Abstract

We report the use of Laguerre-Gaussian (LG) modes for controlled orientation and rotation of optically trapped red blood cells (RBCs). For LG modes with increasing topological charge the resulting increase in size of the intensity annulas led to trapping of the cells at larger tilt angle with respect to the beam axis and thus provided additional control on the stable orientation of the cells under trap. Further, the RBCs could also be driven as micro-rotors by a transfer of orbital angular momentum from the LG trapping beam having large topological charge or by rotating the profile of LG mode having fractional topological charge.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  2. D. V. Petrov, “Raman spectroscopy of optically trapped particles,” J. Opt. A, Pure Appl. Opt. 9(8), S139–S156 (2007).
    [CrossRef]
  3. S. Rao, Š. Bálint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96(1), 209–216 (2009).
    [CrossRef]
  4. S. Rao, Š. Bálint, L. del Carmen Frias, and D. Petrov, “Polarization Raman study of protein ordering by controllable RBC deformation,” J. Raman 40(9), 1257–1261 (2009).
    [CrossRef]
  5. M. F. Perutz, “Submicroscopic structure of the red cell,” Nature 161(4084), 204–205 (1948).
    [CrossRef] [PubMed]
  6. K. Mohanty, S. Mohanty, S. Monajembashi, and K. O. Greulich, “Orientation of erythrocytes in optical trap revealed by confocal fluorescence microscopy,” JBO Lett. 12, 060606 (2007).
  7. S. C. Grover, R. C. Gauthier, and A. G. Skirtach, “Analysis of the behaviour of erythrocytes in an optical trapping system,” Opt. Express 7(13), 533–539 (2000).
    [CrossRef] [PubMed]
  8. S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581–1590 (2003).
  9. G. Garab, P. Galajda, I. Pomozi, L. Finzi, T. Praznovszky, P. Ormos, and H. van Amerongen, “Alignment of biological microparticles by a polarized laser beam,” Eur. Biophys. J. 34(4), 335–343 (2005).
    [CrossRef] [PubMed]
  10. S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd-YAG laser beams,” Electron. Lett. 27(20), 1831–1832 (1991).
    [CrossRef]
  11. R. Dasgupta, S. K. Mohanty, and P. K. Gupta, “Controlled rotation of biological microscopic objects using optical line tweezers,” Biotechnol. Lett. 25(19), 1625–1628 (2003).
    [CrossRef] [PubMed]
  12. A. T. O’Neil and M. J. Padgett, “Rotational control within optical tweezers by use of a rotating aperture,” Opt. Lett. 27(9), 743–745 (2002).
    [CrossRef]
  13. V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82(5), 829–831 (2003).
    [CrossRef]
  14. “BioRyx 200 Applications,” http://www.arryx.xom/PDFdocs/BiorryxApplications.pdf .
  15. S. K. Mohanty, R. Dasgupta, and P. K. Gupta, “Three-dimensional orientation of microscopic objects using combined elliptical and point optical tweezers,” Appl. Phys. B 81(8), 1063–1066 (2005).
    [CrossRef]
  16. S. K. Mohanty and P. K. Gupta, “Laser-assisted three-dimensional rotation of microscopic objects,” Rev. Sci. Instrum. 75(7), 2320–2322 (2004).
    [CrossRef]
  17. S. K. Mohanty, A. Uppal, and P. K. Gupta, “Self-rotation of red blood cells in optical tweezers: prospects for high throughput malaria diagnosis,” Biotechnol. Lett. 26(12), 971–974 (2004).
    [CrossRef] [PubMed]
  18. S. K. Mohanty, K. S. Mohanty, and P. K. Gupta, “Dynamics of Interaction of RBC with optical tweezers,” Opt. Express 13(12), 4745–4751 (2005).
    [CrossRef] [PubMed]
  19. J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, “Naturally occurring, optically driven, cellular rotor,” Appl. Phys. Lett. 85(24), 6048–6050 (2004).
    [CrossRef]
  20. J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, “Torque-generating malaria-infected red blood cells in an optical trap,” Opt. Express 12(6), 1179–1184 (2004).
    [CrossRef] [PubMed]
  21. P. Török and P. R. T. Munro, “The use of Gauss-Laguerre vector beams in STED microscopy,” Opt. Express 12(15), 3605–3617 (2004).
    [CrossRef] [PubMed]
  22. A. T. O’Neil and M. J. Padgett, “Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers,” Opt. Commun. 193(1-6), 45–50 (2001).
    [CrossRef]
  23. H. Rouse, Elementary Mechanics of Fluids, Ch. VIII (Wiley Eastern Pvt. Ltd, 1970).
  24. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
    [CrossRef] [PubMed]
  25. V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).
    [CrossRef]
  26. H. Ukita and M. Kanehira, “A Shuttlecock Optical Rotator—Its Design, Fabrication and Evaluation for a Microfluidic Mixer,” IEEE J. Quantum Electron. 8(1), 111–117 (2002).
    [CrossRef]
  27. S. Maruo and H. Inoue, “Optically driven viscous micropump using a rotating microdisk,” Appl. Phys. Lett. 91(8), 084101 (2007).
    [CrossRef]
  28. P. Galajda and P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11(5), 446–451 (2003).
    [CrossRef] [PubMed]
  29. M. Khan, S. K. Mohanty, and A. K. Sood, “Optically-driven red blood cell rotor in linearly polarized laser tweezers,” Pramana 65(5), 777–786 (2005).
    [CrossRef]
  30. J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” N. J. Phys. 6, 71 (2004).
    [CrossRef]
  31. S. H. Tao, X.-C. Yuan, J. Lin, X. Peng, and H. Niu, “Fractional optical vortex beam induced rotation of particles,” Opt. Express 13(20), 7726–7731 (2005).
    [CrossRef] [PubMed]

2009 (2)

S. Rao, Š. Bálint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96(1), 209–216 (2009).
[CrossRef]

S. Rao, Š. Bálint, L. del Carmen Frias, and D. Petrov, “Polarization Raman study of protein ordering by controllable RBC deformation,” J. Raman 40(9), 1257–1261 (2009).
[CrossRef]

2007 (3)

D. V. Petrov, “Raman spectroscopy of optically trapped particles,” J. Opt. A, Pure Appl. Opt. 9(8), S139–S156 (2007).
[CrossRef]

K. Mohanty, S. Mohanty, S. Monajembashi, and K. O. Greulich, “Orientation of erythrocytes in optical trap revealed by confocal fluorescence microscopy,” JBO Lett. 12, 060606 (2007).

S. Maruo and H. Inoue, “Optically driven viscous micropump using a rotating microdisk,” Appl. Phys. Lett. 91(8), 084101 (2007).
[CrossRef]

2005 (5)

M. Khan, S. K. Mohanty, and A. K. Sood, “Optically-driven red blood cell rotor in linearly polarized laser tweezers,” Pramana 65(5), 777–786 (2005).
[CrossRef]

S. K. Mohanty, R. Dasgupta, and P. K. Gupta, “Three-dimensional orientation of microscopic objects using combined elliptical and point optical tweezers,” Appl. Phys. B 81(8), 1063–1066 (2005).
[CrossRef]

S. H. Tao, X.-C. Yuan, J. Lin, X. Peng, and H. Niu, “Fractional optical vortex beam induced rotation of particles,” Opt. Express 13(20), 7726–7731 (2005).
[CrossRef] [PubMed]

G. Garab, P. Galajda, I. Pomozi, L. Finzi, T. Praznovszky, P. Ormos, and H. van Amerongen, “Alignment of biological microparticles by a polarized laser beam,” Eur. Biophys. J. 34(4), 335–343 (2005).
[CrossRef] [PubMed]

S. K. Mohanty, K. S. Mohanty, and P. K. Gupta, “Dynamics of Interaction of RBC with optical tweezers,” Opt. Express 13(12), 4745–4751 (2005).
[CrossRef] [PubMed]

2004 (6)

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, “Naturally occurring, optically driven, cellular rotor,” Appl. Phys. Lett. 85(24), 6048–6050 (2004).
[CrossRef]

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, “Torque-generating malaria-infected red blood cells in an optical trap,” Opt. Express 12(6), 1179–1184 (2004).
[CrossRef] [PubMed]

P. Török and P. R. T. Munro, “The use of Gauss-Laguerre vector beams in STED microscopy,” Opt. Express 12(15), 3605–3617 (2004).
[CrossRef] [PubMed]

S. K. Mohanty and P. K. Gupta, “Laser-assisted three-dimensional rotation of microscopic objects,” Rev. Sci. Instrum. 75(7), 2320–2322 (2004).
[CrossRef]

S. K. Mohanty, A. Uppal, and P. K. Gupta, “Self-rotation of red blood cells in optical tweezers: prospects for high throughput malaria diagnosis,” Biotechnol. Lett. 26(12), 971–974 (2004).
[CrossRef] [PubMed]

J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” N. J. Phys. 6, 71 (2004).
[CrossRef]

2003 (4)

P. Galajda and P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11(5), 446–451 (2003).
[CrossRef] [PubMed]

R. Dasgupta, S. K. Mohanty, and P. K. Gupta, “Controlled rotation of biological microscopic objects using optical line tweezers,” Biotechnol. Lett. 25(19), 1625–1628 (2003).
[CrossRef] [PubMed]

S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581–1590 (2003).

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82(5), 829–831 (2003).
[CrossRef]

2002 (4)

A. T. O’Neil and M. J. Padgett, “Rotational control within optical tweezers by use of a rotating aperture,” Opt. Lett. 27(9), 743–745 (2002).
[CrossRef]

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).
[CrossRef]

H. Ukita and M. Kanehira, “A Shuttlecock Optical Rotator—Its Design, Fabrication and Evaluation for a Microfluidic Mixer,” IEEE J. Quantum Electron. 8(1), 111–117 (2002).
[CrossRef]

2001 (1)

A. T. O’Neil and M. J. Padgett, “Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers,” Opt. Commun. 193(1-6), 45–50 (2001).
[CrossRef]

2000 (1)

1991 (1)

S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd-YAG laser beams,” Electron. Lett. 27(20), 1831–1832 (1991).
[CrossRef]

1986 (1)

1948 (1)

M. F. Perutz, “Submicroscopic structure of the red cell,” Nature 161(4084), 204–205 (1948).
[CrossRef] [PubMed]

Allen, L.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

Ashkin, A.

Bálint, Š.

S. Rao, Š. Bálint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96(1), 209–216 (2009).
[CrossRef]

S. Rao, Š. Bálint, L. del Carmen Frias, and D. Petrov, “Polarization Raman study of protein ordering by controllable RBC deformation,” J. Raman 40(9), 1257–1261 (2009).
[CrossRef]

Bayoudh, S.

S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581–1590 (2003).

Bingelyte, V.

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82(5), 829–831 (2003).
[CrossRef]

Bjorkholm, J. E.

Chávez-Cerda, S.

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).
[CrossRef]

Chu, S.

Cossins, B.

S. Rao, Š. Bálint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96(1), 209–216 (2009).
[CrossRef]

Courtial, J.

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82(5), 829–831 (2003).
[CrossRef]

Dasgupta, R.

S. K. Mohanty, R. Dasgupta, and P. K. Gupta, “Three-dimensional orientation of microscopic objects using combined elliptical and point optical tweezers,” Appl. Phys. B 81(8), 1063–1066 (2005).
[CrossRef]

R. Dasgupta, S. K. Mohanty, and P. K. Gupta, “Controlled rotation of biological microscopic objects using optical line tweezers,” Biotechnol. Lett. 25(19), 1625–1628 (2003).
[CrossRef] [PubMed]

del Carmen Frias, L.

S. Rao, Š. Bálint, L. del Carmen Frias, and D. Petrov, “Polarization Raman study of protein ordering by controllable RBC deformation,” J. Raman 40(9), 1257–1261 (2009).
[CrossRef]

Dharmadhikari, A. K.

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, “Naturally occurring, optically driven, cellular rotor,” Appl. Phys. Lett. 85(24), 6048–6050 (2004).
[CrossRef]

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, “Torque-generating malaria-infected red blood cells in an optical trap,” Opt. Express 12(6), 1179–1184 (2004).
[CrossRef] [PubMed]

Dharmadhikari, J. A.

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, “Torque-generating malaria-infected red blood cells in an optical trap,” Opt. Express 12(6), 1179–1184 (2004).
[CrossRef] [PubMed]

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, “Naturally occurring, optically driven, cellular rotor,” Appl. Phys. Lett. 85(24), 6048–6050 (2004).
[CrossRef]

Dholakia, K.

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).
[CrossRef]

Dziedzic, J. M.

Finzi, L.

G. Garab, P. Galajda, I. Pomozi, L. Finzi, T. Praznovszky, P. Ormos, and H. van Amerongen, “Alignment of biological microparticles by a polarized laser beam,” Eur. Biophys. J. 34(4), 335–343 (2005).
[CrossRef] [PubMed]

Galajda, P.

G. Garab, P. Galajda, I. Pomozi, L. Finzi, T. Praznovszky, P. Ormos, and H. van Amerongen, “Alignment of biological microparticles by a polarized laser beam,” Eur. Biophys. J. 34(4), 335–343 (2005).
[CrossRef] [PubMed]

P. Galajda and P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11(5), 446–451 (2003).
[CrossRef] [PubMed]

Garab, G.

G. Garab, P. Galajda, I. Pomozi, L. Finzi, T. Praznovszky, P. Ormos, and H. van Amerongen, “Alignment of biological microparticles by a polarized laser beam,” Eur. Biophys. J. 34(4), 335–343 (2005).
[CrossRef] [PubMed]

Garcés-Chávez, V.

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).
[CrossRef]

Gauthier, R. C.

Greulich, K. O.

K. Mohanty, S. Mohanty, S. Monajembashi, and K. O. Greulich, “Orientation of erythrocytes in optical trap revealed by confocal fluorescence microscopy,” JBO Lett. 12, 060606 (2007).

Grover, S. C.

Guallar, V.

S. Rao, Š. Bálint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96(1), 209–216 (2009).
[CrossRef]

Gupta, P. K.

S. K. Mohanty, R. Dasgupta, and P. K. Gupta, “Three-dimensional orientation of microscopic objects using combined elliptical and point optical tweezers,” Appl. Phys. B 81(8), 1063–1066 (2005).
[CrossRef]

S. K. Mohanty, K. S. Mohanty, and P. K. Gupta, “Dynamics of Interaction of RBC with optical tweezers,” Opt. Express 13(12), 4745–4751 (2005).
[CrossRef] [PubMed]

S. K. Mohanty and P. K. Gupta, “Laser-assisted three-dimensional rotation of microscopic objects,” Rev. Sci. Instrum. 75(7), 2320–2322 (2004).
[CrossRef]

S. K. Mohanty, A. Uppal, and P. K. Gupta, “Self-rotation of red blood cells in optical tweezers: prospects for high throughput malaria diagnosis,” Biotechnol. Lett. 26(12), 971–974 (2004).
[CrossRef] [PubMed]

R. Dasgupta, S. K. Mohanty, and P. K. Gupta, “Controlled rotation of biological microscopic objects using optical line tweezers,” Biotechnol. Lett. 25(19), 1625–1628 (2003).
[CrossRef] [PubMed]

Heckenberg, N. R.

S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581–1590 (2003).

Inaba, H.

S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd-YAG laser beams,” Electron. Lett. 27(20), 1831–1832 (1991).
[CrossRef]

Inoue, H.

S. Maruo and H. Inoue, “Optically driven viscous micropump using a rotating microdisk,” Appl. Phys. Lett. 91(8), 084101 (2007).
[CrossRef]

Ishigure, M.

S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd-YAG laser beams,” Electron. Lett. 27(20), 1831–1832 (1991).
[CrossRef]

Kanehira, M.

H. Ukita and M. Kanehira, “A Shuttlecock Optical Rotator—Its Design, Fabrication and Evaluation for a Microfluidic Mixer,” IEEE J. Quantum Electron. 8(1), 111–117 (2002).
[CrossRef]

Khan, M.

M. Khan, S. K. Mohanty, and A. K. Sood, “Optically-driven red blood cell rotor in linearly polarized laser tweezers,” Pramana 65(5), 777–786 (2005).
[CrossRef]

Leach, J.

J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” N. J. Phys. 6, 71 (2004).
[CrossRef]

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82(5), 829–831 (2003).
[CrossRef]

Lin, J.

MacVicar, I.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

Maruo, S.

S. Maruo and H. Inoue, “Optically driven viscous micropump using a rotating microdisk,” Appl. Phys. Lett. 91(8), 084101 (2007).
[CrossRef]

Mathur, D.

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, “Naturally occurring, optically driven, cellular rotor,” Appl. Phys. Lett. 85(24), 6048–6050 (2004).
[CrossRef]

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, “Torque-generating malaria-infected red blood cells in an optical trap,” Opt. Express 12(6), 1179–1184 (2004).
[CrossRef] [PubMed]

Mohanty, K.

K. Mohanty, S. Mohanty, S. Monajembashi, and K. O. Greulich, “Orientation of erythrocytes in optical trap revealed by confocal fluorescence microscopy,” JBO Lett. 12, 060606 (2007).

Mohanty, K. S.

Mohanty, S.

K. Mohanty, S. Mohanty, S. Monajembashi, and K. O. Greulich, “Orientation of erythrocytes in optical trap revealed by confocal fluorescence microscopy,” JBO Lett. 12, 060606 (2007).

Mohanty, S. K.

S. K. Mohanty, R. Dasgupta, and P. K. Gupta, “Three-dimensional orientation of microscopic objects using combined elliptical and point optical tweezers,” Appl. Phys. B 81(8), 1063–1066 (2005).
[CrossRef]

M. Khan, S. K. Mohanty, and A. K. Sood, “Optically-driven red blood cell rotor in linearly polarized laser tweezers,” Pramana 65(5), 777–786 (2005).
[CrossRef]

S. K. Mohanty, K. S. Mohanty, and P. K. Gupta, “Dynamics of Interaction of RBC with optical tweezers,” Opt. Express 13(12), 4745–4751 (2005).
[CrossRef] [PubMed]

S. K. Mohanty and P. K. Gupta, “Laser-assisted three-dimensional rotation of microscopic objects,” Rev. Sci. Instrum. 75(7), 2320–2322 (2004).
[CrossRef]

S. K. Mohanty, A. Uppal, and P. K. Gupta, “Self-rotation of red blood cells in optical tweezers: prospects for high throughput malaria diagnosis,” Biotechnol. Lett. 26(12), 971–974 (2004).
[CrossRef] [PubMed]

R. Dasgupta, S. K. Mohanty, and P. K. Gupta, “Controlled rotation of biological microscopic objects using optical line tweezers,” Biotechnol. Lett. 25(19), 1625–1628 (2003).
[CrossRef] [PubMed]

Monajembashi, S.

K. Mohanty, S. Mohanty, S. Monajembashi, and K. O. Greulich, “Orientation of erythrocytes in optical trap revealed by confocal fluorescence microscopy,” JBO Lett. 12, 060606 (2007).

Munro, P. R. T.

Nieminen, T. A.

S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581–1590 (2003).

Niu, H.

O’Neil, A. T.

A. T. O’Neil and M. J. Padgett, “Rotational control within optical tweezers by use of a rotating aperture,” Opt. Lett. 27(9), 743–745 (2002).
[CrossRef]

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

A. T. O’Neil and M. J. Padgett, “Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers,” Opt. Commun. 193(1-6), 45–50 (2001).
[CrossRef]

Ormos, P.

G. Garab, P. Galajda, I. Pomozi, L. Finzi, T. Praznovszky, P. Ormos, and H. van Amerongen, “Alignment of biological microparticles by a polarized laser beam,” Eur. Biophys. J. 34(4), 335–343 (2005).
[CrossRef] [PubMed]

P. Galajda and P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11(5), 446–451 (2003).
[CrossRef] [PubMed]

Padgett, M. J.

J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” N. J. Phys. 6, 71 (2004).
[CrossRef]

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82(5), 829–831 (2003).
[CrossRef]

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

A. T. O’Neil and M. J. Padgett, “Rotational control within optical tweezers by use of a rotating aperture,” Opt. Lett. 27(9), 743–745 (2002).
[CrossRef]

A. T. O’Neil and M. J. Padgett, “Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers,” Opt. Commun. 193(1-6), 45–50 (2001).
[CrossRef]

Peng, X.

Perutz, M. F.

M. F. Perutz, “Submicroscopic structure of the red cell,” Nature 161(4084), 204–205 (1948).
[CrossRef] [PubMed]

Petrov, D.

S. Rao, Š. Bálint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96(1), 209–216 (2009).
[CrossRef]

S. Rao, Š. Bálint, L. del Carmen Frias, and D. Petrov, “Polarization Raman study of protein ordering by controllable RBC deformation,” J. Raman 40(9), 1257–1261 (2009).
[CrossRef]

Petrov, D. V.

D. V. Petrov, “Raman spectroscopy of optically trapped particles,” J. Opt. A, Pure Appl. Opt. 9(8), S139–S156 (2007).
[CrossRef]

Pomozi, I.

G. Garab, P. Galajda, I. Pomozi, L. Finzi, T. Praznovszky, P. Ormos, and H. van Amerongen, “Alignment of biological microparticles by a polarized laser beam,” Eur. Biophys. J. 34(4), 335–343 (2005).
[CrossRef] [PubMed]

Praznovszky, T.

G. Garab, P. Galajda, I. Pomozi, L. Finzi, T. Praznovszky, P. Ormos, and H. van Amerongen, “Alignment of biological microparticles by a polarized laser beam,” Eur. Biophys. J. 34(4), 335–343 (2005).
[CrossRef] [PubMed]

Rao, S.

S. Rao, Š. Bálint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96(1), 209–216 (2009).
[CrossRef]

S. Rao, Š. Bálint, L. del Carmen Frias, and D. Petrov, “Polarization Raman study of protein ordering by controllable RBC deformation,” J. Raman 40(9), 1257–1261 (2009).
[CrossRef]

Roy, S.

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, “Naturally occurring, optically driven, cellular rotor,” Appl. Phys. Lett. 85(24), 6048–6050 (2004).
[CrossRef]

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, “Torque-generating malaria-infected red blood cells in an optical trap,” Opt. Express 12(6), 1179–1184 (2004).
[CrossRef] [PubMed]

Rubinsztein-Dunlop, H.

S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581–1590 (2003).

Sato, S.

S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd-YAG laser beams,” Electron. Lett. 27(20), 1831–1832 (1991).
[CrossRef]

Sharma, S.

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, “Naturally occurring, optically driven, cellular rotor,” Appl. Phys. Lett. 85(24), 6048–6050 (2004).
[CrossRef]

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, “Torque-generating malaria-infected red blood cells in an optical trap,” Opt. Express 12(6), 1179–1184 (2004).
[CrossRef] [PubMed]

Sibbett, W.

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).
[CrossRef]

Skirtach, A. G.

Sood, A. K.

M. Khan, S. K. Mohanty, and A. K. Sood, “Optically-driven red blood cell rotor in linearly polarized laser tweezers,” Pramana 65(5), 777–786 (2005).
[CrossRef]

Tao, S. H.

Török, P.

Ukita, H.

H. Ukita and M. Kanehira, “A Shuttlecock Optical Rotator—Its Design, Fabrication and Evaluation for a Microfluidic Mixer,” IEEE J. Quantum Electron. 8(1), 111–117 (2002).
[CrossRef]

Uppal, A.

S. K. Mohanty, A. Uppal, and P. K. Gupta, “Self-rotation of red blood cells in optical tweezers: prospects for high throughput malaria diagnosis,” Biotechnol. Lett. 26(12), 971–974 (2004).
[CrossRef] [PubMed]

van Amerongen, H.

G. Garab, P. Galajda, I. Pomozi, L. Finzi, T. Praznovszky, P. Ormos, and H. van Amerongen, “Alignment of biological microparticles by a polarized laser beam,” Eur. Biophys. J. 34(4), 335–343 (2005).
[CrossRef] [PubMed]

Volke-Sepulveda, K.

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).
[CrossRef]

Yao, E.

J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” N. J. Phys. 6, 71 (2004).
[CrossRef]

Yuan, X.-C.

Appl. Phys. B (1)

S. K. Mohanty, R. Dasgupta, and P. K. Gupta, “Three-dimensional orientation of microscopic objects using combined elliptical and point optical tweezers,” Appl. Phys. B 81(8), 1063–1066 (2005).
[CrossRef]

Appl. Phys. Lett. (3)

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82(5), 829–831 (2003).
[CrossRef]

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, “Naturally occurring, optically driven, cellular rotor,” Appl. Phys. Lett. 85(24), 6048–6050 (2004).
[CrossRef]

S. Maruo and H. Inoue, “Optically driven viscous micropump using a rotating microdisk,” Appl. Phys. Lett. 91(8), 084101 (2007).
[CrossRef]

Biophys. J. (1)

S. Rao, Š. Bálint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96(1), 209–216 (2009).
[CrossRef]

Biotechnol. Lett. (2)

R. Dasgupta, S. K. Mohanty, and P. K. Gupta, “Controlled rotation of biological microscopic objects using optical line tweezers,” Biotechnol. Lett. 25(19), 1625–1628 (2003).
[CrossRef] [PubMed]

S. K. Mohanty, A. Uppal, and P. K. Gupta, “Self-rotation of red blood cells in optical tweezers: prospects for high throughput malaria diagnosis,” Biotechnol. Lett. 26(12), 971–974 (2004).
[CrossRef] [PubMed]

Electron. Lett. (1)

S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd-YAG laser beams,” Electron. Lett. 27(20), 1831–1832 (1991).
[CrossRef]

Eur. Biophys. J. (1)

G. Garab, P. Galajda, I. Pomozi, L. Finzi, T. Praznovszky, P. Ormos, and H. van Amerongen, “Alignment of biological microparticles by a polarized laser beam,” Eur. Biophys. J. 34(4), 335–343 (2005).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

H. Ukita and M. Kanehira, “A Shuttlecock Optical Rotator—Its Design, Fabrication and Evaluation for a Microfluidic Mixer,” IEEE J. Quantum Electron. 8(1), 111–117 (2002).
[CrossRef]

J. Mod. Opt. (1)

S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581–1590 (2003).

J. Opt. A, Pure Appl. Opt. (1)

D. V. Petrov, “Raman spectroscopy of optically trapped particles,” J. Opt. A, Pure Appl. Opt. 9(8), S139–S156 (2007).
[CrossRef]

J. Raman (1)

S. Rao, Š. Bálint, L. del Carmen Frias, and D. Petrov, “Polarization Raman study of protein ordering by controllable RBC deformation,” J. Raman 40(9), 1257–1261 (2009).
[CrossRef]

JBO Lett. (1)

K. Mohanty, S. Mohanty, S. Monajembashi, and K. O. Greulich, “Orientation of erythrocytes in optical trap revealed by confocal fluorescence microscopy,” JBO Lett. 12, 060606 (2007).

N. J. Phys. (1)

J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” N. J. Phys. 6, 71 (2004).
[CrossRef]

Nature (1)

M. F. Perutz, “Submicroscopic structure of the red cell,” Nature 161(4084), 204–205 (1948).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. T. O’Neil and M. J. Padgett, “Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers,” Opt. Commun. 193(1-6), 45–50 (2001).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Phys. Rev. A (1)

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

Pramana (1)

M. Khan, S. K. Mohanty, and A. K. Sood, “Optically-driven red blood cell rotor in linearly polarized laser tweezers,” Pramana 65(5), 777–786 (2005).
[CrossRef]

Rev. Sci. Instrum. (1)

S. K. Mohanty and P. K. Gupta, “Laser-assisted three-dimensional rotation of microscopic objects,” Rev. Sci. Instrum. 75(7), 2320–2322 (2004).
[CrossRef]

Other (2)

“BioRyx 200 Applications,” http://www.arryx.xom/PDFdocs/BiorryxApplications.pdf .

H. Rouse, Elementary Mechanics of Fluids, Ch. VIII (Wiley Eastern Pvt. Ltd, 1970).

Supplementary Material (5)

» Media 1: MPG (1656 KB)     
» Media 2: MPG (2138 KB)     
» Media 3: MPG (4680 KB)     
» Media 4: MPG (1375 KB)     
» Media 5: MPG (474 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental set-up. M1 to M4 are the steering mirrors and DM is the dichroic mirror used to selectively reflect the trapping beam onto the entrance pupil of the objective lens.

Fig. 2
Fig. 2

Image frames from the movies (Media 1 and Media 2) showing the LG mode patterns from topological charge 0 to 10 (A-K) and the corresponding orientation of a trapped RBC (a-k) respectively. The time interval between consecutive holograms was ~0.5 s. Scale bar, 2.5 µm. (A-K) and 6 µm (a-k).

Fig. 3
Fig. 3

.Image frames from the movie (Media 3) showing the rotation of a trapped RBC via transfer of light orbital angular momentum when trapped under |l|=15 mode. The movie shows reversal of the rotational sense as the topological charge of the LG trapping mode was switched from (i) l =15 to (ii) l =−15. The frames (a-h) show images of the rotating cells, where in each frame the cell is observed to be rotated by an angle of 45° over the previous frame. The time separation between the frames is ~625 ms. Scale bar, 5 μm. The rotational speed of the cell was ~12 rpm at ~15 mW of trap power.

Fig. 4
Fig. 4

(i-viii) The computer generated phase holograms encoded in grayscale (256 levels) images. Phase retardation of zero is encoded in black. Gray value 128 represents phase retardation value π. The angles of rotation of the holograms with respect to the first frame are indicated above the corresponding image frames. (A-H) The l = 0.5 trapping profiles rotated following the generating hologram patterns. As phase in undefined at the dislocation line the light intensity can be seen to be zero near that region producing an approximate semi-circular profile. (a-h) Image frames from the movie (Media 5) showing the rotation of an RBC trapped along the longer dimension of the trap profile. The rotational speed of the cell was ~15 rpm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

r max = w 0 l 2
T D = C D ρ ω 2 R 5 / 4

Metrics