Abstract

We present a novel investigation on the enhancement of phase noise in coherent optical transmission system due to electronic chromatic dispersion compensation. Two types of equalizers, including a time domain fiber dispersion finite impulse response (FD-FIR) filter and a frequency domain blind look-up (BLU) filter are applied to mitigate the chromatic dispersion in a 112-Gbit/s polarization division multiplexed quadrature phase shift keying (PDM-QPSK) transmission system. The bit-error-rate (BER) floor in phase estimation using an optimized one-tap normalized least-mean-square (NLMS) filter, and considering the equalization enhanced phase noise (EEPN) is evaluated analytically including the correlation effects. The numerical simulations are implemented and compared with the performance of differential QPSK demodulation system.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. S. Henry, “Lightwave primer,” IEEE J. Quantum Electron. 21(12), 1862–1879 (1985).
    [CrossRef]
  2. G. P. Agrawal, Fiber-optic communication systems 3rd Edition (John Wiley & Sons, Inc., 2002), Chap. 2.
  3. J. G. Proakis, Digital communications 5th Edition (McGraw-Hill Companies, Inc., 2008), Chap. 10.
  4. H. Bulow, F. Buchali, and A. Klekamp, “Electronic dispersion compensation,” J. Lightwave Technol. 26(1), 158–167 (2008).
    [CrossRef]
  5. M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
    [CrossRef]
  6. Y. Han and G. Li, “Coherent optical communication using polarization multiple-input-multiple-output,” Opt. Express 13(19), 7527–7534 (2005).
    [CrossRef] [PubMed]
  7. G. Goldfarb and G. Li, “Chromatic dispersion compensation using digital IIR filtering with coherent detection,” IEEE Photon. Technol. Lett. 19(13), 969–971 (2007).
    [CrossRef]
  8. X. Zhou, J. Yu, D. Qian, T. Wang, G. Zhang, and P. D. Magill, “High-spectral-efficiency 114-Gb/s transmission using PolMux-RZ-8PSK modulation format and single-ended digital coherent detection technique,” J. Lightwave Technol. 27(3), 146–152 (2009).
    [CrossRef]
  9. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
    [CrossRef] [PubMed]
  10. E. M. Ip and J. M. Kahn, “Fiber impairment compensation using coherent detection and digital signal processing,” J. Lightwave Technol. 28(4), 502–519 (2010).
    [CrossRef]
  11. M. G. Taylor, “Phase estimation methods for optical coherent detection using digital signal processing,” J. Lightwave Technol. 27(7), 901–914 (2009).
    [CrossRef]
  12. D. S. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation,” J. Lightwave Technol. 24(1), 12–21 (2006).
    [CrossRef]
  13. Y. Mori, C. Zhang, K. Igarashi, K. Katoh, and K. Kikuchi, “Unrepeated 200-km transmission of 40-Gbit/s 16-QAM signals using digital coherent receiver,” Opt. Express 17(3), 1435–1441 (2009).
    [CrossRef] [PubMed]
  14. W. Shieh and K. P. Ho, “Equalization-enhanced phase noise for coherent-detection systems using electronic digital signal processing,” Opt. Express 16(20), 15718–15727 (2008).
    [CrossRef] [PubMed]
  15. A. P. T. Lau, W. Shieh, and K. P. Ho, “Equalization-enhanced phase noise for 100Gb/s transmission with coherent detection,” in Proceedings of OptoElectronics and Communications Conference (Hong Kong, 2009), paper FQ3.
  16. A. P. T. Lau, T. S. R. Shen, W. Shieh, and K. P. Ho, “Equalization-enhanced phase noise for 100 Gb/s transmission and beyond with coherent detection,” Opt. Express 18(16), 17239–17251 (2010).
    [CrossRef] [PubMed]
  17. K. P. Ho, A. P. T. Lau, and W. Shieh, “Equalization-enhanced phase noise induced timing jitter,” Opt. Lett. 36(4), 585–587 (2011).
    [CrossRef] [PubMed]
  18. C. Xie, “Local oscillator phase noise induced penalties in optical coherent detection systems using electronic chromatic dispersion compensation,” in Proceeding of IEEE Conference on Optical Fiber Communication (San Diego, California, 2009), paper OMT4.
  19. C. Xie, “WDM coherent PDM-QPSK systems with and without inline optical dispersion compensation,” Opt. Express 17(6), 4815–4823 (2009).
    [CrossRef] [PubMed]
  20. I. Fatadin and S. J. Savory, “Impact of phase to amplitude noise conversion in coherent optical systems with digital dispersion compensation,” Opt. Express 18(15), 16273–16278 (2010).
    [CrossRef] [PubMed]
  21. S. Oda, C. Ohshima, T. Tanaka, T. Tanimura, H. Nakashima, N. Koizumi, T. Hoshida, H. Zhang, Z. Tao, and J. C. Rasmussen, “Interplay between Local oscillator phase noise and electrical chromatic dispersion compensation in digital coherent transmission system,” in Proceeding of IEEE European Conference on Optical Communication (Torino, Italy, 2010), paper Mo.1.C.2.
  22. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
    [CrossRef] [PubMed]
  23. S. J. Savory, “Compensation of fibre impairments in digital coherent systems,” in Proceeding of IEEE European Conference on Optical Communication (Brussels, Belgium, 2008), paper Mo.3.D.1.
  24. M. Kuschnerov, F. N. Hauske, K. Piyawanno, B. Spinnler, A. Napoli, and B. Lankl, “Adaptive chromatic dispersion equalization for non-dispersion managed coherent systems,” in Proceeding of IEEE Conference on Optical Fiber Communication (San Diego, California, 2009), paper OMT1.
  25. R. Kudo, T. Kobayashi, K. Ishihara, Y. Takatori, A. Sano, and Y. Miyamoto, “Coherent optical single carrier transmission using overlap frequency domain equalization for long-haul optical systems,” J. Lightwave Technol. 27(16), 3721–3728 (2009).
    [CrossRef]
  26. www.vpiphotonics.com
  27. S. Haykin, Adaptive filter theory 4th Edition (Prentice Hall, 2001).
  28. S. Benedetto, E. Biglieri, and V. Castellani, Digital transmission theory (Prentice-Hall, Inc., 1987), Chap.5.
  29. G. Jacobsen, “Laser phase noise induced error rate floors in differential n-level phase-shift-keying coherent receivers,” Electron. Lett. 46(10), 698–700 (2010).
    [CrossRef]
  30. E. Vanin and G. Jacobsen, “Analytical estimation of laser phase noise induced BER floor in coherent receiver with digital signal processing,” Opt. Express 18(5), 4246–4259 (2010).
    [CrossRef] [PubMed]
  31. S. J. Savory, “Digital signal processing options in long haul transmission,” in Proceeding of IEEE Conference on Optical Fiber Communication (San Diego, California, 2008), paper OTuO3.
  32. C. R. S. Fludger, T. Duthel, D. van den Borne, C. Schulien, E.-D. Schmidt, T. Wuth, J. Geyer, E. De Man, Khoe Giok-Djan, and H. de Waardt, “Coherent equalization and POLMUX-RZ-DQPSK for robust 100-GE transmission,” J. Lightwave Technol. 26(1), 64–72 (2008).
    [CrossRef]
  33. T. Xu, G. Jacobsen, S. Popov, J. Li, E. Vanin, K. Wang, A. T. Friberg, and Y. Zhang, “Chromatic dispersion compensation in coherent transmission system using digital filters,” Opt. Express 18(15), 16243–16257 (2010).
    [CrossRef] [PubMed]
  34. G. Goldfarb, M. G. Taylor, and G. Li, “Experimental demonstration of fiber impairment compensation using the split-step finite-impulse-response filtering method,” IEEE Photon. Technol. Lett. 20(22), 1887–1889 (2008).
    [CrossRef]
  35. F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photon. J. 1(2), 144–152 (2009).
    [CrossRef]

2011

2010

2009

2008

2007

G. Goldfarb and G. Li, “Chromatic dispersion compensation using digital IIR filtering with coherent detection,” IEEE Photon. Technol. Lett. 19(13), 969–971 (2007).
[CrossRef]

2006

2005

2004

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
[CrossRef]

1985

P. S. Henry, “Lightwave primer,” IEEE J. Quantum Electron. 21(12), 1862–1879 (1985).
[CrossRef]

Barros, D. J. F.

Buchali, F.

Bulow, H.

De Man, E.

de Waardt, H.

Duthel, T.

Fatadin, I.

Fludger, C. R. S.

Friberg, A. T.

Geyer, J.

Goldfarb, G.

G. Goldfarb, M. G. Taylor, and G. Li, “Experimental demonstration of fiber impairment compensation using the split-step finite-impulse-response filtering method,” IEEE Photon. Technol. Lett. 20(22), 1887–1889 (2008).
[CrossRef]

G. Goldfarb and G. Li, “Chromatic dispersion compensation using digital IIR filtering with coherent detection,” IEEE Photon. Technol. Lett. 19(13), 969–971 (2007).
[CrossRef]

Han, Y.

Henry, P. S.

P. S. Henry, “Lightwave primer,” IEEE J. Quantum Electron. 21(12), 1862–1879 (1985).
[CrossRef]

Ho, K. P.

Igarashi, K.

Ip, E.

Ip, E. M.

Ishihara, K.

Jacobsen, G.

Kahn, J. M.

Katoh, K.

Khoe Giok-Djan,

Kikuchi, K.

Klekamp, A.

Kobayashi, T.

Kudo, R.

Lau, A. P. T.

Li, G.

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photon. J. 1(2), 144–152 (2009).
[CrossRef]

G. Goldfarb, M. G. Taylor, and G. Li, “Experimental demonstration of fiber impairment compensation using the split-step finite-impulse-response filtering method,” IEEE Photon. Technol. Lett. 20(22), 1887–1889 (2008).
[CrossRef]

G. Goldfarb and G. Li, “Chromatic dispersion compensation using digital IIR filtering with coherent detection,” IEEE Photon. Technol. Lett. 19(13), 969–971 (2007).
[CrossRef]

Y. Han and G. Li, “Coherent optical communication using polarization multiple-input-multiple-output,” Opt. Express 13(19), 7527–7534 (2005).
[CrossRef] [PubMed]

Li, J.

Ly-Gagnon, D. S.

Magill, P. D.

Miyamoto, Y.

Mori, Y.

Popov, S.

Qian, D.

Sano, A.

Savory, S. J.

Schmidt, E.-D.

Schulien, C.

Shen, T. S. R.

Shieh, W.

Takatori, Y.

Taylor, M. G.

M. G. Taylor, “Phase estimation methods for optical coherent detection using digital signal processing,” J. Lightwave Technol. 27(7), 901–914 (2009).
[CrossRef]

G. Goldfarb, M. G. Taylor, and G. Li, “Experimental demonstration of fiber impairment compensation using the split-step finite-impulse-response filtering method,” IEEE Photon. Technol. Lett. 20(22), 1887–1889 (2008).
[CrossRef]

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
[CrossRef]

Tsukamoto, S.

van den Borne, D.

Vanin, E.

Wang, K.

Wang, T.

Wuth, T.

Xie, C.

Xu, T.

Yaman, F.

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photon. J. 1(2), 144–152 (2009).
[CrossRef]

Yu, J.

Zhang, C.

Zhang, G.

Zhang, Y.

Zhou, X.

Electron. Lett.

G. Jacobsen, “Laser phase noise induced error rate floors in differential n-level phase-shift-keying coherent receivers,” Electron. Lett. 46(10), 698–700 (2010).
[CrossRef]

IEEE J. Quantum Electron.

P. S. Henry, “Lightwave primer,” IEEE J. Quantum Electron. 21(12), 1862–1879 (1985).
[CrossRef]

IEEE Photon. J.

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photon. J. 1(2), 144–152 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
[CrossRef]

G. Goldfarb and G. Li, “Chromatic dispersion compensation using digital IIR filtering with coherent detection,” IEEE Photon. Technol. Lett. 19(13), 969–971 (2007).
[CrossRef]

G. Goldfarb, M. G. Taylor, and G. Li, “Experimental demonstration of fiber impairment compensation using the split-step finite-impulse-response filtering method,” IEEE Photon. Technol. Lett. 20(22), 1887–1889 (2008).
[CrossRef]

J. Lightwave Technol.

M. G. Taylor, “Phase estimation methods for optical coherent detection using digital signal processing,” J. Lightwave Technol. 27(7), 901–914 (2009).
[CrossRef]

R. Kudo, T. Kobayashi, K. Ishihara, Y. Takatori, A. Sano, and Y. Miyamoto, “Coherent optical single carrier transmission using overlap frequency domain equalization for long-haul optical systems,” J. Lightwave Technol. 27(16), 3721–3728 (2009).
[CrossRef]

E. M. Ip and J. M. Kahn, “Fiber impairment compensation using coherent detection and digital signal processing,” J. Lightwave Technol. 28(4), 502–519 (2010).
[CrossRef]

H. Bulow, F. Buchali, and A. Klekamp, “Electronic dispersion compensation,” J. Lightwave Technol. 26(1), 158–167 (2008).
[CrossRef]

C. R. S. Fludger, T. Duthel, D. van den Borne, C. Schulien, E.-D. Schmidt, T. Wuth, J. Geyer, E. De Man, Khoe Giok-Djan, and H. de Waardt, “Coherent equalization and POLMUX-RZ-DQPSK for robust 100-GE transmission,” J. Lightwave Technol. 26(1), 64–72 (2008).
[CrossRef]

D. S. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation,” J. Lightwave Technol. 24(1), 12–21 (2006).
[CrossRef]

X. Zhou, J. Yu, D. Qian, T. Wang, G. Zhang, and P. D. Magill, “High-spectral-efficiency 114-Gb/s transmission using PolMux-RZ-8PSK modulation format and single-ended digital coherent detection technique,” J. Lightwave Technol. 27(3), 146–152 (2009).
[CrossRef]

Opt. Express

C. Xie, “WDM coherent PDM-QPSK systems with and without inline optical dispersion compensation,” Opt. Express 17(6), 4815–4823 (2009).
[CrossRef] [PubMed]

E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
[CrossRef] [PubMed]

S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
[CrossRef] [PubMed]

W. Shieh and K. P. Ho, “Equalization-enhanced phase noise for coherent-detection systems using electronic digital signal processing,” Opt. Express 16(20), 15718–15727 (2008).
[CrossRef] [PubMed]

Y. Mori, C. Zhang, K. Igarashi, K. Katoh, and K. Kikuchi, “Unrepeated 200-km transmission of 40-Gbit/s 16-QAM signals using digital coherent receiver,” Opt. Express 17(3), 1435–1441 (2009).
[CrossRef] [PubMed]

T. Xu, G. Jacobsen, S. Popov, J. Li, E. Vanin, K. Wang, A. T. Friberg, and Y. Zhang, “Chromatic dispersion compensation in coherent transmission system using digital filters,” Opt. Express 18(15), 16243–16257 (2010).
[CrossRef] [PubMed]

I. Fatadin and S. J. Savory, “Impact of phase to amplitude noise conversion in coherent optical systems with digital dispersion compensation,” Opt. Express 18(15), 16273–16278 (2010).
[CrossRef] [PubMed]

A. P. T. Lau, T. S. R. Shen, W. Shieh, and K. P. Ho, “Equalization-enhanced phase noise for 100 Gb/s transmission and beyond with coherent detection,” Opt. Express 18(16), 17239–17251 (2010).
[CrossRef] [PubMed]

E. Vanin and G. Jacobsen, “Analytical estimation of laser phase noise induced BER floor in coherent receiver with digital signal processing,” Opt. Express 18(5), 4246–4259 (2010).
[CrossRef] [PubMed]

Y. Han and G. Li, “Coherent optical communication using polarization multiple-input-multiple-output,” Opt. Express 13(19), 7527–7534 (2005).
[CrossRef] [PubMed]

Opt. Lett.

Other

G. P. Agrawal, Fiber-optic communication systems 3rd Edition (John Wiley & Sons, Inc., 2002), Chap. 2.

J. G. Proakis, Digital communications 5th Edition (McGraw-Hill Companies, Inc., 2008), Chap. 10.

S. J. Savory, “Compensation of fibre impairments in digital coherent systems,” in Proceeding of IEEE European Conference on Optical Communication (Brussels, Belgium, 2008), paper Mo.3.D.1.

M. Kuschnerov, F. N. Hauske, K. Piyawanno, B. Spinnler, A. Napoli, and B. Lankl, “Adaptive chromatic dispersion equalization for non-dispersion managed coherent systems,” in Proceeding of IEEE Conference on Optical Fiber Communication (San Diego, California, 2009), paper OMT1.

S. J. Savory, “Digital signal processing options in long haul transmission,” in Proceeding of IEEE Conference on Optical Fiber Communication (San Diego, California, 2008), paper OTuO3.

A. P. T. Lau, W. Shieh, and K. P. Ho, “Equalization-enhanced phase noise for 100Gb/s transmission with coherent detection,” in Proceedings of OptoElectronics and Communications Conference (Hong Kong, 2009), paper FQ3.

C. Xie, “Local oscillator phase noise induced penalties in optical coherent detection systems using electronic chromatic dispersion compensation,” in Proceeding of IEEE Conference on Optical Fiber Communication (San Diego, California, 2009), paper OMT4.

S. Oda, C. Ohshima, T. Tanaka, T. Tanimura, H. Nakashima, N. Koizumi, T. Hoshida, H. Zhang, Z. Tao, and J. C. Rasmussen, “Interplay between Local oscillator phase noise and electrical chromatic dispersion compensation in digital coherent transmission system,” in Proceeding of IEEE European Conference on Optical Communication (Torino, Italy, 2010), paper Mo.1.C.2.

www.vpiphotonics.com

S. Haykin, Adaptive filter theory 4th Edition (Prentice Hall, 2001).

S. Benedetto, E. Biglieri, and V. Castellani, Digital transmission theory (Prentice-Hall, Inc., 1987), Chap.5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Scheme of equalization enhanced phase noise in coherent transmission system. MZI: Mach-Zehnder interferometer, ΦTX: phase fluctuation of the TX laser, ΦLO: phase fluctuation of the LO laser,N(t): additive white Gaussian noise, ADC: analog-to-digital convertor.

Fig. 2
Fig. 2

BER floor of phase estimation in 112-Gbit/s coherent PDM-QPSK transmission system with EEPN.(a) TX laser linewidth is equal to LO laser linewidth, (b) different combination of TX and LO laserslinewidth while keeping the sum of linewidths Δ f T X + Δ f L O constant.

Fig. 3
Fig. 3

Phase estimation using the one-tap NLMS filter with different value of step size, μ is the step size. (a) NLMS-CPE with FD-FIR dispersion equalization, (b) NLMS-CPE with BLU dispersion equalization.

Fig. 4
Fig. 4

The optimum step size and the OSNR penalty in NLMS-CPE. (a) optimum step size for different effective linewidth, (b) OSNR penalty in NLMS phase estimation with the optimum step size for FD-FIR and BLU equalization.

Fig. 5
Fig. 5

Schematic of 112-Gbit/s NRZ-PDM-QPSK coherent optical transmission system. PBS: polarization beam splitter, OBPF: optical band-pass filter, PIN: PiN diode.

Fig. 6
Fig. 6

Carrier phase estimation for various fiber length with different CD compensation methods, where the linewidth of the TX and the LO lasers are in different combination while keeping the sum of linewidths constant. (a) FD-FIR filter, (b) LMS filter.

Fig. 7
Fig. 7

BER performance in NLMS-CPE for 2000 km fiber with FD-FIR dispersion equalization, T: theory, S: simulation. (a) different combination of TX and LO lasers linewidth while keeping the sum of linewidths constant, (b) only TX laser phase noise.

Fig. 8
Fig. 8

BER performance in DQPSK system for 2000 km fiber with FD-FIR dispersion equalization, T: theory, S: simulation. (a) different combination of TX and LO lasers linewidth while keeping the sum of linewidths constant, (b) only TX laser phase noise.

Fig. 9
Fig. 9

Phase noise correlation in DQPSK system with BLU dispersion equalization, T: theory, S: simulation. (a) BER performance in different combination of EEPN and LO phase noise but keeping the same sum,(b) correlation coefficient for different fiber length.

Fig. 10
Fig. 10

BER floor of phase estimation using one-tap NLMS filter.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

σ E E P N 2 = π λ 2 2 c D L Δ f L O T S
w N L M S ( n + 1 ) = w N L M S ( n ) + μ N L M S | x P N ( n ) | 2 x P N * ( n ) e N L M S ( n )
e N L M S ( n ) = d P E ( n ) w N L M S ( n ) x P N ( n )
B E R f l o o r N L M S 1 2 e r f c ( π 4 2 σ )
σ 2 σ T X 2 + σ L O 2 + σ E E P N 2
σ T X 2 = 2 π Δ f T X T S
σ L O 2 = 2 π Δ f L O T S
Δ f E f f = σ T X 2 + σ L O 2 + σ E E P N 2 2 π T S .
B E R f l o o r D Q P S K = 1 2 e r f c ( π 4 2 σ ) .
σ 2 = σ T X 2 + σ L O 2 + σ E E P N 2 + 2 ρ σ L O σ E E P N .
| ρ | T S N T .
y P E ( k ) = w N L M S ( k ) x P N ( k ) = b k E k exp [ j ( ϕ k Φ k ) ]
x P N ( k ) = E k exp ( j ϕ k )
w N L M S ( k ) = b k exp ( j Φ k )
e N L M S ( k ) = d P E ( k ) y P E ( k )
| e N L M S ( k ) | < < 1.
Φ k ϕ k .
y P E ( k + 1 ) = w N L M S ( k + 1 ) x P N ( k + 1 ) [ b k E k + 1 + μ N L M S | E k | 2 e P E ( k ) E k E k + 1 ] exp [ j ( ϕ k + 1 ϕ k ) ] ,
x P N ( k + 1 ) = E k + 1 exp ( j ϕ k + 1 ) ,
w N L M S ( k + 1 ) = w N L M S ( k ) + μ N L M S | x P N ( k ) | 2 e P E ( k ) x P N ( k ) .
B E R f l o o r N L M S 1 2 e r f c ( π 4 2 σ ) .

Metrics