Abstract

We found that marked increases in refractive index of chemically amplified photoresists induced by highly repetitive femtosecond laser irradiation without post-exposure baking treatment. For laser writing speed less than 30 μm/s, the refractive index change of the nonlinear absorption region was as large as 8 × 10−3. Moreover, cross-linking reactions of the resists were induced. The refractive index changes can generate optical confinement and subsequent channel propagations of femtosecond laser pulses. The coupling efficiency was estimated as high as 87% using a low numerical aperture objective lens. The peak intensities of the guiding modes exceeded the polymerization threshold of the resist.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Three-dimensional circular spiral photonic crystal structures recorded by femtosecond laser pulses,” J. Non-Cryst. Solids 352(23-25), 2390–2394 (2006).
    [CrossRef]
  2. N. Grossman, A. Ovsianikov, A. Petrov, M. Eich, and B. Chichkov, “Investigation of optical properties of circular spiral photonic crystals,” Opt. Express 15(20), 13236–13243 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-20-13236 .
    [CrossRef] [PubMed]
  3. S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006).
    [CrossRef]
  4. J. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102 (2005).
    [CrossRef]
  5. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [CrossRef]
  6. H. Nishiyama, M. Mizoshiri, T. Kawahara, J. Nishii, and Y. Hirata, “SiO2-based nonplanar structures fabricated using femtosecond laser lithography,” Opt. Express 16(22), 17288–17294 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-22-17288 .
    [CrossRef] [PubMed]
  7. H. Nishiyama, J. Nishii, M. Mizoshiri, and Y. Hirata, “Microlens arrays of high-refractive-index glass fabricated by femtosecond laser lithography,” Appl. Surf. Sci. 255(24), 9750–9753 (2009).
    [CrossRef]
  8. M. Mizoshiri, H. Nishiyama, J. Nishii, and Y. Hirata, “Three-dimensional SiO2 surface structures fabricated using femtosecond laser lithography,” Appl. Phys., A Mater. Sci. Process. 98(1), 171–177 (2010).
    [CrossRef]
  9. R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express 14(12), 5279–5284 (2006), http://www.opticsinfobase.org/abstract.cfm?&id=90286 .
    [CrossRef] [PubMed]
  10. C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
    [CrossRef]
  11. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-13-9443 .
    [CrossRef] [PubMed]
  12. M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93(23), 231112 (2008).
    [CrossRef]
  13. K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89(2), 024106 (2006).
    [CrossRef]
  14. J. H. Harris, R. Shubert, and J. N. Polky, “Beam Coupling to Films,” J. Opt. Soc. A 60(8), 1007–1016 (1970).
    [CrossRef]
  15. Optical integrated circuits, edited by H. Nishihara, M. Haruna, T. Suhara, (Ohmsha Ltd., Tokyo, Japan, 1985).
  16. S. Keller, G. Blagoi, M. Lillemose, D. Haefliger, and A. Boisen, “Processing of thin SU-8 films,” J. Micromech. Microeng. 18(12), 125020 (2008).
    [CrossRef]
  17. Introduction and application of optical coupling systems to optical devices, edited by K. Kawano, (Gendai-kogakusha, Tokyo, Japan, 1991).
  18. A. S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Opt. Lett. 21(1), 24–26 (1996).
    [CrossRef] [PubMed]

2010

M. Mizoshiri, H. Nishiyama, J. Nishii, and Y. Hirata, “Three-dimensional SiO2 surface structures fabricated using femtosecond laser lithography,” Appl. Phys., A Mater. Sci. Process. 98(1), 171–177 (2010).
[CrossRef]

2009

H. Nishiyama, J. Nishii, M. Mizoshiri, and Y. Hirata, “Microlens arrays of high-refractive-index glass fabricated by femtosecond laser lithography,” Appl. Surf. Sci. 255(24), 9750–9753 (2009).
[CrossRef]

2008

S. Keller, G. Blagoi, M. Lillemose, D. Haefliger, and A. Boisen, “Processing of thin SU-8 films,” J. Micromech. Microeng. 18(12), 125020 (2008).
[CrossRef]

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-13-9443 .
[CrossRef] [PubMed]

H. Nishiyama, M. Mizoshiri, T. Kawahara, J. Nishii, and Y. Hirata, “SiO2-based nonplanar structures fabricated using femtosecond laser lithography,” Opt. Express 16(22), 17288–17294 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-22-17288 .
[CrossRef] [PubMed]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93(23), 231112 (2008).
[CrossRef]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

2007

2006

R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express 14(12), 5279–5284 (2006), http://www.opticsinfobase.org/abstract.cfm?&id=90286 .
[CrossRef] [PubMed]

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Three-dimensional circular spiral photonic crystal structures recorded by femtosecond laser pulses,” J. Non-Cryst. Solids 352(23-25), 2390–2394 (2006).
[CrossRef]

S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006).
[CrossRef]

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89(2), 024106 (2006).
[CrossRef]

2005

J. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102 (2005).
[CrossRef]

2003

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[CrossRef]

1996

1970

J. H. Harris, R. Shubert, and J. N. Polky, “Beam Coupling to Films,” J. Opt. Soc. A 60(8), 1007–1016 (1970).
[CrossRef]

Adachi, Y.

J. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102 (2005).
[CrossRef]

Blagoi, G.

S. Keller, G. Blagoi, M. Lillemose, D. Haefliger, and A. Boisen, “Processing of thin SU-8 films,” J. Micromech. Microeng. 18(12), 125020 (2008).
[CrossRef]

Boisen, A.

S. Keller, G. Blagoi, M. Lillemose, D. Haefliger, and A. Boisen, “Processing of thin SU-8 films,” J. Micromech. Microeng. 18(12), 125020 (2008).
[CrossRef]

Cerami, L. R.

Chen, W.-J.

Chichkov, B.

Eaton, S. M.

Eich, M.

García, J. F.

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[CrossRef]

Gattass, R. R.

Grossman, N.

Haefliger, D.

S. Keller, G. Blagoi, M. Lillemose, D. Haefliger, and A. Boisen, “Processing of thin SU-8 films,” J. Micromech. Microeng. 18(12), 125020 (2008).
[CrossRef]

Harris, J. H.

J. H. Harris, R. Shubert, and J. N. Polky, “Beam Coupling to Films,” J. Opt. Soc. A 60(8), 1007–1016 (1970).
[CrossRef]

Herman, P. R.

Hirao, K.

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93(23), 231112 (2008).
[CrossRef]

Hirata, Y.

M. Mizoshiri, H. Nishiyama, J. Nishii, and Y. Hirata, “Three-dimensional SiO2 surface structures fabricated using femtosecond laser lithography,” Appl. Phys., A Mater. Sci. Process. 98(1), 171–177 (2010).
[CrossRef]

H. Nishiyama, J. Nishii, M. Mizoshiri, and Y. Hirata, “Microlens arrays of high-refractive-index glass fabricated by femtosecond laser lithography,” Appl. Surf. Sci. 255(24), 9750–9753 (2009).
[CrossRef]

H. Nishiyama, M. Mizoshiri, T. Kawahara, J. Nishii, and Y. Hirata, “SiO2-based nonplanar structures fabricated using femtosecond laser lithography,” Opt. Express 16(22), 17288–17294 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-22-17288 .
[CrossRef] [PubMed]

Ho, S.

Inoue, H.

S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006).
[CrossRef]

Jarutis, V.

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89(2), 024106 (2006).
[CrossRef]

Juodkazis, S.

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89(2), 024106 (2006).
[CrossRef]

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Three-dimensional circular spiral photonic crystal structures recorded by femtosecond laser pulses,” J. Non-Cryst. Solids 352(23-25), 2390–2394 (2006).
[CrossRef]

Kato, J.

J. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102 (2005).
[CrossRef]

Kawahara, T.

Kawata, S.

J. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102 (2005).
[CrossRef]

Keller, S.

S. Keller, G. Blagoi, M. Lillemose, D. Haefliger, and A. Boisen, “Processing of thin SU-8 films,” J. Micromech. Microeng. 18(12), 125020 (2008).
[CrossRef]

Kewitsch, A. S.

Li, J.

Lillemose, M.

S. Keller, G. Blagoi, M. Lillemose, D. Haefliger, and A. Boisen, “Processing of thin SU-8 films,” J. Micromech. Microeng. 18(12), 125020 (2008).
[CrossRef]

Maruo, S.

S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006).
[CrossRef]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express 14(12), 5279–5284 (2006), http://www.opticsinfobase.org/abstract.cfm?&id=90286 .
[CrossRef] [PubMed]

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[CrossRef]

Misawa, H.

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Three-dimensional circular spiral photonic crystal structures recorded by femtosecond laser pulses,” J. Non-Cryst. Solids 352(23-25), 2390–2394 (2006).
[CrossRef]

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89(2), 024106 (2006).
[CrossRef]

Miura, K.

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93(23), 231112 (2008).
[CrossRef]

Mizeikis, V.

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Three-dimensional circular spiral photonic crystal structures recorded by femtosecond laser pulses,” J. Non-Cryst. Solids 352(23-25), 2390–2394 (2006).
[CrossRef]

Mizoshiri, M.

M. Mizoshiri, H. Nishiyama, J. Nishii, and Y. Hirata, “Three-dimensional SiO2 surface structures fabricated using femtosecond laser lithography,” Appl. Phys., A Mater. Sci. Process. 98(1), 171–177 (2010).
[CrossRef]

H. Nishiyama, J. Nishii, M. Mizoshiri, and Y. Hirata, “Microlens arrays of high-refractive-index glass fabricated by femtosecond laser lithography,” Appl. Surf. Sci. 255(24), 9750–9753 (2009).
[CrossRef]

H. Nishiyama, M. Mizoshiri, T. Kawahara, J. Nishii, and Y. Hirata, “SiO2-based nonplanar structures fabricated using femtosecond laser lithography,” Opt. Express 16(22), 17288–17294 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-22-17288 .
[CrossRef] [PubMed]

Ng, M. L.

Nishii, J.

M. Mizoshiri, H. Nishiyama, J. Nishii, and Y. Hirata, “Three-dimensional SiO2 surface structures fabricated using femtosecond laser lithography,” Appl. Phys., A Mater. Sci. Process. 98(1), 171–177 (2010).
[CrossRef]

H. Nishiyama, J. Nishii, M. Mizoshiri, and Y. Hirata, “Microlens arrays of high-refractive-index glass fabricated by femtosecond laser lithography,” Appl. Surf. Sci. 255(24), 9750–9753 (2009).
[CrossRef]

H. Nishiyama, M. Mizoshiri, T. Kawahara, J. Nishii, and Y. Hirata, “SiO2-based nonplanar structures fabricated using femtosecond laser lithography,” Opt. Express 16(22), 17288–17294 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-22-17288 .
[CrossRef] [PubMed]

Nishiyama, H.

M. Mizoshiri, H. Nishiyama, J. Nishii, and Y. Hirata, “Three-dimensional SiO2 surface structures fabricated using femtosecond laser lithography,” Appl. Phys., A Mater. Sci. Process. 98(1), 171–177 (2010).
[CrossRef]

H. Nishiyama, J. Nishii, M. Mizoshiri, and Y. Hirata, “Microlens arrays of high-refractive-index glass fabricated by femtosecond laser lithography,” Appl. Surf. Sci. 255(24), 9750–9753 (2009).
[CrossRef]

H. Nishiyama, M. Mizoshiri, T. Kawahara, J. Nishii, and Y. Hirata, “SiO2-based nonplanar structures fabricated using femtosecond laser lithography,” Opt. Express 16(22), 17288–17294 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-22-17288 .
[CrossRef] [PubMed]

Ovsianikov, A.

Petrov, A.

Polky, J. N.

J. H. Harris, R. Shubert, and J. N. Polky, “Beam Coupling to Films,” J. Opt. Soc. A 60(8), 1007–1016 (1970).
[CrossRef]

Sakakura, M.

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93(23), 231112 (2008).
[CrossRef]

Schaffer, C. B.

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[CrossRef]

Seet, K. K.

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Three-dimensional circular spiral photonic crystal structures recorded by femtosecond laser pulses,” J. Non-Cryst. Solids 352(23-25), 2390–2394 (2006).
[CrossRef]

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89(2), 024106 (2006).
[CrossRef]

Shimizu, M.

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93(23), 231112 (2008).
[CrossRef]

Shimotsuma, Y.

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93(23), 231112 (2008).
[CrossRef]

Shubert, R.

J. H. Harris, R. Shubert, and J. N. Polky, “Beam Coupling to Films,” J. Opt. Soc. A 60(8), 1007–1016 (1970).
[CrossRef]

Sun, H.-B.

J. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102 (2005).
[CrossRef]

Takeyasu, N.

J. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102 (2005).
[CrossRef]

Yariv, A.

Zhang, H.

Appl. Phys. Lett.

S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006).
[CrossRef]

J. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102 (2005).
[CrossRef]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93(23), 231112 (2008).
[CrossRef]

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89(2), 024106 (2006).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[CrossRef]

M. Mizoshiri, H. Nishiyama, J. Nishii, and Y. Hirata, “Three-dimensional SiO2 surface structures fabricated using femtosecond laser lithography,” Appl. Phys., A Mater. Sci. Process. 98(1), 171–177 (2010).
[CrossRef]

Appl. Surf. Sci.

H. Nishiyama, J. Nishii, M. Mizoshiri, and Y. Hirata, “Microlens arrays of high-refractive-index glass fabricated by femtosecond laser lithography,” Appl. Surf. Sci. 255(24), 9750–9753 (2009).
[CrossRef]

J. Micromech. Microeng.

S. Keller, G. Blagoi, M. Lillemose, D. Haefliger, and A. Boisen, “Processing of thin SU-8 films,” J. Micromech. Microeng. 18(12), 125020 (2008).
[CrossRef]

J. Non-Cryst. Solids

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Three-dimensional circular spiral photonic crystal structures recorded by femtosecond laser pulses,” J. Non-Cryst. Solids 352(23-25), 2390–2394 (2006).
[CrossRef]

J. Opt. Soc. A

J. H. Harris, R. Shubert, and J. N. Polky, “Beam Coupling to Films,” J. Opt. Soc. A 60(8), 1007–1016 (1970).
[CrossRef]

Nat. Photonics

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Other

Introduction and application of optical coupling systems to optical devices, edited by K. Kawano, (Gendai-kogakusha, Tokyo, Japan, 1991).

Optical integrated circuits, edited by H. Nishihara, M. Haruna, T. Suhara, (Ohmsha Ltd., Tokyo, Japan, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Relation between refractive index changes and laser writing speed for laser average power of 33.3 mW.

Fig. 2
Fig. 2

FT–IR spectra of the resists

Fig. 3
Fig. 3

Schematic illustrations of (a) an incident pulse and nonlinear absorbed region and (b) an optical fiber model of a coupled pulse.

Fig. 4
Fig. 4

Optical microscope image of the resist pattern, which was asymmetric against the laser focal position.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η q = J q 2 ( 2 κ L )
η = 4 ( w 1 ( z 1 ) w 2 + w 2 w 1 ( z 1 ) ) 2 + ( π w 1 ( z 1 ) w 2 λ 0 ) 2 ( 1 R 1 ( z 1 ) 1 R 2 ) 2
w 1 ( z 1 ) = w 0 1 + ( z 1 NA 2 / n 1 z 0 λ 0 ) 2

Metrics