Abstract

We present experimentally feasible designs of a dual-core microstructured polymer optical fiber (mPOF), which can act as a highly sensitive, label-free, and selective biosensor. An immobilized antigen sensing layer on the walls of the holes in the mPOF provides the ability to selectively capture antibody biomolecules. The change of the layer thickness of biomolecules can then be detected as a change in the coupling length between the two cores. We compare mPOF structures with 1, 2, and 3 air-holes between the solid cores and show that the sensitivity increases with increasing distance between the cores. Numerical calculations indicate a record sensitivity up to 20 nm/nm (defined as the shift in the resonance wavelength per nm biolayer) at visible wavelengths, where the mPOF has low loss.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
    [CrossRef] [PubMed]
  2. M. A. van Eijkelenborg, M. Large, A. Argyros, J. Zagari, S. Manos, N. Issa, I. Bassett, S. Fleming, R. McPhedran, C. M. de Sterke, and N. A. Nicorovici, “Microstructured polymer optical fibre,” Opt. Express 9(7), 319–327 (2001).
    [CrossRef] [PubMed]
  3. G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjær, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007).
    [CrossRef] [PubMed]
  4. G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjær, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber: erratum,” Opt. Lett. 32(9), 1059–1059 (2007).
    [CrossRef]
  5. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
    [CrossRef] [PubMed]
  6. T. M. Monro, D. J. Richardson, and P. J. Bennet, “Developing holey fibers for evanescent field devices,” Electron. Lett. 35(14), 1188–1189 (1999).
    [CrossRef]
  7. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29(17), 1974–1976 (2004).
    [CrossRef] [PubMed]
  8. L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem. 385(8), 1370–1375 (2006).
    [CrossRef] [PubMed]
  9. M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, “Recent development in optical fiber biosensors,” Sensors 7(6), 797–859 (2007).
    [CrossRef]
  10. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [CrossRef] [PubMed]
  11. A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14(24), 11616–11621 (2006).
    [CrossRef] [PubMed]
  12. A. Wang, A. Docherty, B. T. Kuhlmey, F. M. Cox, and M. C. J. Large, “Side-hole fiber sensor based on surface plasmon resonance,” Opt. Lett. 34(24), 3890–3892 (2009).
    [CrossRef] [PubMed]
  13. L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett. 33(6), 563–565 (2008).
    [CrossRef] [PubMed]
  14. J. M. Fini, “Microstructure fibers for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004).
    [CrossRef]
  15. Y. Zhang, H. Shibru, K. L. Cooper, and A. Wang, “Miniature fiber-optic multicavity Fabry-Perot interferometric biosensor,” Opt. Lett. 30(9), 1021–1023 (2005).
    [CrossRef] [PubMed]
  16. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14(18), 8224–8231 (2006).
    [CrossRef] [PubMed]
  17. J. R. Ott, M. Heuck, C. Agger, P. D. Rasmussen, and O. Bang, “Label-free and selective nonlinear fiber-optical biosensing,” Opt. Express 16(25), 20834–20847 (2008).
    [CrossRef] [PubMed]
  18. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
    [CrossRef] [PubMed]
  19. B. T. Kuhlmey, S. Coen, and S. Mahmoodian, “Coated photonic bandgap fibres for low-index sensing applications: cutoff analysis,” Opt. Express 17(18), 16306–16321 (2009).
    [CrossRef] [PubMed]
  20. W. Yuan, G. E. Town, and O. Bang, “Refractive Index Sensing in an All-Solid Twin-Core Photonic Bandgap Fiber,” IEEE Sens. J. 10(7), 1767–1770 (2010).
    [CrossRef]
  21. G. E. Town, W. Yuan, R. McCosker, and O. Bang, “Microstructured optical fiber refractive index sensor,” Opt. Lett. 35(6), 856–858 (2010).
    [CrossRef] [PubMed]
  22. B. Sun, M. Y. Chen, Y. K. Zhang, J. C. Yang, J. Q. Yao, and H. X. Cui, “Microstructured-core photonic-crystal fiber for ultra-sensitive refractive index sensing,” Opt. Express 19(5), 4091–4100 (2011).
    [CrossRef] [PubMed]
  23. Y. Gao, N. Guo, B. Gauvreau, M. Rajabian, O. Skorobogata, E. Pone, O. Zabeida, L. Martinu, C. Dubois, and M. Skorobogatiy, “Consecutive solvent evaporation and co-rolling techniques for polymer multilayer hollow fiber preform fabrication,” J. Mater. Res. 21(9), 2246–2254 (2006).
    [CrossRef]
  24. J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
    [CrossRef] [PubMed]
  25. B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, “Experimental study of dual core photonic crystal fibre,” Electron. Lett. 36(16), 1358–1359 (2000).
    [CrossRef]
  26. W. E. P. Padden, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, “Coupling in a twin-core microstructured polymer optical fiber,” Appl. Phys. Lett. 84(10), 1689–1691 (2004).
    [CrossRef]
  27. M. Hansen, and G. E. Town, “All-optical switching in dual-core microstructured optical fibres modeled using beam-propagation”, Proceedings, 28th Australian Conference on Optical Fibre Technology (ACOFT2003), Melbourne
  28. M. Hansen, and G. E. Town, “Properties of dual-core couplers in microstructured optical fibres,” Proceeedings, 28th European Conference on Optical Communications (ECOC/IOOC 2003), Vol. 3, p.616–617, Rimini, September, 2003.
  29. M. Large, L. Poladian, G. Barton, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibres, (Springer, 2008), Chap. 7.
  30. K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Broadband terahertz fiber directional coupler,” Opt. Lett. 35(17), 2879–2881 (2010).
    [CrossRef] [PubMed]
  31. G. E. Town, R. F. Copperwhite, R. Kribich, K. O’Dwyer, and B. D. MacCraith, “Comparison of multimode and multichannel couplers for evanescent sensing of refractive index,” in Proc. 30th Australian Conf. Optical Fiber Technol., Sydney, Australia, 2005.
  32. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-Filled Solid-Core Photonic Bandgap Fibers,” J. Lightwave Technol. 27(11), 1617–1630 (2009).
    [CrossRef]
  33. K. Nielsen, D. Noordegraaf, T. Sorensen, A. Bjarklev, and T. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
    [CrossRef]
  34. E. Palik, Handbook of Optical Constants of Solids I–III (Academic, 1998).
  35. I. D. Nikolov and C. D. Ivanov, “Optical Plastic Refractive Measurements in the Visible and the Near-Infrared Regions,” Appl. Opt. 39(13), 2067–2070 (2000).
    [CrossRef]
  36. Z. Zhu and T. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10(17), 853–864 (2002).
    [PubMed]
  37. J.-J. Gau, E. H. Lan, B. Dunn, C.-M. Ho, and J. C. S. Woo, “A MEMS based amperometric detector for E. coli bacteria using self-assembled monolayers,” Biosens. Bioelectron. 16(9-12), 745–755 (2001).
    [CrossRef] [PubMed]
  38. J. Laegsgaard, O. Bang, and A. Bjarklev, “Photonic crystal fiber design for broadband directional coupling,” Opt. Lett. 29(21), 2473–2475 (2004).
    [CrossRef] [PubMed]

2011 (1)

2010 (3)

2009 (5)

2008 (3)

2007 (3)

2006 (4)

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14(18), 8224–8231 (2006).
[CrossRef] [PubMed]

A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14(24), 11616–11621 (2006).
[CrossRef] [PubMed]

L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem. 385(8), 1370–1375 (2006).
[CrossRef] [PubMed]

Y. Gao, N. Guo, B. Gauvreau, M. Rajabian, O. Skorobogata, E. Pone, O. Zabeida, L. Martinu, C. Dubois, and M. Skorobogatiy, “Consecutive solvent evaporation and co-rolling techniques for polymer multilayer hollow fiber preform fabrication,” J. Mater. Res. 21(9), 2246–2254 (2006).
[CrossRef]

2005 (3)

2004 (4)

2002 (1)

2001 (2)

M. A. van Eijkelenborg, M. Large, A. Argyros, J. Zagari, S. Manos, N. Issa, I. Bassett, S. Fleming, R. McPhedran, C. M. de Sterke, and N. A. Nicorovici, “Microstructured polymer optical fibre,” Opt. Express 9(7), 319–327 (2001).
[CrossRef] [PubMed]

J.-J. Gau, E. H. Lan, B. Dunn, C.-M. Ho, and J. C. S. Woo, “A MEMS based amperometric detector for E. coli bacteria using self-assembled monolayers,” Biosens. Bioelectron. 16(9-12), 745–755 (2001).
[CrossRef] [PubMed]

2000 (2)

I. D. Nikolov and C. D. Ivanov, “Optical Plastic Refractive Measurements in the Visible and the Near-Infrared Regions,” Appl. Opt. 39(13), 2067–2070 (2000).
[CrossRef]

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, “Experimental study of dual core photonic crystal fibre,” Electron. Lett. 36(16), 1358–1359 (2000).
[CrossRef]

1999 (1)

T. M. Monro, D. J. Richardson, and P. J. Bennet, “Developing holey fibers for evanescent field devices,” Electron. Lett. 35(14), 1188–1189 (1999).
[CrossRef]

1996 (1)

Adam, A. J. L.

Agger, C.

Argyros, A.

W. E. P. Padden, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, “Coupling in a twin-core microstructured polymer optical fiber,” Appl. Phys. Lett. 84(10), 1689–1691 (2004).
[CrossRef]

M. A. van Eijkelenborg, M. Large, A. Argyros, J. Zagari, S. Manos, N. Issa, I. Bassett, S. Fleming, R. McPhedran, C. M. de Sterke, and N. A. Nicorovici, “Microstructured polymer optical fibre,” Opt. Express 9(7), 319–327 (2001).
[CrossRef] [PubMed]

Atkin, D. M.

Bang, O.

W. Yuan, G. E. Town, and O. Bang, “Refractive Index Sensing in an All-Solid Twin-Core Photonic Bandgap Fiber,” IEEE Sens. J. 10(7), 1767–1770 (2010).
[CrossRef]

G. E. Town, W. Yuan, R. McCosker, and O. Bang, “Microstructured optical fiber refractive index sensor,” Opt. Lett. 35(6), 856–858 (2010).
[CrossRef] [PubMed]

K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Broadband terahertz fiber directional coupler,” Opt. Lett. 35(17), 2879–2881 (2010).
[CrossRef] [PubMed]

K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[CrossRef] [PubMed]

J. R. Ott, M. Heuck, C. Agger, P. D. Rasmussen, and O. Bang, “Label-free and selective nonlinear fiber-optical biosensing,” Opt. Express 16(25), 20834–20847 (2008).
[CrossRef] [PubMed]

L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett. 33(6), 563–565 (2008).
[CrossRef] [PubMed]

G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjær, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber: erratum,” Opt. Lett. 32(9), 1059–1059 (2007).
[CrossRef]

G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjær, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007).
[CrossRef] [PubMed]

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14(18), 8224–8231 (2006).
[CrossRef] [PubMed]

L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem. 385(8), 1370–1375 (2006).
[CrossRef] [PubMed]

J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
[CrossRef] [PubMed]

J. Laegsgaard, O. Bang, and A. Bjarklev, “Photonic crystal fiber design for broadband directional coupling,” Opt. Lett. 29(21), 2473–2475 (2004).
[CrossRef] [PubMed]

Bassett, I.

Bennet, P. J.

T. M. Monro, D. J. Richardson, and P. J. Bennet, “Developing holey fibers for evanescent field devices,” Electron. Lett. 35(14), 1188–1189 (1999).
[CrossRef]

Birks, T. A.

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, “Experimental study of dual core photonic crystal fibre,” Electron. Lett. 36(16), 1358–1359 (2000).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
[CrossRef] [PubMed]

Bjarklev, A.

Bosch, M. E.

M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, “Recent development in optical fiber biosensors,” Sensors 7(6), 797–859 (2007).
[CrossRef]

Brown, T.

Carlsen, A.

Chen, M. Y.

Coen, S.

Cooper, K. L.

Cox, F. M.

Cui, H. X.

de Sterke, C. M.

Docherty, A.

Dubois, C.

Y. Gao, N. Guo, B. Gauvreau, M. Rajabian, O. Skorobogata, E. Pone, O. Zabeida, L. Martinu, C. Dubois, and M. Skorobogatiy, “Consecutive solvent evaporation and co-rolling techniques for polymer multilayer hollow fiber preform fabrication,” J. Mater. Res. 21(9), 2246–2254 (2006).
[CrossRef]

Dufva, M.

Dunn, B.

J.-J. Gau, E. H. Lan, B. Dunn, C.-M. Ho, and J. C. S. Woo, “A MEMS based amperometric detector for E. coli bacteria using self-assembled monolayers,” Biosens. Bioelectron. 16(9-12), 745–755 (2001).
[CrossRef] [PubMed]

Eggleton, B. J.

Emiliyanov, G.

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Fini, J. M.

J. M. Fini, “Microstructure fibers for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004).
[CrossRef]

Fleming, S.

Folkenberg, J. R.

Gao, Y.

Y. Gao, N. Guo, B. Gauvreau, M. Rajabian, O. Skorobogata, E. Pone, O. Zabeida, L. Martinu, C. Dubois, and M. Skorobogatiy, “Consecutive solvent evaporation and co-rolling techniques for polymer multilayer hollow fiber preform fabrication,” J. Mater. Res. 21(9), 2246–2254 (2006).
[CrossRef]

Gau, J.-J.

J.-J. Gau, E. H. Lan, B. Dunn, C.-M. Ho, and J. C. S. Woo, “A MEMS based amperometric detector for E. coli bacteria using self-assembled monolayers,” Biosens. Bioelectron. 16(9-12), 745–755 (2001).
[CrossRef] [PubMed]

Gauvreau, B.

Y. Gao, N. Guo, B. Gauvreau, M. Rajabian, O. Skorobogata, E. Pone, O. Zabeida, L. Martinu, C. Dubois, and M. Skorobogatiy, “Consecutive solvent evaporation and co-rolling techniques for polymer multilayer hollow fiber preform fabrication,” J. Mater. Res. 21(9), 2246–2254 (2006).
[CrossRef]

Geschke, O.

L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem. 385(8), 1370–1375 (2006).
[CrossRef] [PubMed]

Greenaway, A. H.

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, “Experimental study of dual core photonic crystal fibre,” Electron. Lett. 36(16), 1358–1359 (2000).
[CrossRef]

Guo, N.

Y. Gao, N. Guo, B. Gauvreau, M. Rajabian, O. Skorobogata, E. Pone, O. Zabeida, L. Martinu, C. Dubois, and M. Skorobogatiy, “Consecutive solvent evaporation and co-rolling techniques for polymer multilayer hollow fiber preform fabrication,” J. Mater. Res. 21(9), 2246–2254 (2006).
[CrossRef]

Hansen, T.

K. Nielsen, D. Noordegraaf, T. Sorensen, A. Bjarklev, and T. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[CrossRef]

Hansen, T. P.

Hassani, A.

Heuck, M.

Ho, C.-M.

J.-J. Gau, E. H. Lan, B. Dunn, C.-M. Ho, and J. C. S. Woo, “A MEMS based amperometric detector for E. coli bacteria using self-assembled monolayers,” Biosens. Bioelectron. 16(9-12), 745–755 (2001).
[CrossRef] [PubMed]

Hoiby, P. E.

Høiby, P. E.

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14(18), 8224–8231 (2006).
[CrossRef] [PubMed]

L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem. 385(8), 1370–1375 (2006).
[CrossRef] [PubMed]

Issa, N.

Issa, N. A.

W. E. P. Padden, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, “Coupling in a twin-core microstructured polymer optical fiber,” Appl. Phys. Lett. 84(10), 1689–1691 (2004).
[CrossRef]

Ivanov, C. D.

Jensen, J. B.

Jepsen, P. U.

Kjær, E. M.

Knight, J. C.

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, “Experimental study of dual core photonic crystal fibre,” Electron. Lett. 36(16), 1358–1359 (2000).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
[CrossRef] [PubMed]

Kuhlmey, B. T.

Laegsgaard, J.

Lan, E. H.

J.-J. Gau, E. H. Lan, B. Dunn, C.-M. Ho, and J. C. S. Woo, “A MEMS based amperometric detector for E. coli bacteria using self-assembled monolayers,” Biosens. Bioelectron. 16(9-12), 745–755 (2001).
[CrossRef] [PubMed]

Large, M.

Large, M. C. J.

Lindvold, L.

Mahmoodian, S.

Mangan, B. J.

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, “Experimental study of dual core photonic crystal fibre,” Electron. Lett. 36(16), 1358–1359 (2000).
[CrossRef]

Manos, S.

Martinu, L.

Y. Gao, N. Guo, B. Gauvreau, M. Rajabian, O. Skorobogata, E. Pone, O. Zabeida, L. Martinu, C. Dubois, and M. Skorobogatiy, “Consecutive solvent evaporation and co-rolling techniques for polymer multilayer hollow fiber preform fabrication,” J. Mater. Res. 21(9), 2246–2254 (2006).
[CrossRef]

McCosker, R.

McPhedran, R.

Monro, T. M.

T. M. Monro, D. J. Richardson, and P. J. Bennet, “Developing holey fibers for evanescent field devices,” Electron. Lett. 35(14), 1188–1189 (1999).
[CrossRef]

Nicorovici, N. A.

Nielsen, K.

Nielsen, L. B.

Nikolov, I. D.

Noordegraaf, D.

Ojeda, C. B.

M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, “Recent development in optical fiber biosensors,” Sensors 7(6), 797–859 (2007).
[CrossRef]

Ott, J. R.

Padden, W. E. P.

W. E. P. Padden, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, “Coupling in a twin-core microstructured polymer optical fiber,” Appl. Phys. Lett. 84(10), 1689–1691 (2004).
[CrossRef]

Pedersen, L.

Pedersen, L. H.

Planken, P. C. M.

Pone, E.

Y. Gao, N. Guo, B. Gauvreau, M. Rajabian, O. Skorobogata, E. Pone, O. Zabeida, L. Martinu, C. Dubois, and M. Skorobogatiy, “Consecutive solvent evaporation and co-rolling techniques for polymer multilayer hollow fiber preform fabrication,” J. Mater. Res. 21(9), 2246–2254 (2006).
[CrossRef]

Rajabian, M.

Y. Gao, N. Guo, B. Gauvreau, M. Rajabian, O. Skorobogata, E. Pone, O. Zabeida, L. Martinu, C. Dubois, and M. Skorobogatiy, “Consecutive solvent evaporation and co-rolling techniques for polymer multilayer hollow fiber preform fabrication,” J. Mater. Res. 21(9), 2246–2254 (2006).
[CrossRef]

Rasmussen, H. K.

Rasmussen, P. D.

Richardson, D. J.

T. M. Monro, D. J. Richardson, and P. J. Bennet, “Developing holey fibers for evanescent field devices,” Electron. Lett. 35(14), 1188–1189 (1999).
[CrossRef]

Riishede, J.

Rindorf, L.

Rojas, F. S.

M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, “Recent development in optical fiber biosensors,” Sensors 7(6), 797–859 (2007).
[CrossRef]

Russell, P. St. J.

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, “Experimental study of dual core photonic crystal fibre,” Electron. Lett. 36(16), 1358–1359 (2000).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
[CrossRef] [PubMed]

Sánchez, A. J. R.

M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, “Recent development in optical fiber biosensors,” Sensors 7(6), 797–859 (2007).
[CrossRef]

Shibru, H.

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Skorobogata, O.

Y. Gao, N. Guo, B. Gauvreau, M. Rajabian, O. Skorobogata, E. Pone, O. Zabeida, L. Martinu, C. Dubois, and M. Skorobogatiy, “Consecutive solvent evaporation and co-rolling techniques for polymer multilayer hollow fiber preform fabrication,” J. Mater. Res. 21(9), 2246–2254 (2006).
[CrossRef]

Skorobogatiy, M.

Y. Gao, N. Guo, B. Gauvreau, M. Rajabian, O. Skorobogata, E. Pone, O. Zabeida, L. Martinu, C. Dubois, and M. Skorobogatiy, “Consecutive solvent evaporation and co-rolling techniques for polymer multilayer hollow fiber preform fabrication,” J. Mater. Res. 21(9), 2246–2254 (2006).
[CrossRef]

A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14(24), 11616–11621 (2006).
[CrossRef] [PubMed]

Sorensen, T.

K. Nielsen, D. Noordegraaf, T. Sorensen, A. Bjarklev, and T. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[CrossRef]

Sun, B.

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Town, G. E.

G. E. Town, W. Yuan, R. McCosker, and O. Bang, “Microstructured optical fiber refractive index sensor,” Opt. Lett. 35(6), 856–858 (2010).
[CrossRef] [PubMed]

W. Yuan, G. E. Town, and O. Bang, “Refractive Index Sensing in an All-Solid Twin-Core Photonic Bandgap Fiber,” IEEE Sens. J. 10(7), 1767–1770 (2010).
[CrossRef]

van Eijkelenborg, M. A.

W. E. P. Padden, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, “Coupling in a twin-core microstructured polymer optical fiber,” Appl. Phys. Lett. 84(10), 1689–1691 (2004).
[CrossRef]

M. A. van Eijkelenborg, M. Large, A. Argyros, J. Zagari, S. Manos, N. Issa, I. Bassett, S. Fleming, R. McPhedran, C. M. de Sterke, and N. A. Nicorovici, “Microstructured polymer optical fibre,” Opt. Express 9(7), 319–327 (2001).
[CrossRef] [PubMed]

Wang, A.

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Woo, J. C. S.

J.-J. Gau, E. H. Lan, B. Dunn, C.-M. Ho, and J. C. S. Woo, “A MEMS based amperometric detector for E. coli bacteria using self-assembled monolayers,” Biosens. Bioelectron. 16(9-12), 745–755 (2001).
[CrossRef] [PubMed]

Wu, D. K. C.

Yang, J. C.

Yao, J. Q.

Yuan, W.

W. Yuan, G. E. Town, and O. Bang, “Refractive Index Sensing in an All-Solid Twin-Core Photonic Bandgap Fiber,” IEEE Sens. J. 10(7), 1767–1770 (2010).
[CrossRef]

G. E. Town, W. Yuan, R. McCosker, and O. Bang, “Microstructured optical fiber refractive index sensor,” Opt. Lett. 35(6), 856–858 (2010).
[CrossRef] [PubMed]

Zabeida, O.

Y. Gao, N. Guo, B. Gauvreau, M. Rajabian, O. Skorobogata, E. Pone, O. Zabeida, L. Martinu, C. Dubois, and M. Skorobogatiy, “Consecutive solvent evaporation and co-rolling techniques for polymer multilayer hollow fiber preform fabrication,” J. Mater. Res. 21(9), 2246–2254 (2006).
[CrossRef]

Zagari, J.

Zhang, Y.

Zhang, Y. K.

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Zhu, Z.

Anal. Bioanal. Chem. (1)

L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem. 385(8), 1370–1375 (2006).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. E. P. Padden, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, “Coupling in a twin-core microstructured polymer optical fiber,” Appl. Phys. Lett. 84(10), 1689–1691 (2004).
[CrossRef]

Biosens. Bioelectron. (1)

J.-J. Gau, E. H. Lan, B. Dunn, C.-M. Ho, and J. C. S. Woo, “A MEMS based amperometric detector for E. coli bacteria using self-assembled monolayers,” Biosens. Bioelectron. 16(9-12), 745–755 (2001).
[CrossRef] [PubMed]

Electron. Lett. (2)

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, “Experimental study of dual core photonic crystal fibre,” Electron. Lett. 36(16), 1358–1359 (2000).
[CrossRef]

T. M. Monro, D. J. Richardson, and P. J. Bennet, “Developing holey fibers for evanescent field devices,” Electron. Lett. 35(14), 1188–1189 (1999).
[CrossRef]

IEEE Sens. J. (1)

W. Yuan, G. E. Town, and O. Bang, “Refractive Index Sensing in an All-Solid Twin-Core Photonic Bandgap Fiber,” IEEE Sens. J. 10(7), 1767–1770 (2010).
[CrossRef]

J. Lightwave Technol. (1)

J. Mater. Res. (1)

Y. Gao, N. Guo, B. Gauvreau, M. Rajabian, O. Skorobogata, E. Pone, O. Zabeida, L. Martinu, C. Dubois, and M. Skorobogatiy, “Consecutive solvent evaporation and co-rolling techniques for polymer multilayer hollow fiber preform fabrication,” J. Mater. Res. 21(9), 2246–2254 (2006).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

K. Nielsen, D. Noordegraaf, T. Sorensen, A. Bjarklev, and T. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[CrossRef]

Meas. Sci. Technol. (1)

J. M. Fini, “Microstructure fibers for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004).
[CrossRef]

Opt. Express (9)

B. T. Kuhlmey, S. Coen, and S. Mahmoodian, “Coated photonic bandgap fibres for low-index sensing applications: cutoff analysis,” Opt. Express 17(18), 16306–16321 (2009).
[CrossRef] [PubMed]

J. R. Ott, M. Heuck, C. Agger, P. D. Rasmussen, and O. Bang, “Label-free and selective nonlinear fiber-optical biosensing,” Opt. Express 16(25), 20834–20847 (2008).
[CrossRef] [PubMed]

M. A. van Eijkelenborg, M. Large, A. Argyros, J. Zagari, S. Manos, N. Issa, I. Bassett, S. Fleming, R. McPhedran, C. M. de Sterke, and N. A. Nicorovici, “Microstructured polymer optical fibre,” Opt. Express 9(7), 319–327 (2001).
[CrossRef] [PubMed]

Z. Zhu and T. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10(17), 853–864 (2002).
[PubMed]

J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
[CrossRef] [PubMed]

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14(18), 8224–8231 (2006).
[CrossRef] [PubMed]

A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14(24), 11616–11621 (2006).
[CrossRef] [PubMed]

K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[CrossRef] [PubMed]

B. Sun, M. Y. Chen, Y. K. Zhang, J. C. Yang, J. Q. Yao, and H. X. Cui, “Microstructured-core photonic-crystal fiber for ultra-sensitive refractive index sensing,” Opt. Express 19(5), 4091–4100 (2011).
[CrossRef] [PubMed]

Opt. Lett. (11)

G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjær, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007).
[CrossRef] [PubMed]

G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjær, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber: erratum,” Opt. Lett. 32(9), 1059–1059 (2007).
[CrossRef]

L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett. 33(6), 563–565 (2008).
[CrossRef] [PubMed]

J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29(17), 1974–1976 (2004).
[CrossRef] [PubMed]

J. Laegsgaard, O. Bang, and A. Bjarklev, “Photonic crystal fiber design for broadband directional coupling,” Opt. Lett. 29(21), 2473–2475 (2004).
[CrossRef] [PubMed]

Y. Zhang, H. Shibru, K. L. Cooper, and A. Wang, “Miniature fiber-optic multicavity Fabry-Perot interferometric biosensor,” Opt. Lett. 30(9), 1021–1023 (2005).
[CrossRef] [PubMed]

D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
[CrossRef] [PubMed]

A. Wang, A. Docherty, B. T. Kuhlmey, F. M. Cox, and M. C. J. Large, “Side-hole fiber sensor based on surface plasmon resonance,” Opt. Lett. 34(24), 3890–3892 (2009).
[CrossRef] [PubMed]

G. E. Town, W. Yuan, R. McCosker, and O. Bang, “Microstructured optical fiber refractive index sensor,” Opt. Lett. 35(6), 856–858 (2010).
[CrossRef] [PubMed]

K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Broadband terahertz fiber directional coupler,” Opt. Lett. 35(17), 2879–2881 (2010).
[CrossRef] [PubMed]

Sensors (1)

M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, “Recent development in optical fiber biosensors,” Sensors 7(6), 797–859 (2007).
[CrossRef]

Other (5)

M. Hansen, and G. E. Town, “All-optical switching in dual-core microstructured optical fibres modeled using beam-propagation”, Proceedings, 28th Australian Conference on Optical Fibre Technology (ACOFT2003), Melbourne

M. Hansen, and G. E. Town, “Properties of dual-core couplers in microstructured optical fibres,” Proceeedings, 28th European Conference on Optical Communications (ECOC/IOOC 2003), Vol. 3, p.616–617, Rimini, September, 2003.

M. Large, L. Poladian, G. Barton, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibres, (Springer, 2008), Chap. 7.

E. Palik, Handbook of Optical Constants of Solids I–III (Academic, 1998).

G. E. Town, R. F. Copperwhite, R. Kribich, K. O’Dwyer, and B. D. MacCraith, “Comparison of multimode and multichannel couplers for evanescent sensing of refractive index,” in Proc. 30th Australian Conf. Optical Fiber Technol., Sydney, Australia, 2005.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Hexagonal hole pattern of a dual-core mPOF biosensor with pitch Λ = 2 µm and hole diameter d = 1 µm. (b) The two cores are separated by a distance of 3Λ. (c) Water filled hole with a sensor layer of ts = 40 nm and an attached layer of biomolecules of thickness ta = 5 nm.

Fig. 6
Fig. 6

Sensitivity versus wavelength of the dual-core mPOF biosensor for a separation of (a) 2Λ (comparison of 40-45 and 10-15 nm layer thickness for L = 7cm), (b) 3Λ and (c) 4Λ between the cores. Square dots correspond to a fiber length of L = 7 cm and red dots to L = 15 cm. The solid, dashed and dotted lines are the exponential fitting for each case.

Fig. 2
Fig. 2

Loss profile of an mPOF with d/Λ = 0.5. Inset: Cross-section of the fiber.

Fig. 3
Fig. 3

Electric field distribution of the even (a) and odd (b) x-polarized supermode at 1 μm wavelength for the mPOF structure with 3Λ separation between the cores. (c) Effective index difference of the x (solid line) and y (dotted line) polarizations.

Fig. 4
Fig. 4

(a) Coupling length versus wavelength of the dual-core mPOF biosensor with two holes (3Λ) between the cores, and a 0 nm (solid line), 40nm (dashed), and 45 nm biolayer immobilized onto the walls of the holes. (b) Coupling length of the dual-core mPOF with immobilized 40 nm sensor layer for 2Λ (dotted), 3Λ (dashed), and 4Λ (solid) separation distance between the cores.

Fig. 5
Fig. 5

Plot of transmittance Pout/Pin of a 7 cm long dual-core mPOF biosensor versus wavelength (solid line), with an immobilized 40 nm antigen layer (dashed), and with a captured antibody layer of an additional 5 nm thickness (dotted). Separation distance between the cores is 2Λ. (Right) Simple schematic of the coupler with definition of Pout and Pin.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L C = λ 2 Δ n e f f ( λ , t )
T = cos 2 ( π L / 2 L C )

Metrics