Abstract

We present the first experimental results for polarization-switched QPSK (PS-QPSK) and make a comparison with polarization-multiplexed QPSK. Our measurements confirm the predicted sensitivity advantage of PS-QPSK. We have also studied the single channel performance after transmission over 300 km and support the results with numerical simulations. It is shown that the two modulation formats have similar nonlinear tolerance and that optical dispersion compensation outperforms compensation with digital signal processing in the single channel case. Finally, we propose a novel transmitter for PS-QPSK based on an IQ modulator and two amplitude modulators driven in a push-pull configuration.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Karlsson and E. Agrell, “Which is the most power-efficient modulation format in optical links?” Opt. Express 17(13), 10814–10819 (2009).
    [CrossRef] [PubMed]
  2. P. Serena, A. Vannucci, and A. Bononi, “The performance of polarization switched-QPSK (PS-QPSK) in dispersion managed WDM transmissions,” in European Conf. on Opt. Commun. (ECOC), p. Th.10.E.2, 2010.
  3. P. Poggiolini, G. Bosco, A. Carena, V. Curri, and F. Forghieri, “Performance evaluation of coherent WDM PS-QPSK (HEXA) accounting for non-linear fiber propagation effects,” Opt. Express 18(11), 11360–11371 (2010).
    [CrossRef] [PubMed]
  4. H. Sun, K.-T. Wu, and K. Roberts, “Real-time measurements of a 40 Gb/s coherent system,” Opt. Express 16(2), 873–879 (2008).
    [CrossRef] [PubMed]
  5. L. E. Nelson, S. L. Woodward, S. Foo, X. Zhou, M. D. Feuer, D. Hanson, D. McGhan, H. Sun, M. Moyer, M. O. Sullivan, and P. D. Magill, “Performance of a 46-Gbps dual-polarization QPSK transceiver with real-time coherent equalization over high PMD fiber,” J. Lightwave Technol. 27(3), 158–167 (2009).
    [CrossRef]
  6. J.-X. Cai, Y. Kai, C. R. Davidson, D. G. Foursa, A. J. Lucero, O. V. Sinkin, W. W. Patterson, A. N. Pilipetskii, G. Mohs, and N. S. Bergano, “Transmission of 96x100G bandwidth-constrained PDM-RZ-QPSK channels with 300% spectral efficiency over 10610 km and 400% spectral efficiency over 4370 km,” J. Lightwave Technol. 29(4), 491–498 (2011).
    [CrossRef]
  7. P. Johannisson, M. Sjödin, M. Karlsson, H. Wymeersch, E. Agrell, and P. A. Andrekson, “A modified constant modulus algorithm for polarization-switched QPSK,” Opt. Express (submitted to).
    [PubMed]
  8. A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
    [CrossRef]
  9. M. S. Alfiad, D. van den Borne, T. Wuth, M. Kuschnerov, B. Lankl, C. Weiske, E. de Man, A. Napoli, and H. de Waardt, 111-Gb/s POLMUX-RZ-DQPSK transmission over 1140 km of SSMF with 10.7-Gb/s NRZ-OOK neighbours,” in European Conf. on Opt. Commun. (ECOC), p. Mo.4.E.2, 2008.
  10. D. Wang and C. R. Menyuk, “Polarization evolution due to the Kerr nonlinearity and chromatic dispersion,” J. Lightwave Technol. 17(12), 2520–2529 (1999).
    [CrossRef]
  11. C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear distortion in transmission of higher order modulation formats,” Photon. Technol. Lett. 22(15), 1111–1113 (2010).
    [CrossRef]

2011 (1)

2010 (2)

P. Poggiolini, G. Bosco, A. Carena, V. Curri, and F. Forghieri, “Performance evaluation of coherent WDM PS-QPSK (HEXA) accounting for non-linear fiber propagation effects,” Opt. Express 18(11), 11360–11371 (2010).
[CrossRef] [PubMed]

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear distortion in transmission of higher order modulation formats,” Photon. Technol. Lett. 22(15), 1111–1113 (2010).
[CrossRef]

2009 (2)

2008 (1)

1999 (1)

1983 (1)

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

Agrell, E.

M. Karlsson and E. Agrell, “Which is the most power-efficient modulation format in optical links?” Opt. Express 17(13), 10814–10819 (2009).
[CrossRef] [PubMed]

P. Johannisson, M. Sjödin, M. Karlsson, H. Wymeersch, E. Agrell, and P. A. Andrekson, “A modified constant modulus algorithm for polarization-switched QPSK,” Opt. Express (submitted to).
[PubMed]

Andrekson, P. A.

P. Johannisson, M. Sjödin, M. Karlsson, H. Wymeersch, E. Agrell, and P. A. Andrekson, “A modified constant modulus algorithm for polarization-switched QPSK,” Opt. Express (submitted to).
[PubMed]

Bayvel, P.

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear distortion in transmission of higher order modulation formats,” Photon. Technol. Lett. 22(15), 1111–1113 (2010).
[CrossRef]

Behrens, C.

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear distortion in transmission of higher order modulation formats,” Photon. Technol. Lett. 22(15), 1111–1113 (2010).
[CrossRef]

Bergano, N. S.

Bosco, G.

Cai, J.-X.

Carena, A.

Chen, M.

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear distortion in transmission of higher order modulation formats,” Photon. Technol. Lett. 22(15), 1111–1113 (2010).
[CrossRef]

Curri, V.

Davidson, C. R.

Feuer, M. D.

Foo, S.

Forghieri, F.

Foursa, D. G.

Hanson, D.

Johannisson, P.

P. Johannisson, M. Sjödin, M. Karlsson, H. Wymeersch, E. Agrell, and P. A. Andrekson, “A modified constant modulus algorithm for polarization-switched QPSK,” Opt. Express (submitted to).
[PubMed]

Kai, Y.

Karlsson, M.

M. Karlsson and E. Agrell, “Which is the most power-efficient modulation format in optical links?” Opt. Express 17(13), 10814–10819 (2009).
[CrossRef] [PubMed]

P. Johannisson, M. Sjödin, M. Karlsson, H. Wymeersch, E. Agrell, and P. A. Andrekson, “A modified constant modulus algorithm for polarization-switched QPSK,” Opt. Express (submitted to).
[PubMed]

Killey, R. I.

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear distortion in transmission of higher order modulation formats,” Photon. Technol. Lett. 22(15), 1111–1113 (2010).
[CrossRef]

Lucero, A. J.

Magill, P. D.

McGhan, D.

Menyuk, C. R.

Mohs, G.

Moyer, M.

Nelson, L. E.

Patterson, W. W.

Pilipetskii, A. N.

Poggiolini, P.

Roberts, K.

Savory, S. J.

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear distortion in transmission of higher order modulation formats,” Photon. Technol. Lett. 22(15), 1111–1113 (2010).
[CrossRef]

Sinkin, O. V.

Sjödin, M.

P. Johannisson, M. Sjödin, M. Karlsson, H. Wymeersch, E. Agrell, and P. A. Andrekson, “A modified constant modulus algorithm for polarization-switched QPSK,” Opt. Express (submitted to).
[PubMed]

Sullivan, M. O.

Sun, H.

Viterbi, A. J.

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

Viterbi, A. M.

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

Wang, D.

Woodward, S. L.

Wu, K.-T.

Wymeersch, H.

P. Johannisson, M. Sjödin, M. Karlsson, H. Wymeersch, E. Agrell, and P. A. Andrekson, “A modified constant modulus algorithm for polarization-switched QPSK,” Opt. Express (submitted to).
[PubMed]

Zhou, X.

IEEE Trans. Inf. Theory (1)

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (4)

Photon. Technol. Lett. (1)

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear distortion in transmission of higher order modulation formats,” Photon. Technol. Lett. 22(15), 1111–1113 (2010).
[CrossRef]

Other (2)

P. Serena, A. Vannucci, and A. Bononi, “The performance of polarization switched-QPSK (PS-QPSK) in dispersion managed WDM transmissions,” in European Conf. on Opt. Commun. (ECOC), p. Th.10.E.2, 2010.

M. S. Alfiad, D. van den Borne, T. Wuth, M. Kuschnerov, B. Lankl, C. Weiske, E. de Man, A. Napoli, and H. de Waardt, 111-Gb/s POLMUX-RZ-DQPSK transmission over 1140 km of SSMF with 10.7-Gb/s NRZ-OOK neighbours,” in European Conf. on Opt. Commun. (ECOC), p. Mo.4.E.2, 2008.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The transmitter used to generate PS-QPSK. The amplitude modulators are driven in a push-pull configuration to switch between the two polarization states.

Fig. 2
Fig. 2

The receiver used to detect PS-QPSK and PM-QPSK.

Fig. 3
Fig. 3

The link used in the transmission experiment.

Fig. 4
Fig. 4

The measured back-to-back BER measurements for 10 Gbaud PS-QPSK and PM-QPSK at both 10 and 7.5 Gbaud. The theoretical OSNR requirements are also shown for each case.

Fig. 5
Fig. 5

The OSNR requirements @ BER = 10−3 for 10 Gbaud PS-QPSK and PM-QPSK at 7.5 and 10 Gbaud as a function of the launch power into the SSMF spans in the link. (a) Measured results. (b) Simulated results.

Fig. 6
Fig. 6

Simulated and measured results for the OSNR requirements @ BER = 10−3 as a function of the launch power into the SSMF spans in the link. (a) 10 Gbaud PS-QPSK. (b) 7.5 Gbaud PM-QPSK. (c) 10 Gbaud PM-QPSK.

Tables (2)

Tables Icon

Table 1 Fiber and Link Parameters

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

J = Ε [ 1 2 ( | i x | 2 + | i y | 2 P ) 2 + | i x | 2 | i y | 2 ] ,
max ( | i x,r | + | i x,i | , | i y,r | + | i y,i | ) ,
i E z = β 2 2 2 E t 2 γ ( E H E ) E i α 2 E ,

Metrics