev, N. I.

Z. L. Sámson, S.-C. Yen, K. F. MacDonald, K. Knight, S. Li, D. W. Hewak, D.-P. Tsai, and N. I. Zheludev, “Chalcogenide glasses in active plasmonics,” Phys. Stat. Sol. RRL 4(10), 274–276 (2010).
[CrossRef]

Zhou, S.

S. Yang, Q. Liu, J. Yuan, and S. Zhou, “Fast and optimal design of a k-band transmit-receive active antenna array,” Prog. Electromagn. Res. B 9, 281–299 (2008).
[CrossRef]

Zhu, N.

Adv. Mater.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - A route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[CrossRef]

Appl. Phys. Lett.

J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,” Appl. Phys. Lett. 96(18), 181102 (2010).
[CrossRef]

P. Holmström, L. Thylen, and A. M. Bratkovsky, “Composite metal/quantum-dot nanoparticle-array waveguides with compensated loss,” Appl. Phys. Lett. 97(7), 073110 (2010).
[CrossRef]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714 (2002).
[CrossRef]

Electron. Lett.

Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, “Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide,” Electron. Lett. 46(5), 368–369 (2010).
[CrossRef]

IEEE J. Quantum Electron.

L. Thylen, P. Holmström, A. Bratkovsky, J. Li, and S.-Y. Wang, “Limits on integration as determined by power dissipation and signal-to-noise ratio in loss-compensated photonic integrated circuits based on metal/quantum-dot materials,” IEEE J. Quantum Electron. 46(4), 518–524 (2010).
[CrossRef]

C. J. Setterlind and L. Thylen, “Directional coupler switches with optical gain,” IEEE J. Quantum Electron. 22(5), 595–602 (1986) (and references therein).
[CrossRef]

IEEE Photon. Technol. Lett.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photon. Technol. Lett. 17(3), 585–587 (2005).
[CrossRef]

IEEE Trans. Antenn. Propag.

X. Q. Sheng and E. K. N. Yung, “Implementation and experiments of a hybrid algorithm of the MLFMA-enhanced FE-BI method for open-region inhomogeneous electromagnetic problems,” IEEE Trans. Antenn. Propag. 50(2), 163–167 (2002).
[CrossRef]

J. Zhejiang Univ. Sci. A

L. Thylén, S. He, L. Wosinski, and D. Dai, “The Moore’s law for photonic integrated circuits,” J. Zhejiang Univ. Sci. A 7(12), 1961–1967 (2006).
[CrossRef]

Lightwave Technol.

B. Jalali and S. J. Fathpour, “Silicon photonics,” Lightwave Technol. 24(12), 4600–4615 (2006).
[CrossRef]

Microw. Opt. Technol. Lett.

J. M. Song and W. C. Chew, “Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering,” Microw. Opt. Technol. Lett. 10(1), 14–19 (1995).
[CrossRef]

Opt. Lett.

Phys. Rev. B

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004).
[CrossRef]

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006).
[CrossRef]

Phys. Rev. Lett.

T. G. Mackay and A. Lakhtakia, “Comment on “criterion for negative refraction with low optical losses from a fundamental principle of causality”,” Phys. Rev. Lett. 99(18), 189701, author reply 189702 (2007).
[CrossRef] [PubMed]

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Phys. Stat. Sol. RRL

Z. L. Sámson, S.-C. Yen, K. F. MacDonald, K. Knight, S. Li, D. W. Hewak, D.-P. Tsai, and N. I. Zheludev, “Chalcogenide glasses in active plasmonics,” Phys. Stat. Sol. RRL 4(10), 274–276 (2010).
[CrossRef]

Plasmonics

P. Mulvaney, J. Pérez-Juste, M. Giersig, L. M. Liz-Marzán, and C. Pecharromán, “Drastic surface plasmon mode shifts in gold nanorods due to electron charging,” Plasmonics 1(1), 61–66 (2006).
[CrossRef]

Prog. Electromagn. Res. B

S. Yang, Q. Liu, J. Yuan, and S. Zhou, “Fast and optimal design of a k-band transmit-receive active antenna array,” Prog. Electromagn. Res. B 9, 281–299 (2008).
[CrossRef]

Other

T. Tamir, ed., Guided-Wave Optoelectronics (Springer-Verlag, Berlin, 1988).

E. J. Murphy, ed., Integrated Optical Circuits and Components: Design and Applications (Marcel Dekker, New York, 1999).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 3
Fig. 3

(a) Optical switch based on a mismatched nanoarray waveguide directional coupler. The nanoparticles in the upper waveguide have the plasma frequency ħωp,upper=6.18 eV, while those of the lower waveguide are shifted as indicated in the figure. (b) Classical directional coupler behavior of the electric field amplitudes in the upper (|B(x)|) and lower (|C(x)|) waveguides, respectively, according to Eqs. (1,2), for increasing mismatch δ. The increment of the mismatch parameter δ between successive graphs has been chosen to resemble the simulation results of the upper panel. (c) E-field magnitudes 3 nm above the upper (|E upper(x)|) and lower (|E lower(x)|) nanoarray waveguides for the respective plasma frequencies ħωp,upper=6.18 eV and ħωp,lower=6.165 eV. The electric field amplitudes |B(x)| and |C(x)| of the classical directional coupler for the mismatch δ/κ=1.25 is indicated by dashed lines for comparison.

Fig. 1
Fig. 1

(a) Top view of the lossless Ag nanoparticle arrays showing the E-field magnitude in a plane 3 nm above the particle surfaces. The particle positions are indicated by black dots. The periodic coupling as well as the influence of the increasing array separation c is evident. (b) The coupling length l c versus the center-to-center spacing c of the nanoparticle arrays.

Fig. 2
Fig. 2

Coupling lengths l c for aligned and staggered arrays versus excitation wavelength.

Fig. 4
Fig. 4

Dispersion relation in a longitudinally excited array of prolate spheroids of size 50×25×25 nm3. Shifting the host refractive index by δn H gives a shift δk of the waveguide k number at the operation point. The shift is exaggerated compared to the example in the text for clarity.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

C ( x ) = i κ κ 2 + δ 2 sin ( x κ 2 + δ 2 ) ,
B ( x ) = cos ( x κ 2 + δ 2 ) + i δ κ 2 + δ 2 sin ( x κ 2 + δ 2 ) ,
ω 0 = ω p 1 + 1 N N ε H ,
δ ω 0 ω 0 δ n H n H .
δ k L = π δ ω = Δ E d L .

Metrics