Abstract

The wide Metal-Insulator-Metal (WMIM) structure is proposed and its characteristics are analyzed numerically using finite-difference time-domain (FDTD) method. Simulations show that power can be periodically transferred between its two Metal-Insulator (MI) interfaces while power is injected asymmetrically. Novel plasmonic filters and optical directional couplers (ODCs) based on WMIM structure are proposed, which work similarly as traditional dielectric devices. Due to the simple structures without thin metal gaps, our result may provide an alternative way to realize the fabrication of nanoscale optical devices.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
    [CrossRef]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  3. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
    [CrossRef]
  4. M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
    [CrossRef]
  5. Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259(2), 690–695 (2006).
    [CrossRef]
  6. H. Zhao, X. Guang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Phy. E. 40(10), 3025–3029 (2008).
    [CrossRef]
  7. Z. Kang and G. P. Wang, “Coupled metal gap waveguides as plasmonic wavelength sorters,” Opt. Express 16(11), 7680–7685 (2008).
    [CrossRef] [PubMed]
  8. R. A. Wahsheh, Z. Lu, and A. G. Mustafa, “Nanoplasmonic directional couplers and Mach–Zehnder interferometers,” Opt. Commun. 282(23), 4622–4626 (2009).
    [CrossRef]
  9. T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express 17(26), 24096–24101 (2009).
    [CrossRef]
  10. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon polaritons metal,” Opt. Express 14(7), 2932 (2006).
    [CrossRef] [PubMed]
  11. Q. Zhang, X.-G. Huang, X.-S. Lin, J. Tao, and X.-P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17(9), 7549–7555 (2009).
    [CrossRef]
  12. A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009).
    [CrossRef]
  13. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, “Channel plasmon sub-wavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
    [CrossRef] [PubMed]
  14. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16(18), 13585–13592 (2008).
    [CrossRef] [PubMed]
  15. W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
    [CrossRef]
  16. G. P. Agrawal, Application of Nonlinear Fiber Optics (Academic Press, 2001)
  17. A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6)1233–1241 (2006).
    [CrossRef]
  18. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Boston, 1985).
  19. Z. Han, A. Y. Elezzabi, and V. Van, “Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides,” Appl. Phys. Lett. 96(13), 131106 (2010).
    [CrossRef]

2010 (1)

Z. Han, A. Y. Elezzabi, and V. Van, “Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides,” Appl. Phys. Lett. 96(13), 131106 (2010).
[CrossRef]

2009 (4)

Q. Zhang, X.-G. Huang, X.-S. Lin, J. Tao, and X.-P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17(9), 7549–7555 (2009).
[CrossRef]

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009).
[CrossRef]

R. A. Wahsheh, Z. Lu, and A. G. Mustafa, “Nanoplasmonic directional couplers and Mach–Zehnder interferometers,” Opt. Commun. 282(23), 4622–4626 (2009).
[CrossRef]

T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express 17(26), 24096–24101 (2009).
[CrossRef]

2008 (4)

H. Zhao, X. Guang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Phy. E. 40(10), 3025–3029 (2008).
[CrossRef]

Z. Kang and G. P. Wang, “Coupled metal gap waveguides as plasmonic wavelength sorters,” Opt. Express 16(11), 7680–7685 (2008).
[CrossRef] [PubMed]

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16(18), 13585–13592 (2008).
[CrossRef] [PubMed]

2006 (5)

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
[CrossRef]

A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6)1233–1241 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, “Channel plasmon sub-wavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259(2), 690–695 (2006).
[CrossRef]

S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon polaritons metal,” Opt. Express 14(7), 2932 (2006).
[CrossRef] [PubMed]

2005 (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

1969 (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[CrossRef]

Akjouj, A.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009).
[CrossRef]

Barnes, W. L.

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Boltasseva, A.

A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6)1233–1241 (2006).
[CrossRef]

Bozhevolnyi, S. I.

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16(18), 13585–13592 (2008).
[CrossRef] [PubMed]

A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6)1233–1241 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, “Channel plasmon sub-wavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Chen, Z.

Dereux, A.

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, “Channel plasmon sub-wavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Djafari-Rouhani, B.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009).
[CrossRef]

Dragoman, D.

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
[CrossRef]

Dragoman, M.

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
[CrossRef]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, “Channel plasmon sub-wavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Economou, E. N.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[CrossRef]

Elezzabi, A. Y.

Z. Han, A. Y. Elezzabi, and V. Van, “Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides,” Appl. Phys. Lett. 96(13), 131106 (2010).
[CrossRef]

Forsberg, E.

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259(2), 690–695 (2006).
[CrossRef]

Gillet, J.-N.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009).
[CrossRef]

Guang, X.

H. Zhao, X. Guang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Phy. E. 40(10), 3025–3029 (2008).
[CrossRef]

Han, Z.

Z. Han, A. Y. Elezzabi, and V. Van, “Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides,” Appl. Phys. Lett. 96(13), 131106 (2010).
[CrossRef]

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259(2), 690–695 (2006).
[CrossRef]

Holmgaard, T.

Huang, J.

H. Zhao, X. Guang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Phy. E. 40(10), 3025–3029 (2008).
[CrossRef]

Huang, X.-G.

Jin, X.-P.

Kang, Z.

Krasavin, A. V.

Laluet, J.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, “Channel plasmon sub-wavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Lin, X.-S.

Liu, L.

S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon polaritons metal,” Opt. Express 14(7), 2932 (2006).
[CrossRef] [PubMed]

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259(2), 690–695 (2006).
[CrossRef]

Lu, Z.

R. A. Wahsheh, Z. Lu, and A. G. Mustafa, “Nanoplasmonic directional couplers and Mach–Zehnder interferometers,” Opt. Commun. 282(23), 4622–4626 (2009).
[CrossRef]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Markey, L.

Mustafa, A. G.

R. A. Wahsheh, Z. Lu, and A. G. Mustafa, “Nanoplasmonic directional couplers and Mach–Zehnder interferometers,” Opt. Commun. 282(23), 4622–4626 (2009).
[CrossRef]

Noual, A.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009).
[CrossRef]

Pennec, Y.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009).
[CrossRef]

Qiu, M.

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Tao, J.

Van, V.

Z. Han, A. Y. Elezzabi, and V. Van, “Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides,” Appl. Phys. Lett. 96(13), 131106 (2010).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, “Channel plasmon sub-wavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Wahsheh, R. A.

R. A. Wahsheh, Z. Lu, and A. G. Mustafa, “Nanoplasmonic directional couplers and Mach–Zehnder interferometers,” Opt. Commun. 282(23), 4622–4626 (2009).
[CrossRef]

Wang, G. P.

Wang, H. Z.

Wang, T. B.

Wen, X. W.

Xiao, S.

Yin, C. P.

Zayats, A. V.

Zhang, Q.

Zhao, H.

H. Zhao, X. Guang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Phy. E. 40(10), 3025–3029 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

Z. Han, A. Y. Elezzabi, and V. Van, “Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides,” Appl. Phys. Lett. 96(13), 131106 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6)1233–1241 (2006).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
[CrossRef]

N. J. Phys. (1)

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009).
[CrossRef]

Nature (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, “Channel plasmon sub-wavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Commun. (2)

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259(2), 690–695 (2006).
[CrossRef]

R. A. Wahsheh, Z. Lu, and A. G. Mustafa, “Nanoplasmonic directional couplers and Mach–Zehnder interferometers,” Opt. Commun. 282(23), 4622–4626 (2009).
[CrossRef]

Opt. Express (5)

Phy. E. (1)

H. Zhao, X. Guang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Phy. E. 40(10), 3025–3029 (2008).
[CrossRef]

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Phys. Rev. (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[CrossRef]

Prog. Quantum Electron. (1)

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
[CrossRef]

Other (2)

G. P. Agrawal, Application of Nonlinear Fiber Optics (Academic Press, 2001)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, Boston, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the WMIM structure connected with plasmonic slot waveguides; (b) The coupling coefficient κ corresponding to W2 under different λ and ε; (c), (d) and (e) The contour profiles of field Hy respectively for D = 0, 75, and150nm when W2 = 400nm; (f), (g) and (h) The contour profiles of field Hy respectively for W2 = 300, 400, and 500nm.

Fig. 2
Fig. 2

Schematic of the filter based on WMIM structure: (a) sharp corner, (b) filleted corner; (c) The transmission for different L under λ = 1550 n m . (d), (e) and (f)The contour profiles of field Hy relative to L = 0.7, 0.75μm for sharp corner and L = 1.375μm for filleted corner;

Fig. 3
Fig. 3

(a) Transmission spectrum for L = 0.6μm. (b) and (c) The contour profiles of field Hy respectively for λ 1 = 1550 n m and λ 2 = 1310 n m when L = 0.6μm

Fig. 4
Fig. 4

(a) Schematic of the ODC based on WMIM structure. (b) The transmission at the ends of port B, C and D for different L when λ = 1550 n m . (c) The transmission from port A to port C for different L when λ 1 = 1550 n m and λ 2 = 1310 n m . (d) The transmission from port A to port C respectively for W2 = 300, 320 and 340nm when λ = 1550 n m .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

δ d = ( 1 / k 0 ) | ( ε m ' + ε d ) / ε d 2 | 1 / 2
δ m = ( 1 / k 0 ) | ( ε m ' + ε d ) / ε m ' 2 | 1 / 2
[ E 1 ( z ) E 2 ( z ) ] = [ cos ( κ z ) i sin ( κ z ) i sin ( κ z ) cos ( κ z ) ] [ E 1 ( 0 ) E 2 ( 0 ) ]
L π / 2 = π / ( 2 κ )

Metrics