Abstract

Non-linear microscopy has the potential to provide clinically useful information on the structure of biological tissue in vivo via an endomicroscope. The ability to use plastic as the optical material in a multiphoton objective was evaluated based on several criteria including autofluorescence, injection molding induced birefringence, and pulse broadening due to group velocity dispersion. An all-plastic, refractive ultra-slim endoscope objective was built with design specifications of NA = 0.4, FOV = 250 μm, 1.27 mm outer diameter, and 0.8 mm clear aperture. Initial images of second-harmonic generation signal (illumination at 780 nm) in collagen fibers and two-photon excited fluorescence (illumination at 920 nm) of Convallaria rhizome are reported.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Mukherjee, J. S. Wysock, C. K. Ng, M. Akhtar, S. Perner, M. M. Lee, M. A. Rubin, F. R. Maxfield, W. W. Webb, and D. S. Scherr, “Human bladder cancer diagnosis using multiphoton microscopy,” in Photonic Therapeutics and Diagnostics V, N. Kollias, ed. (SPIE, 2009).
  2. M. Göppert-Mayer, “Über Elementarakte mit zwei Quantensprüngen,” Annalen der Physik 401(3), 273–294 (1931).
    [CrossRef]
  3. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  4. P. Cheng and C. K. Sun, “Nonlinear (harmonic generation) optical microscopy,” in Handbook of Confocal Microscopy, J. Pawley, ed., (Springer, 2006).
  5. L. Gao, L. Jin, P. Xue, J. Xu, Y. Wang, H. Ma, and D. Chen, “Reconstruction of complementary images in second harmonic generation microscopy,” Opt. Express 14(11), 4727–4735 (2006).
    [CrossRef] [PubMed]
  6. R. M. Williams, W. R. Zipfel, and W. W. Webb, “Multiphoton microscopy in biological research,” Curr. Opin. Chem. Biol. 5(5), 603–608 (2001).
    [CrossRef] [PubMed]
  7. F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
    [CrossRef] [PubMed]
  8. D. Bird and M. Gu, “Two-photon fluorescence endoscopy with a micro-optic scanning head,” Opt. Lett. 28(17), 1552–1554 (2003).
    [CrossRef] [PubMed]
  9. L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, “Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror,” Opt. Express 14(3), 1027–1032 (2006).
    [CrossRef] [PubMed]
  10. R. Le Harzic, M. Weinigel, I. Riemann, K. König, and B. Messerschmidt, “Nonlinear optical endoscope based on a compact two axes piezo scanner and a miniature objective lens,” Opt. Express 16(25), 20588–20596 (2008).
    [CrossRef] [PubMed]
  11. K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
    [CrossRef] [PubMed]
  12. S. Schenkl, A. Ehlers, R. LeHarzic, M. Stark, I. Riemann, B. Messerschmidt, M. Kaatz, and K. König, “Rigid and high NA multiphoton fluorescence GRIN-endoscopes,” in Novel Optical Instrumentation for Biomedical Applications III, C. D. Depeursinge, ed. (SPIE, 2007).
  13. J. N. Rogart, J. Nagata, C. S. Loeser, R. D. Roorda, H. Aslanian, M. E. Robert, W. R. Zipfel, and M. H. Nathanson, “Multiphoton imaging can be used for microscopic examination of intact human gastrointestinal mucosa ex vivo,” Clin. Gastroenterol. Hepatol. 6(1), 95–101 (2008).
    [CrossRef]
  14. J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett. 28(11), 902–904 (2003).
    [CrossRef] [PubMed]
  15. W. Göbel, J. N. Kerr, A. Nimmerjahn, and F. Helmchen, “Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective,” Opt. Lett. 29(21), 2521–2523 (2004).
    [CrossRef] [PubMed]
  16. C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express 16(8), 5556–5564 (2008).
    [CrossRef] [PubMed]
  17. P. Singh, A. Chak, J. E. Willis, A. Rollins, and M. V. Sivak, “In vivo optical coherence tomography imaging of the pancreatic and biliary ductal system,” Gastrointest. Endosc. 62(6), 970–974 (2005).
    [CrossRef] [PubMed]
  18. K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
    [CrossRef] [PubMed]
  19. M. T. Myaing, D. J. MacDonald, and X. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett. 31(8), 1076–1078 (2006).
    [CrossRef] [PubMed]
  20. X. Li and W. Yu, “Deep tissue microscopic imaging of the kidney with a gradient-index lens system,” Opt. Commun. 281(7), 1833–1840 (2008).
    [CrossRef] [PubMed]
  21. M. Mansuripur, Classical Optics and its Applications, 2nd ed. (Cambridge University Press, 2009).
  22. Y. Zhao, H. Nakamura, and R. J. Gordon, “Development of a versatile two-photon endoscope for biological imaging,” Biomed. Opt. Express 1(4), 1159–1172 (2010).
    [CrossRef]
  23. GRINTECH, http://www.grintech.de/grin-lens-systems-for-medical-applications.html
  24. R. T. Kester, S. E. Weigum, M. C. Pierce, R. Richards-Kortum, and T. S. Tkaczyk, “Low-cost miniature optics for point-of-care diagnostic instrumentation,” Lab Chip (submitted for publication).
  25. S. M. Landau, C. Liang, R. T. Kester, T. S. Tkaczyk, and M. R. Descour, “Design and evaluation of an ultra-slim objective for in-vivo deep optical biopsy,” Opt. Express 18(5), 4758–4775 (2010).
    [CrossRef] [PubMed]
  26. R. T. Kester, T. S. Tkaczyk, M. R. Descour, T. Christenson, and R. Richards-Kortum, “High numerical aperture microendoscope objective for a fiber confocal reflectance microscope,” Opt. Express 15(5), 2409–2420 (2007).
    [CrossRef] [PubMed]
  27. R. T. Kester, T. Christenson, R. R. Kortum, and T. S. Tkaczyk, “Low cost, high performance, self-aligning miniature optical systems,” Appl. Opt. 48(18), 3375–3384 (2009).
    [CrossRef] [PubMed]
  28. Y. Wu and X. Li, “Combined influences of chromatic aberration and scattering in depth-resolved two-photon fluorescence endospectroscopy,” Biomed. Opt. Express 1(4), 1234–1243 (2010).
    [CrossRef]
  29. S. Bäumer, ed., Handbook of Plastic Optics (Wiley-VCH, 2010).
  30. M. Bass, ed., Handbook of Optics, Volume 2: Devices, Measurements, and Properties (McGraw-Hill, Inc., 1995).
  31. M. B. Wabuyele, S. M. Ford, W. Stryjewski, J. Barrow, and S. A. Soper, “Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices,” Electrophoresis 22(18), 3939–3948 (2001).
    [CrossRef] [PubMed]
  32. Y. Konishi, T. Sawaguchi, K. Kubomura, and K. Minami, “High performance cyclo clefin polymer ZEONEX®,” Proc. SPIE , 5872 (2005).
  33. M. D. Ries, E. Young, L. Al-Marashi, P. Goldstein, A. Hetherington, T. Petrie, and L. Pruitt, “In vivo behavior of acrylic bone cement in total hip arthroplasty,” Biomater. 27(2), 256–261 (2006).
    [CrossRef]
  34. M. Petrtyl, Z. Bastl, Z. Krulis, H. Hulejova, M. Polanska, J. Lisal, J. Danesova, and P. Cerny, “Cycloolefin-Copolymer/Polyethylene (COC/PE) Blend Assists with the Creation of New Articular Cartilage,” Macromol. Symp. 294(1), 120–132 (2010).
    [CrossRef]
  35. V. Tangpasuthadol, S. M. Pendharkar, R. C. Peterson, and J. Kohn, “Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part II: 3-yr study of polymeric devices,” Biomaterials 21(23), 2379–2387 (2000).
    [CrossRef] [PubMed]
  36. L. Tabet, C. Bussy, A. Setyan, A. Simon-Deckers, M. J. Rossi, J. Boczkowski, and S. Lanone, “Coating carbon nanotubes with a polystyrene-based polymer protects against pulmonary toxicity,” Part. Fibre Toxicol. 8(3), 3 (2011).
    [CrossRef] [PubMed]
  37. M. D. Chidley, K. D. Carlson, R. R. Richards-Kortum, and M. R. Descour, “Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy,” Appl. Opt. 45(11), 2545–2554 (2006).
    [CrossRef] [PubMed]
  38. K. Obuchi, M. Komatsu, and K. Minami, “High performance optical materials cyclo olefin polymer ZEONEX®,” Proc. SPIE , 6671 (2007).
  39. J. C. Diels and R. Wolfgang, Ultrashort Laser Pulse Phenomena (Elsevier, 2006).
  40. R. F. Shi, C. Koeppen, G. Jiang, J. Wang, and A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett. 71(25), 3625–3627 (1997).
    [CrossRef]
  41. S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29(11), 1481–1490 (2007).
    [CrossRef]
  42. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [CrossRef] [PubMed]
  43. K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer,” Technol. Cancer Res. Treat. 2(6), 491–504 (2003).
    [PubMed]
  44. ZEMAX Development Corporation, http://www.zemax.com .
  45. A. Tzannes and J. Mooney, “Measurement of the modulation transfer function of infrared cameras,” Opt. Eng. 34(6), 1808–1817 (1995).
    [CrossRef]
  46. ISO, ISO 12233:2000 Photography–Electronic still-picture cameras–Resolution Measurements (Geneva, Switzerland, 2000).
  47. J. Jung, H. Park, J. Park, and H. Kim, “Accuracy of preoperative ultrasound and ultrasound-guided fine needle aspiration cytology for axillary staging in breast cancer,” ANZ J. Surg. 80(4), 271–275 (2010).
    [CrossRef] [PubMed]
  48. S. Taneja, A. Jena, K. Kumar, and A. Mehta, “Technical Note: MRI-guided breast biopsy - our preliminary experience,” Indian J Radiol Imaging 20(3), 218–220 (2010).
    [CrossRef] [PubMed]
  49. J. E. Kalinyak, K. Schilling, W. A. Berg, D. Narayanan, J. P. Mayberry, R. Rai, E. B. Dupree, D. K. Shusterman, M. A. Gittleman, W. Luo, and C. G. Matthews, “PET-guided breast biopsy,” Breast J. 17(2), 143–151 (2011).
    [CrossRef] [PubMed]

2011 (2)

J. E. Kalinyak, K. Schilling, W. A. Berg, D. Narayanan, J. P. Mayberry, R. Rai, E. B. Dupree, D. K. Shusterman, M. A. Gittleman, W. Luo, and C. G. Matthews, “PET-guided breast biopsy,” Breast J. 17(2), 143–151 (2011).
[CrossRef] [PubMed]

L. Tabet, C. Bussy, A. Setyan, A. Simon-Deckers, M. J. Rossi, J. Boczkowski, and S. Lanone, “Coating carbon nanotubes with a polystyrene-based polymer protects against pulmonary toxicity,” Part. Fibre Toxicol. 8(3), 3 (2011).
[CrossRef] [PubMed]

2010 (6)

M. Petrtyl, Z. Bastl, Z. Krulis, H. Hulejova, M. Polanska, J. Lisal, J. Danesova, and P. Cerny, “Cycloolefin-Copolymer/Polyethylene (COC/PE) Blend Assists with the Creation of New Articular Cartilage,” Macromol. Symp. 294(1), 120–132 (2010).
[CrossRef]

J. Jung, H. Park, J. Park, and H. Kim, “Accuracy of preoperative ultrasound and ultrasound-guided fine needle aspiration cytology for axillary staging in breast cancer,” ANZ J. Surg. 80(4), 271–275 (2010).
[CrossRef] [PubMed]

S. Taneja, A. Jena, K. Kumar, and A. Mehta, “Technical Note: MRI-guided breast biopsy - our preliminary experience,” Indian J Radiol Imaging 20(3), 218–220 (2010).
[CrossRef] [PubMed]

S. M. Landau, C. Liang, R. T. Kester, T. S. Tkaczyk, and M. R. Descour, “Design and evaluation of an ultra-slim objective for in-vivo deep optical biopsy,” Opt. Express 18(5), 4758–4775 (2010).
[CrossRef] [PubMed]

Y. Zhao, H. Nakamura, and R. J. Gordon, “Development of a versatile two-photon endoscope for biological imaging,” Biomed. Opt. Express 1(4), 1159–1172 (2010).
[CrossRef]

Y. Wu and X. Li, “Combined influences of chromatic aberration and scattering in depth-resolved two-photon fluorescence endospectroscopy,” Biomed. Opt. Express 1(4), 1234–1243 (2010).
[CrossRef]

2009 (1)

2008 (4)

X. Li and W. Yu, “Deep tissue microscopic imaging of the kidney with a gradient-index lens system,” Opt. Commun. 281(7), 1833–1840 (2008).
[CrossRef] [PubMed]

J. N. Rogart, J. Nagata, C. S. Loeser, R. D. Roorda, H. Aslanian, M. E. Robert, W. R. Zipfel, and M. H. Nathanson, “Multiphoton imaging can be used for microscopic examination of intact human gastrointestinal mucosa ex vivo,” Clin. Gastroenterol. Hepatol. 6(1), 95–101 (2008).
[CrossRef]

C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express 16(8), 5556–5564 (2008).
[CrossRef] [PubMed]

R. Le Harzic, M. Weinigel, I. Riemann, K. König, and B. Messerschmidt, “Nonlinear optical endoscope based on a compact two axes piezo scanner and a miniature objective lens,” Opt. Express 16(25), 20588–20596 (2008).
[CrossRef] [PubMed]

2007 (5)

R. T. Kester, T. S. Tkaczyk, M. R. Descour, T. Christenson, and R. Richards-Kortum, “High numerical aperture microendoscope objective for a fiber confocal reflectance microscope,” Opt. Express 15(5), 2409–2420 (2007).
[CrossRef] [PubMed]

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
[CrossRef] [PubMed]

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
[CrossRef] [PubMed]

K. Obuchi, M. Komatsu, and K. Minami, “High performance optical materials cyclo olefin polymer ZEONEX®,” Proc. SPIE , 6671 (2007).

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29(11), 1481–1490 (2007).
[CrossRef]

2006 (5)

2005 (2)

Y. Konishi, T. Sawaguchi, K. Kubomura, and K. Minami, “High performance cyclo clefin polymer ZEONEX®,” Proc. SPIE , 5872 (2005).

P. Singh, A. Chak, J. E. Willis, A. Rollins, and M. V. Sivak, “In vivo optical coherence tomography imaging of the pancreatic and biliary ductal system,” Gastrointest. Endosc. 62(6), 970–974 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (4)

J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett. 28(11), 902–904 (2003).
[CrossRef] [PubMed]

D. Bird and M. Gu, “Two-photon fluorescence endoscopy with a micro-optic scanning head,” Opt. Lett. 28(17), 1552–1554 (2003).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer,” Technol. Cancer Res. Treat. 2(6), 491–504 (2003).
[PubMed]

2001 (3)

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Multiphoton microscopy in biological research,” Curr. Opin. Chem. Biol. 5(5), 603–608 (2001).
[CrossRef] [PubMed]

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[CrossRef] [PubMed]

M. B. Wabuyele, S. M. Ford, W. Stryjewski, J. Barrow, and S. A. Soper, “Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices,” Electrophoresis 22(18), 3939–3948 (2001).
[CrossRef] [PubMed]

2000 (1)

V. Tangpasuthadol, S. M. Pendharkar, R. C. Peterson, and J. Kohn, “Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part II: 3-yr study of polymeric devices,” Biomaterials 21(23), 2379–2387 (2000).
[CrossRef] [PubMed]

1997 (1)

R. F. Shi, C. Koeppen, G. Jiang, J. Wang, and A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett. 71(25), 3625–3627 (1997).
[CrossRef]

1995 (1)

A. Tzannes and J. Mooney, “Measurement of the modulation transfer function of infrared cameras,” Opt. Eng. 34(6), 1808–1817 (1995).
[CrossRef]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

1931 (1)

M. Göppert-Mayer, “Über Elementarakte mit zwei Quantensprüngen,” Annalen der Physik 401(3), 273–294 (1931).
[CrossRef]

Aaron, J.

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer,” Technol. Cancer Res. Treat. 2(6), 491–504 (2003).
[PubMed]

Adler-Storthz, K.

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer,” Technol. Cancer Res. Treat. 2(6), 491–504 (2003).
[PubMed]

Al-Marashi, L.

M. D. Ries, E. Young, L. Al-Marashi, P. Goldstein, A. Hetherington, T. Petrie, and L. Pruitt, “In vivo behavior of acrylic bone cement in total hip arthroplasty,” Biomater. 27(2), 256–261 (2006).
[CrossRef]

Arap, W.

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer,” Technol. Cancer Res. Treat. 2(6), 491–504 (2003).
[PubMed]

Aslanian, H.

J. N. Rogart, J. Nagata, C. S. Loeser, R. D. Roorda, H. Aslanian, M. E. Robert, W. R. Zipfel, and M. H. Nathanson, “Multiphoton imaging can be used for microscopic examination of intact human gastrointestinal mucosa ex vivo,” Clin. Gastroenterol. Hepatol. 6(1), 95–101 (2008).
[CrossRef]

Barrow, J.

M. B. Wabuyele, S. M. Ford, W. Stryjewski, J. Barrow, and S. A. Soper, “Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices,” Electrophoresis 22(18), 3939–3948 (2001).
[CrossRef] [PubMed]

Bastl, Z.

M. Petrtyl, Z. Bastl, Z. Krulis, H. Hulejova, M. Polanska, J. Lisal, J. Danesova, and P. Cerny, “Cycloolefin-Copolymer/Polyethylene (COC/PE) Blend Assists with the Creation of New Articular Cartilage,” Macromol. Symp. 294(1), 120–132 (2010).
[CrossRef]

Berg, W. A.

J. E. Kalinyak, K. Schilling, W. A. Berg, D. Narayanan, J. P. Mayberry, R. Rai, E. B. Dupree, D. K. Shusterman, M. A. Gittleman, W. Luo, and C. G. Matthews, “PET-guided breast biopsy,” Breast J. 17(2), 143–151 (2011).
[CrossRef] [PubMed]

Bird, D.

Boczkowski, J.

L. Tabet, C. Bussy, A. Setyan, A. Simon-Deckers, M. J. Rossi, J. Boczkowski, and S. Lanone, “Coating carbon nanotubes with a polystyrene-based polymer protects against pulmonary toxicity,” Part. Fibre Toxicol. 8(3), 3 (2011).
[CrossRef] [PubMed]

Bückle, R.

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
[CrossRef] [PubMed]

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
[CrossRef] [PubMed]

Bussy, C.

L. Tabet, C. Bussy, A. Setyan, A. Simon-Deckers, M. J. Rossi, J. Boczkowski, and S. Lanone, “Coating carbon nanotubes with a polystyrene-based polymer protects against pulmonary toxicity,” Part. Fibre Toxicol. 8(3), 3 (2011).
[CrossRef] [PubMed]

Carlson, K. D.

Cerny, P.

M. Petrtyl, Z. Bastl, Z. Krulis, H. Hulejova, M. Polanska, J. Lisal, J. Danesova, and P. Cerny, “Cycloolefin-Copolymer/Polyethylene (COC/PE) Blend Assists with the Creation of New Articular Cartilage,” Macromol. Symp. 294(1), 120–132 (2010).
[CrossRef]

Chak, A.

P. Singh, A. Chak, J. E. Willis, A. Rollins, and M. V. Sivak, “In vivo optical coherence tomography imaging of the pancreatic and biliary ductal system,” Gastrointest. Endosc. 62(6), 970–974 (2005).
[CrossRef] [PubMed]

Chen, D.

Chidley, M. D.

Christenson, T.

Cranfield, C.

Danesova, J.

M. Petrtyl, Z. Bastl, Z. Krulis, H. Hulejova, M. Polanska, J. Lisal, J. Danesova, and P. Cerny, “Cycloolefin-Copolymer/Polyethylene (COC/PE) Blend Assists with the Creation of New Articular Cartilage,” Macromol. Symp. 294(1), 120–132 (2010).
[CrossRef]

Denk, W.

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Descour, M.

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer,” Technol. Cancer Res. Treat. 2(6), 491–504 (2003).
[PubMed]

Descour, M. R.

Dupree, E. B.

J. E. Kalinyak, K. Schilling, W. A. Berg, D. Narayanan, J. P. Mayberry, R. Rai, E. B. Dupree, D. K. Shusterman, M. A. Gittleman, W. Luo, and C. G. Matthews, “PET-guided breast biopsy,” Breast J. 17(2), 143–151 (2011).
[CrossRef] [PubMed]

Ehlers, A.

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
[CrossRef] [PubMed]

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
[CrossRef] [PubMed]

Engelbrecht, C. J.

Fee, M. S.

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[CrossRef] [PubMed]

Follen, M.

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer,” Technol. Cancer Res. Treat. 2(6), 491–504 (2003).
[PubMed]

Ford, S. M.

M. B. Wabuyele, S. M. Ford, W. Stryjewski, J. Barrow, and S. A. Soper, “Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices,” Electrophoresis 22(18), 3939–3948 (2001).
[CrossRef] [PubMed]

Fu, L.

Gao, L.

Garito, A. F.

R. F. Shi, C. Koeppen, G. Jiang, J. Wang, and A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett. 71(25), 3625–3627 (1997).
[CrossRef]

Gillenwater, A.

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer,” Technol. Cancer Res. Treat. 2(6), 491–504 (2003).
[PubMed]

Gittleman, M. A.

J. E. Kalinyak, K. Schilling, W. A. Berg, D. Narayanan, J. P. Mayberry, R. Rai, E. B. Dupree, D. K. Shusterman, M. A. Gittleman, W. Luo, and C. G. Matthews, “PET-guided breast biopsy,” Breast J. 17(2), 143–151 (2011).
[CrossRef] [PubMed]

Göbel, W.

Goldstein, P.

M. D. Ries, E. Young, L. Al-Marashi, P. Goldstein, A. Hetherington, T. Petrie, and L. Pruitt, “In vivo behavior of acrylic bone cement in total hip arthroplasty,” Biomater. 27(2), 256–261 (2006).
[CrossRef]

Göppert-Mayer, M.

M. Göppert-Mayer, “Über Elementarakte mit zwei Quantensprüngen,” Annalen der Physik 401(3), 273–294 (1931).
[CrossRef]

Gordon, R. J.

Gu, M.

Helmchen, F.

Hetherington, A.

M. D. Ries, E. Young, L. Al-Marashi, P. Goldstein, A. Hetherington, T. Petrie, and L. Pruitt, “In vivo behavior of acrylic bone cement in total hip arthroplasty,” Biomater. 27(2), 256–261 (2006).
[CrossRef]

Hsu, B.

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer,” Technol. Cancer Res. Treat. 2(6), 491–504 (2003).
[PubMed]

Hulejova, H.

M. Petrtyl, Z. Bastl, Z. Krulis, H. Hulejova, M. Polanska, J. Lisal, J. Danesova, and P. Cerny, “Cycloolefin-Copolymer/Polyethylene (COC/PE) Blend Assists with the Creation of New Articular Cartilage,” Macromol. Symp. 294(1), 120–132 (2010).
[CrossRef]

Ivanov, C. D.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29(11), 1481–1490 (2007).
[CrossRef]

Jain, A.

Jena, A.

S. Taneja, A. Jena, K. Kumar, and A. Mehta, “Technical Note: MRI-guided breast biopsy - our preliminary experience,” Indian J Radiol Imaging 20(3), 218–220 (2010).
[CrossRef] [PubMed]

Jiang, G.

R. F. Shi, C. Koeppen, G. Jiang, J. Wang, and A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett. 71(25), 3625–3627 (1997).
[CrossRef]

Jin, L.

Johnston, R. S.

Jung, J.

J. Jung, H. Park, J. Park, and H. Kim, “Accuracy of preoperative ultrasound and ultrasound-guided fine needle aspiration cytology for axillary staging in breast cancer,” ANZ J. Surg. 80(4), 271–275 (2010).
[CrossRef] [PubMed]

Jung, J. C.

Kaatz, M.

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
[CrossRef] [PubMed]

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
[CrossRef] [PubMed]

Kalinyak, J. E.

J. E. Kalinyak, K. Schilling, W. A. Berg, D. Narayanan, J. P. Mayberry, R. Rai, E. B. Dupree, D. K. Shusterman, M. A. Gittleman, W. Luo, and C. G. Matthews, “PET-guided breast biopsy,” Breast J. 17(2), 143–151 (2011).
[CrossRef] [PubMed]

Kasarova, S. N.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29(11), 1481–1490 (2007).
[CrossRef]

Kerr, J. N.

Kester, R. T.

Kim, H.

J. Jung, H. Park, J. Park, and H. Kim, “Accuracy of preoperative ultrasound and ultrasound-guided fine needle aspiration cytology for axillary staging in breast cancer,” ANZ J. Surg. 80(4), 271–275 (2010).
[CrossRef] [PubMed]

Koeppen, C.

R. F. Shi, C. Koeppen, G. Jiang, J. Wang, and A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett. 71(25), 3625–3627 (1997).
[CrossRef]

Kohn, J.

V. Tangpasuthadol, S. M. Pendharkar, R. C. Peterson, and J. Kohn, “Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part II: 3-yr study of polymeric devices,” Biomaterials 21(23), 2379–2387 (2000).
[CrossRef] [PubMed]

Komatsu, M.

K. Obuchi, M. Komatsu, and K. Minami, “High performance optical materials cyclo olefin polymer ZEONEX®,” Proc. SPIE , 6671 (2007).

König, K.

R. Le Harzic, M. Weinigel, I. Riemann, K. König, and B. Messerschmidt, “Nonlinear optical endoscope based on a compact two axes piezo scanner and a miniature objective lens,” Opt. Express 16(25), 20588–20596 (2008).
[CrossRef] [PubMed]

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
[CrossRef] [PubMed]

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
[CrossRef] [PubMed]

Konishi, Y.

Y. Konishi, T. Sawaguchi, K. Kubomura, and K. Minami, “High performance cyclo clefin polymer ZEONEX®,” Proc. SPIE , 5872 (2005).

Korgel, B.

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer,” Technol. Cancer Res. Treat. 2(6), 491–504 (2003).
[PubMed]

Kortum, R. R.

Krulis, Z.

M. Petrtyl, Z. Bastl, Z. Krulis, H. Hulejova, M. Polanska, J. Lisal, J. Danesova, and P. Cerny, “Cycloolefin-Copolymer/Polyethylene (COC/PE) Blend Assists with the Creation of New Articular Cartilage,” Macromol. Symp. 294(1), 120–132 (2010).
[CrossRef]

Kubomura, K.

Y. Konishi, T. Sawaguchi, K. Kubomura, and K. Minami, “High performance cyclo clefin polymer ZEONEX®,” Proc. SPIE , 5872 (2005).

Kumar, K.

S. Taneja, A. Jena, K. Kumar, and A. Mehta, “Technical Note: MRI-guided breast biopsy - our preliminary experience,” Indian J Radiol Imaging 20(3), 218–220 (2010).
[CrossRef] [PubMed]

Lam, W.

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer,” Technol. Cancer Res. Treat. 2(6), 491–504 (2003).
[PubMed]

Landau, S. M.

Lanone, S.

L. Tabet, C. Bussy, A. Setyan, A. Simon-Deckers, M. J. Rossi, J. Boczkowski, and S. Lanone, “Coating carbon nanotubes with a polystyrene-based polymer protects against pulmonary toxicity,” Part. Fibre Toxicol. 8(3), 3 (2011).
[CrossRef] [PubMed]

Le Harzic, R.

Li, X.

Liang, C.

Lisal, J.

M. Petrtyl, Z. Bastl, Z. Krulis, H. Hulejova, M. Polanska, J. Lisal, J. Danesova, and P. Cerny, “Cycloolefin-Copolymer/Polyethylene (COC/PE) Blend Assists with the Creation of New Articular Cartilage,” Macromol. Symp. 294(1), 120–132 (2010).
[CrossRef]

Loeser, C. S.

J. N. Rogart, J. Nagata, C. S. Loeser, R. D. Roorda, H. Aslanian, M. E. Robert, W. R. Zipfel, and M. H. Nathanson, “Multiphoton imaging can be used for microscopic examination of intact human gastrointestinal mucosa ex vivo,” Clin. Gastroenterol. Hepatol. 6(1), 95–101 (2008).
[CrossRef]

Luo, W.

J. E. Kalinyak, K. Schilling, W. A. Berg, D. Narayanan, J. P. Mayberry, R. Rai, E. B. Dupree, D. K. Shusterman, M. A. Gittleman, W. Luo, and C. G. Matthews, “PET-guided breast biopsy,” Breast J. 17(2), 143–151 (2011).
[CrossRef] [PubMed]

Ma, H.

MacAulay, C.

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer,” Technol. Cancer Res. Treat. 2(6), 491–504 (2003).
[PubMed]

MacDonald, D. J.

Matthews, C. G.

J. E. Kalinyak, K. Schilling, W. A. Berg, D. Narayanan, J. P. Mayberry, R. Rai, E. B. Dupree, D. K. Shusterman, M. A. Gittleman, W. Luo, and C. G. Matthews, “PET-guided breast biopsy,” Breast J. 17(2), 143–151 (2011).
[CrossRef] [PubMed]

Mayberry, J. P.

J. E. Kalinyak, K. Schilling, W. A. Berg, D. Narayanan, J. P. Mayberry, R. Rai, E. B. Dupree, D. K. Shusterman, M. A. Gittleman, W. Luo, and C. G. Matthews, “PET-guided breast biopsy,” Breast J. 17(2), 143–151 (2011).
[CrossRef] [PubMed]

Mehta, A.

S. Taneja, A. Jena, K. Kumar, and A. Mehta, “Technical Note: MRI-guided breast biopsy - our preliminary experience,” Indian J Radiol Imaging 20(3), 218–220 (2010).
[CrossRef] [PubMed]

Messerschmidt, B.

Minami, K.

K. Obuchi, M. Komatsu, and K. Minami, “High performance optical materials cyclo olefin polymer ZEONEX®,” Proc. SPIE , 6671 (2007).

Y. Konishi, T. Sawaguchi, K. Kubomura, and K. Minami, “High performance cyclo clefin polymer ZEONEX®,” Proc. SPIE , 5872 (2005).

Mooney, J.

A. Tzannes and J. Mooney, “Measurement of the modulation transfer function of infrared cameras,” Opt. Eng. 34(6), 1808–1817 (1995).
[CrossRef]

Myaing, M. T.

Nagata, J.

J. N. Rogart, J. Nagata, C. S. Loeser, R. D. Roorda, H. Aslanian, M. E. Robert, W. R. Zipfel, and M. H. Nathanson, “Multiphoton imaging can be used for microscopic examination of intact human gastrointestinal mucosa ex vivo,” Clin. Gastroenterol. Hepatol. 6(1), 95–101 (2008).
[CrossRef]

Nakamura, H.

Narayanan, D.

J. E. Kalinyak, K. Schilling, W. A. Berg, D. Narayanan, J. P. Mayberry, R. Rai, E. B. Dupree, D. K. Shusterman, M. A. Gittleman, W. Luo, and C. G. Matthews, “PET-guided breast biopsy,” Breast J. 17(2), 143–151 (2011).
[CrossRef] [PubMed]

Nathanson, M. H.

J. N. Rogart, J. Nagata, C. S. Loeser, R. D. Roorda, H. Aslanian, M. E. Robert, W. R. Zipfel, and M. H. Nathanson, “Multiphoton imaging can be used for microscopic examination of intact human gastrointestinal mucosa ex vivo,” Clin. Gastroenterol. Hepatol. 6(1), 95–101 (2008).
[CrossRef]

Nida, D.

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer,” Technol. Cancer Res. Treat. 2(6), 491–504 (2003).
[PubMed]

Nikolov, I. D.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29(11), 1481–1490 (2007).
[CrossRef]

Nimmerjahn, A.

Obuchi, K.

K. Obuchi, M. Komatsu, and K. Minami, “High performance optical materials cyclo olefin polymer ZEONEX®,” Proc. SPIE , 6671 (2007).

Park, H.

J. Jung, H. Park, J. Park, and H. Kim, “Accuracy of preoperative ultrasound and ultrasound-guided fine needle aspiration cytology for axillary staging in breast cancer,” ANZ J. Surg. 80(4), 271–275 (2010).
[CrossRef] [PubMed]

Park, J.

J. Jung, H. Park, J. Park, and H. Kim, “Accuracy of preoperative ultrasound and ultrasound-guided fine needle aspiration cytology for axillary staging in breast cancer,” ANZ J. Surg. 80(4), 271–275 (2010).
[CrossRef] [PubMed]

Pasqualini, R.

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer,” Technol. Cancer Res. Treat. 2(6), 491–504 (2003).
[PubMed]

Pendharkar, S. M.

V. Tangpasuthadol, S. M. Pendharkar, R. C. Peterson, and J. Kohn, “Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part II: 3-yr study of polymeric devices,” Biomaterials 21(23), 2379–2387 (2000).
[CrossRef] [PubMed]

Peterson, R. C.

V. Tangpasuthadol, S. M. Pendharkar, R. C. Peterson, and J. Kohn, “Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part II: 3-yr study of polymeric devices,” Biomaterials 21(23), 2379–2387 (2000).
[CrossRef] [PubMed]

Petrie, T.

M. D. Ries, E. Young, L. Al-Marashi, P. Goldstein, A. Hetherington, T. Petrie, and L. Pruitt, “In vivo behavior of acrylic bone cement in total hip arthroplasty,” Biomater. 27(2), 256–261 (2006).
[CrossRef]

Petrtyl, M.

M. Petrtyl, Z. Bastl, Z. Krulis, H. Hulejova, M. Polanska, J. Lisal, J. Danesova, and P. Cerny, “Cycloolefin-Copolymer/Polyethylene (COC/PE) Blend Assists with the Creation of New Articular Cartilage,” Macromol. Symp. 294(1), 120–132 (2010).
[CrossRef]

Pierce, M. C.

R. T. Kester, S. E. Weigum, M. C. Pierce, R. Richards-Kortum, and T. S. Tkaczyk, “Low-cost miniature optics for point-of-care diagnostic instrumentation,” Lab Chip (submitted for publication).

Polanska, M.

M. Petrtyl, Z. Bastl, Z. Krulis, H. Hulejova, M. Polanska, J. Lisal, J. Danesova, and P. Cerny, “Cycloolefin-Copolymer/Polyethylene (COC/PE) Blend Assists with the Creation of New Articular Cartilage,” Macromol. Symp. 294(1), 120–132 (2010).
[CrossRef]

Pruitt, L.

M. D. Ries, E. Young, L. Al-Marashi, P. Goldstein, A. Hetherington, T. Petrie, and L. Pruitt, “In vivo behavior of acrylic bone cement in total hip arthroplasty,” Biomater. 27(2), 256–261 (2006).
[CrossRef]

Rai, R.

J. E. Kalinyak, K. Schilling, W. A. Berg, D. Narayanan, J. P. Mayberry, R. Rai, E. B. Dupree, D. K. Shusterman, M. A. Gittleman, W. Luo, and C. G. Matthews, “PET-guided breast biopsy,” Breast J. 17(2), 143–151 (2011).
[CrossRef] [PubMed]

Richards-Kortum, R.

R. T. Kester, T. S. Tkaczyk, M. R. Descour, T. Christenson, and R. Richards-Kortum, “High numerical aperture microendoscope objective for a fiber confocal reflectance microscope,” Opt. Express 15(5), 2409–2420 (2007).
[CrossRef] [PubMed]

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer,” Technol. Cancer Res. Treat. 2(6), 491–504 (2003).
[PubMed]

R. T. Kester, S. E. Weigum, M. C. Pierce, R. Richards-Kortum, and T. S. Tkaczyk, “Low-cost miniature optics for point-of-care diagnostic instrumentation,” Lab Chip (submitted for publication).

Richards-Kortum, R. R.

Riemann, I.

R. Le Harzic, M. Weinigel, I. Riemann, K. König, and B. Messerschmidt, “Nonlinear optical endoscope based on a compact two axes piezo scanner and a miniature objective lens,” Opt. Express 16(25), 20588–20596 (2008).
[CrossRef] [PubMed]

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
[CrossRef] [PubMed]

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
[CrossRef] [PubMed]

Ries, M. D.

M. D. Ries, E. Young, L. Al-Marashi, P. Goldstein, A. Hetherington, T. Petrie, and L. Pruitt, “In vivo behavior of acrylic bone cement in total hip arthroplasty,” Biomater. 27(2), 256–261 (2006).
[CrossRef]

Robert, M. E.

J. N. Rogart, J. Nagata, C. S. Loeser, R. D. Roorda, H. Aslanian, M. E. Robert, W. R. Zipfel, and M. H. Nathanson, “Multiphoton imaging can be used for microscopic examination of intact human gastrointestinal mucosa ex vivo,” Clin. Gastroenterol. Hepatol. 6(1), 95–101 (2008).
[CrossRef]

Rogart, J. N.

J. N. Rogart, J. Nagata, C. S. Loeser, R. D. Roorda, H. Aslanian, M. E. Robert, W. R. Zipfel, and M. H. Nathanson, “Multiphoton imaging can be used for microscopic examination of intact human gastrointestinal mucosa ex vivo,” Clin. Gastroenterol. Hepatol. 6(1), 95–101 (2008).
[CrossRef]

Rollins, A.

P. Singh, A. Chak, J. E. Willis, A. Rollins, and M. V. Sivak, “In vivo optical coherence tomography imaging of the pancreatic and biliary ductal system,” Gastrointest. Endosc. 62(6), 970–974 (2005).
[CrossRef] [PubMed]

Roorda, R. D.

J. N. Rogart, J. Nagata, C. S. Loeser, R. D. Roorda, H. Aslanian, M. E. Robert, W. R. Zipfel, and M. H. Nathanson, “Multiphoton imaging can be used for microscopic examination of intact human gastrointestinal mucosa ex vivo,” Clin. Gastroenterol. Hepatol. 6(1), 95–101 (2008).
[CrossRef]

Rossi, M. J.

L. Tabet, C. Bussy, A. Setyan, A. Simon-Deckers, M. J. Rossi, J. Boczkowski, and S. Lanone, “Coating carbon nanotubes with a polystyrene-based polymer protects against pulmonary toxicity,” Part. Fibre Toxicol. 8(3), 3 (2011).
[CrossRef] [PubMed]

Sawaguchi, T.

Y. Konishi, T. Sawaguchi, K. Kubomura, and K. Minami, “High performance cyclo clefin polymer ZEONEX®,” Proc. SPIE , 5872 (2005).

Schenkl, S.

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
[CrossRef] [PubMed]

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
[CrossRef] [PubMed]

Schilling, K.

J. E. Kalinyak, K. Schilling, W. A. Berg, D. Narayanan, J. P. Mayberry, R. Rai, E. B. Dupree, D. K. Shusterman, M. A. Gittleman, W. Luo, and C. G. Matthews, “PET-guided breast biopsy,” Breast J. 17(2), 143–151 (2011).
[CrossRef] [PubMed]

Schnitzer, M. J.

Seibel, E. J.

Setyan, A.

L. Tabet, C. Bussy, A. Setyan, A. Simon-Deckers, M. J. Rossi, J. Boczkowski, and S. Lanone, “Coating carbon nanotubes with a polystyrene-based polymer protects against pulmonary toxicity,” Part. Fibre Toxicol. 8(3), 3 (2011).
[CrossRef] [PubMed]

Shi, R. F.

R. F. Shi, C. Koeppen, G. Jiang, J. Wang, and A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett. 71(25), 3625–3627 (1997).
[CrossRef]

Shusterman, D. K.

J. E. Kalinyak, K. Schilling, W. A. Berg, D. Narayanan, J. P. Mayberry, R. Rai, E. B. Dupree, D. K. Shusterman, M. A. Gittleman, W. Luo, and C. G. Matthews, “PET-guided breast biopsy,” Breast J. 17(2), 143–151 (2011).
[CrossRef] [PubMed]

Simon-Deckers, A.

L. Tabet, C. Bussy, A. Setyan, A. Simon-Deckers, M. J. Rossi, J. Boczkowski, and S. Lanone, “Coating carbon nanotubes with a polystyrene-based polymer protects against pulmonary toxicity,” Part. Fibre Toxicol. 8(3), 3 (2011).
[CrossRef] [PubMed]

Singh, P.

P. Singh, A. Chak, J. E. Willis, A. Rollins, and M. V. Sivak, “In vivo optical coherence tomography imaging of the pancreatic and biliary ductal system,” Gastrointest. Endosc. 62(6), 970–974 (2005).
[CrossRef] [PubMed]

Sivak, M. V.

P. Singh, A. Chak, J. E. Willis, A. Rollins, and M. V. Sivak, “In vivo optical coherence tomography imaging of the pancreatic and biliary ductal system,” Gastrointest. Endosc. 62(6), 970–974 (2005).
[CrossRef] [PubMed]

Sokolov, K.

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer,” Technol. Cancer Res. Treat. 2(6), 491–504 (2003).
[PubMed]

Soper, S. A.

M. B. Wabuyele, S. M. Ford, W. Stryjewski, J. Barrow, and S. A. Soper, “Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices,” Electrophoresis 22(18), 3939–3948 (2001).
[CrossRef] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Stryjewski, W.

M. B. Wabuyele, S. M. Ford, W. Stryjewski, J. Barrow, and S. A. Soper, “Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices,” Electrophoresis 22(18), 3939–3948 (2001).
[CrossRef] [PubMed]

Sultanova, N. G.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29(11), 1481–1490 (2007).
[CrossRef]

Tabet, L.

L. Tabet, C. Bussy, A. Setyan, A. Simon-Deckers, M. J. Rossi, J. Boczkowski, and S. Lanone, “Coating carbon nanotubes with a polystyrene-based polymer protects against pulmonary toxicity,” Part. Fibre Toxicol. 8(3), 3 (2011).
[CrossRef] [PubMed]

Taneja, S.

S. Taneja, A. Jena, K. Kumar, and A. Mehta, “Technical Note: MRI-guided breast biopsy - our preliminary experience,” Indian J Radiol Imaging 20(3), 218–220 (2010).
[CrossRef] [PubMed]

Tangpasuthadol, V.

V. Tangpasuthadol, S. M. Pendharkar, R. C. Peterson, and J. Kohn, “Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part II: 3-yr study of polymeric devices,” Biomaterials 21(23), 2379–2387 (2000).
[CrossRef] [PubMed]

Tank, D. W.

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[CrossRef] [PubMed]

Tkaczyk, T. S.

Tzannes, A.

A. Tzannes and J. Mooney, “Measurement of the modulation transfer function of infrared cameras,” Opt. Eng. 34(6), 1808–1817 (1995).
[CrossRef]

Wabuyele, M. B.

M. B. Wabuyele, S. M. Ford, W. Stryjewski, J. Barrow, and S. A. Soper, “Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices,” Electrophoresis 22(18), 3939–3948 (2001).
[CrossRef] [PubMed]

Wang, J.

R. F. Shi, C. Koeppen, G. Jiang, J. Wang, and A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett. 71(25), 3625–3627 (1997).
[CrossRef]

Wang, Y.

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Multiphoton microscopy in biological research,” Curr. Opin. Chem. Biol. 5(5), 603–608 (2001).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Weigum, S. E.

R. T. Kester, S. E. Weigum, M. C. Pierce, R. Richards-Kortum, and T. S. Tkaczyk, “Low-cost miniature optics for point-of-care diagnostic instrumentation,” Lab Chip (submitted for publication).

Weinigel, M.

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Multiphoton microscopy in biological research,” Curr. Opin. Chem. Biol. 5(5), 603–608 (2001).
[CrossRef] [PubMed]

Willis, J. E.

P. Singh, A. Chak, J. E. Willis, A. Rollins, and M. V. Sivak, “In vivo optical coherence tomography imaging of the pancreatic and biliary ductal system,” Gastrointest. Endosc. 62(6), 970–974 (2005).
[CrossRef] [PubMed]

Wu, Y.

Xie, H.

Xu, J.

Xue, P.

Young, E.

M. D. Ries, E. Young, L. Al-Marashi, P. Goldstein, A. Hetherington, T. Petrie, and L. Pruitt, “In vivo behavior of acrylic bone cement in total hip arthroplasty,” Biomater. 27(2), 256–261 (2006).
[CrossRef]

Yu, W.

X. Li and W. Yu, “Deep tissue microscopic imaging of the kidney with a gradient-index lens system,” Opt. Commun. 281(7), 1833–1840 (2008).
[CrossRef] [PubMed]

Zhao, Y.

Zipfel, W. R.

J. N. Rogart, J. Nagata, C. S. Loeser, R. D. Roorda, H. Aslanian, M. E. Robert, W. R. Zipfel, and M. H. Nathanson, “Multiphoton imaging can be used for microscopic examination of intact human gastrointestinal mucosa ex vivo,” Clin. Gastroenterol. Hepatol. 6(1), 95–101 (2008).
[CrossRef]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Multiphoton microscopy in biological research,” Curr. Opin. Chem. Biol. 5(5), 603–608 (2001).
[CrossRef] [PubMed]

Annalen der Physik (1)

M. Göppert-Mayer, “Über Elementarakte mit zwei Quantensprüngen,” Annalen der Physik 401(3), 273–294 (1931).
[CrossRef]

ANZ J. Surg. (1)

J. Jung, H. Park, J. Park, and H. Kim, “Accuracy of preoperative ultrasound and ultrasound-guided fine needle aspiration cytology for axillary staging in breast cancer,” ANZ J. Surg. 80(4), 271–275 (2010).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

R. F. Shi, C. Koeppen, G. Jiang, J. Wang, and A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett. 71(25), 3625–3627 (1997).
[CrossRef]

Biomater. (1)

M. D. Ries, E. Young, L. Al-Marashi, P. Goldstein, A. Hetherington, T. Petrie, and L. Pruitt, “In vivo behavior of acrylic bone cement in total hip arthroplasty,” Biomater. 27(2), 256–261 (2006).
[CrossRef]

Biomaterials (1)

V. Tangpasuthadol, S. M. Pendharkar, R. C. Peterson, and J. Kohn, “Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part II: 3-yr study of polymeric devices,” Biomaterials 21(23), 2379–2387 (2000).
[CrossRef] [PubMed]

Biomed. Opt. Express (2)

Breast J. (1)

J. E. Kalinyak, K. Schilling, W. A. Berg, D. Narayanan, J. P. Mayberry, R. Rai, E. B. Dupree, D. K. Shusterman, M. A. Gittleman, W. Luo, and C. G. Matthews, “PET-guided breast biopsy,” Breast J. 17(2), 143–151 (2011).
[CrossRef] [PubMed]

Clin. Gastroenterol. Hepatol. (1)

J. N. Rogart, J. Nagata, C. S. Loeser, R. D. Roorda, H. Aslanian, M. E. Robert, W. R. Zipfel, and M. H. Nathanson, “Multiphoton imaging can be used for microscopic examination of intact human gastrointestinal mucosa ex vivo,” Clin. Gastroenterol. Hepatol. 6(1), 95–101 (2008).
[CrossRef]

Curr. Opin. Chem. Biol. (1)

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Multiphoton microscopy in biological research,” Curr. Opin. Chem. Biol. 5(5), 603–608 (2001).
[CrossRef] [PubMed]

Electrophoresis (1)

M. B. Wabuyele, S. M. Ford, W. Stryjewski, J. Barrow, and S. A. Soper, “Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices,” Electrophoresis 22(18), 3939–3948 (2001).
[CrossRef] [PubMed]

Gastrointest. Endosc. (1)

P. Singh, A. Chak, J. E. Willis, A. Rollins, and M. V. Sivak, “In vivo optical coherence tomography imaging of the pancreatic and biliary ductal system,” Gastrointest. Endosc. 62(6), 970–974 (2005).
[CrossRef] [PubMed]

Indian J Radiol Imaging (1)

S. Taneja, A. Jena, K. Kumar, and A. Mehta, “Technical Note: MRI-guided breast biopsy - our preliminary experience,” Indian J Radiol Imaging 20(3), 218–220 (2010).
[CrossRef] [PubMed]

Lab Chip (1)

R. T. Kester, S. E. Weigum, M. C. Pierce, R. Richards-Kortum, and T. S. Tkaczyk, “Low-cost miniature optics for point-of-care diagnostic instrumentation,” Lab Chip (submitted for publication).

Macromol. Symp. (1)

M. Petrtyl, Z. Bastl, Z. Krulis, H. Hulejova, M. Polanska, J. Lisal, J. Danesova, and P. Cerny, “Cycloolefin-Copolymer/Polyethylene (COC/PE) Blend Assists with the Creation of New Articular Cartilage,” Macromol. Symp. 294(1), 120–132 (2010).
[CrossRef]

Microsc. Res. Tech. (2)

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
[CrossRef] [PubMed]

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Neuron (1)

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[CrossRef] [PubMed]

Opt. Commun. (1)

X. Li and W. Yu, “Deep tissue microscopic imaging of the kidney with a gradient-index lens system,” Opt. Commun. 281(7), 1833–1840 (2008).
[CrossRef] [PubMed]

Opt. Eng. (1)

A. Tzannes and J. Mooney, “Measurement of the modulation transfer function of infrared cameras,” Opt. Eng. 34(6), 1808–1817 (1995).
[CrossRef]

Opt. Express (6)

Opt. Lett. (4)

Opt. Mater. (1)

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29(11), 1481–1490 (2007).
[CrossRef]

Part. Fibre Toxicol. (1)

L. Tabet, C. Bussy, A. Setyan, A. Simon-Deckers, M. J. Rossi, J. Boczkowski, and S. Lanone, “Coating carbon nanotubes with a polystyrene-based polymer protects against pulmonary toxicity,” Part. Fibre Toxicol. 8(3), 3 (2011).
[CrossRef] [PubMed]

Proc. SPIE (2)

K. Obuchi, M. Komatsu, and K. Minami, “High performance optical materials cyclo olefin polymer ZEONEX®,” Proc. SPIE , 6671 (2007).

Y. Konishi, T. Sawaguchi, K. Kubomura, and K. Minami, “High performance cyclo clefin polymer ZEONEX®,” Proc. SPIE , 5872 (2005).

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Technol. Cancer Res. Treat. (1)

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer,” Technol. Cancer Res. Treat. 2(6), 491–504 (2003).
[PubMed]

Other (10)

ZEMAX Development Corporation, http://www.zemax.com .

ISO, ISO 12233:2000 Photography–Electronic still-picture cameras–Resolution Measurements (Geneva, Switzerland, 2000).

GRINTECH, http://www.grintech.de/grin-lens-systems-for-medical-applications.html

P. Cheng and C. K. Sun, “Nonlinear (harmonic generation) optical microscopy,” in Handbook of Confocal Microscopy, J. Pawley, ed., (Springer, 2006).

M. Mansuripur, Classical Optics and its Applications, 2nd ed. (Cambridge University Press, 2009).

S. Bäumer, ed., Handbook of Plastic Optics (Wiley-VCH, 2010).

M. Bass, ed., Handbook of Optics, Volume 2: Devices, Measurements, and Properties (McGraw-Hill, Inc., 1995).

S. Schenkl, A. Ehlers, R. LeHarzic, M. Stark, I. Riemann, B. Messerschmidt, M. Kaatz, and K. König, “Rigid and high NA multiphoton fluorescence GRIN-endoscopes,” in Novel Optical Instrumentation for Biomedical Applications III, C. D. Depeursinge, ed. (SPIE, 2007).

J. C. Diels and R. Wolfgang, Ultrashort Laser Pulse Phenomena (Elsevier, 2006).

S. Mukherjee, J. S. Wysock, C. K. Ng, M. Akhtar, S. Perner, M. M. Lee, M. A. Rubin, F. R. Maxfield, W. W. Webb, and D. S. Scherr, “Human bladder cancer diagnosis using multiphoton microscopy,” in Photonic Therapeutics and Diagnostics V, N. Kollias, ed. (SPIE, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Wavelength dependent transmission through 10 mm thick optical plastics.

Fig. 2
Fig. 2

Autofluorescence data for (a) a 1 μm/mL solution of fluorescein, (b) water, (c) E48R, (d) PMMA, and (e) PS. The X-axis plots the emission wavelength in nanometers, the Y-axis displays the excitation wavelength in nanometers, and color indicates autofluorescence intensity in arbitrary units. Note that the excitation, emission, and intensity scales are the same for all five graphs.

Fig. 3
Fig. 3

Needle objective optimized for two-photon imaging. Total length = 6.98 mm

Fig. 4
Fig. 4

(a) Exploded view of an ultra-slim objective. The left rod is a precision gage pin used to insert the parts into the hypodermic tubing. The clear plastic pieces are the custom lenses. The circular rings are LIGA springs which act as alignment devices and apertures. On the right is the hypodermic tubing used to house the objective. (b) SolidWorks model of the LIGA springs. (c) The ultra-slim objective next to a conventional microscope objective for size comparison.

Fig. 5
Fig. 5

Schematic of the non-linear imaging setup used to test the ultra-slim objective. The light was generated by a laser and scanned through a dichroic mirror (1) and into a commercial, NA 0.13 objective (2). The excitation light was focused by the commercial objective onto the back image plane of the ultra-slim objective (3), which transferred the light onto the sample. The emission light was collected by the ultra-slim objective, relayed by the commercial objective, and reflected by the dichroic mirror before passing through an emission filter (4) and being detected by a PMT.

Fig. 6
Fig. 6

(a) An enlarged view of a rat tail tendon optical section taken via SHG with the ultra-slim objective in series with the benchtop system. (b) A false-color image shows Convallaria cells imaged via TPM at two different wavelengths, also with the ultra-slim objective. The left arrow points to a green nucleus and while the right arrow points to a red cell membrane.

Tables (4)

Tables Icon

Table 1 Refractive Properties of Four Optical Polymers and Two Common Glasses [29,30]

Tables Icon

Table 2 Group Velocity Dispersion Data for Six Optical Materials

Tables Icon

Table 3 Design specifications of Two-Photon Needle Objective

Tables Icon

Table 4 Lens Prescription Data

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

GDD = GVD × L ,
GVD = λ 3 2 π c 2 d 2 n d λ 2 ,
n = ( A 1 + A 2 λ 2 + A 3 λ 2 + A 4 λ 4 + A 5 λ 6 + A 6 λ 8 ) 1 2 .
d 2 n d λ 2 = 1 2 { 1 2 [ ( A 1 + A 2 λ 2 + A 3 λ 2 + A 4 λ 4 + A 5 λ 6 + A 6 λ 8 ) 3 2 ( 2 A 2 λ 2 A 3 λ 3 4 A 4 λ 5 6 A 5 λ 7 8 A 6 λ 9 ) 2 ] + ( A 1 + A 2 λ 2 + A 3 λ 2 + A 4 λ 4 + A 5 λ 6 + A 6 λ 8 ) 1 2 ( 2 A 2 + 6 A 3 λ 4 + 20 A 4 λ 6 + 42 A 5 λ 8 + 72 A 6 λ 10 ) } .
Δ t o u t = Δ t 4 + 16 ( ln 2 ) 2 ( GDD ) 2 Δ t ,

Metrics