Abstract

An alternative method to build point and sensor array based on photonic crystal fibers (PCFs) is presented. A short length (in the 9-12 mm range) of properly selected index-guiding PCF is fusion spliced between conventional single mode fibers. By selective excitation and overlapping of specific modes in the PCF we make the transmission spectra of the sensors to exhibit a single and narrow notch. The notch position changes with external perturbation which allows sensing diverse parameters. The well-defined single notch, the extinction ratio exceeding 30 dB and the low overall insertion loss allow placing the sensors in series. This makes the implementation of sensor networks possible.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Lopez-Higuera, ed., Handbook of Optical Fiber Sensing Technology, (Wiley, New York, 2002).
  2. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [CrossRef]
  3. Y. Zhu, P. Shum, H. W. Bay, M. Yan, X. Yu, J. Hu, J. Hao, and C. Lu, “Strain-insensitive and high-temperature long-period gratings inscribed in photonic crystal fiber,” Opt. Lett. 30(4), 367–369 (2005).
    [CrossRef] [PubMed]
  4. C. Martelli, J. Canning, N. Groothoff, and K. Lyytikainen, “Strain and temperature characterization of photonic crystal fiber Bragg gratings,” Opt. Lett. 30(14), 1785–1787 (2005).
    [CrossRef] [PubMed]
  5. Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
    [CrossRef]
  6. V. M. Churikov, V. I. Kopp, and A. Z. Genack, “Chiral diffraction gratings in twisted microstructured fibers,” Opt. Lett. 35(3), 342–344 (2010).
    [CrossRef] [PubMed]
  7. W. J. Bock, J. Chen, P. Mikulic, T. Eftimov, and M. Korwin-Pawlowski, “Pressure sensing using periodically tapered long-period gratings written in photonic crystal fibres,” Meas. Sci. Technol. 18(10), 3098–3102 (2007).
    [CrossRef]
  8. L. Rindorf and O. Bang, “Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing,” J. Opt. Soc. Am. B 25(3), 310–324 (2008).
    [CrossRef]
  9. J. Villatoro, V. P. Minkovich, V. Pruneri, and G. Badenes, “Simple all-microstructured-optical-fiber interferometer built via fusion splicing,” Opt. Express 15(4), 1491–1496 (2007).
    [CrossRef] [PubMed]
  10. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
    [CrossRef]
  11. W. Bock, T. Eftimov, P. Mikulic, and J. Chen, “An inline core-cladding intermodal interferometer using a photonic crystal fiber,” J. Lightwave Technol. 27(17), 3933–3939 (2009).
    [CrossRef]
  12. Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry-Pérot interferometric strain sensor system,” IEEE Photon. Technol. Lett. 20(15), 1329–1331 (2008).
    [CrossRef]
  13. H. Y. Fu, A. C. L. Wong, P. A. Childs, H. Y. Tam, Y. B. Liao, C. Lu, and P. K. A. Wai, “Multiplexing of polarization-maintaining photonic crystal fiber based Sagnac interferometric sensors,” Opt. Express 17(21), 18501–18512 (2009).
    [CrossRef]
  14. D. Barrera, J. Villatoro, V. P. Finazzi, G. A. Cárdenas-Sevilla, V. P. Minkovich, S. Sales, and V. Pruneri, “Low-loss photonic crystal fiber interferometers for sensor networks,” J. Lightwave Technol. 28, 3542–3547 (2010).
    [CrossRef]
  15. K. Abe, Y. Lacroix, L. Bonnell, and Z. Jakubczyk, “Modal interference in a short fiber section: fiber length, splice loss, cutoff, and wavelength dependences,” J. Lightwave Technol. 10(4), 401–406 (1992).
    [CrossRef]
  16. A. Kumar and R. K. Varshney, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219(1-6), 215–219 (2003).
    [CrossRef]
  17. Q. Wang, G. Farrell, and W. Yan, “Investigation on single-mode–multimode–single-mode fiber structure,” J. Lightwave Technol. 26(5), 512–519 (2008).
    [CrossRef]
  18. S. Silva, J. L. Santos, F. X. Malcata, J. Kobelke, K. Schuster, and O. Frazão, “Optical refractometer based on large-core air-clad photonic crystal fibers,” Opt. Lett. 36(6), 852–854 (2011).
    [CrossRef] [PubMed]
  19. Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129–1133 (2006).
    [CrossRef]
  20. W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31(17), 2547–2549 (2006).
    [CrossRef] [PubMed]
  21. E. Li, “Temperature compensation of multimode-interference-based fiber devices,” Opt. Lett. 32(14), 2064–2066 (2007).
    [CrossRef] [PubMed]
  22. F. Pang, W. Liang, W. Xiang, N. Chen, X. Zeng, Z. Chen, and T. Wang, “Temperature-insensitivity bending sensor based on cladding-mode resonance of special optical fiber,” IEEE Photon. Technol. Lett. 21(2), 76–78 (2009).
    [CrossRef]
  23. J. E. Antonio-Lopez, A. Castillo-Guzman, D. A. May-Arrioja, R. Selvas-Aguilar, and P. Likamwa, “Tunable multimode-interference bandpass fiber filter,” Opt. Lett. 35(3), 324–326 (2010).
    [CrossRef] [PubMed]
  24. H. Liu, F. Pang, H. Guo, W. Cao, Y. Liu, N. Chen, Z. Chen, and T. Wang, “In-series double cladding fibers for simultaneous refractive index and temperature measurement,” Opt. Express 18(12), 13072–13082 (2010).
    [CrossRef] [PubMed]
  25. L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C. L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25(11), 3563–3574 (2007).
    [CrossRef]
  26. H. P. Uranus, “Theoretical study on the multimodeness of a commercial endlessly single-mode PCF,” Opt. Commun. 283(23), 4649–4654 (2010).
    [CrossRef]

2011

2010

2009

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

F. Pang, W. Liang, W. Xiang, N. Chen, X. Zeng, Z. Chen, and T. Wang, “Temperature-insensitivity bending sensor based on cladding-mode resonance of special optical fiber,” IEEE Photon. Technol. Lett. 21(2), 76–78 (2009).
[CrossRef]

H. Y. Fu, A. C. L. Wong, P. A. Childs, H. Y. Tam, Y. B. Liao, C. Lu, and P. K. A. Wai, “Multiplexing of polarization-maintaining photonic crystal fiber based Sagnac interferometric sensors,” Opt. Express 17(21), 18501–18512 (2009).
[CrossRef]

W. Bock, T. Eftimov, P. Mikulic, and J. Chen, “An inline core-cladding intermodal interferometer using a photonic crystal fiber,” J. Lightwave Technol. 27(17), 3933–3939 (2009).
[CrossRef]

2008

2007

W. J. Bock, J. Chen, P. Mikulic, T. Eftimov, and M. Korwin-Pawlowski, “Pressure sensing using periodically tapered long-period gratings written in photonic crystal fibres,” Meas. Sci. Technol. 18(10), 3098–3102 (2007).
[CrossRef]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[CrossRef]

E. Li, “Temperature compensation of multimode-interference-based fiber devices,” Opt. Lett. 32(14), 2064–2066 (2007).
[CrossRef] [PubMed]

L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C. L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25(11), 3563–3574 (2007).
[CrossRef]

J. Villatoro, V. P. Minkovich, V. Pruneri, and G. Badenes, “Simple all-microstructured-optical-fiber interferometer built via fusion splicing,” Opt. Express 15(4), 1491–1496 (2007).
[CrossRef] [PubMed]

2006

P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
[CrossRef]

W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31(17), 2547–2549 (2006).
[CrossRef] [PubMed]

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129–1133 (2006).
[CrossRef]

2005

2003

A. Kumar and R. K. Varshney, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219(1-6), 215–219 (2003).
[CrossRef]

1992

K. Abe, Y. Lacroix, L. Bonnell, and Z. Jakubczyk, “Modal interference in a short fiber section: fiber length, splice loss, cutoff, and wavelength dependences,” J. Lightwave Technol. 10(4), 401–406 (1992).
[CrossRef]

Abe, K.

K. Abe, Y. Lacroix, L. Bonnell, and Z. Jakubczyk, “Modal interference in a short fiber section: fiber length, splice loss, cutoff, and wavelength dependences,” J. Lightwave Technol. 10(4), 401–406 (1992).
[CrossRef]

Antonio-Lopez, J. E.

Badenes, G.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[CrossRef]

J. Villatoro, V. P. Minkovich, V. Pruneri, and G. Badenes, “Simple all-microstructured-optical-fiber interferometer built via fusion splicing,” Opt. Express 15(4), 1491–1496 (2007).
[CrossRef] [PubMed]

Bang, O.

Barrera, D.

Bartelt, H.

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

Bay, H. W.

Bock, W.

Bock, W. J.

W. J. Bock, J. Chen, P. Mikulic, T. Eftimov, and M. Korwin-Pawlowski, “Pressure sensing using periodically tapered long-period gratings written in photonic crystal fibres,” Meas. Sci. Technol. 18(10), 3098–3102 (2007).
[CrossRef]

Bonnell, L.

K. Abe, Y. Lacroix, L. Bonnell, and Z. Jakubczyk, “Modal interference in a short fiber section: fiber length, splice loss, cutoff, and wavelength dependences,” J. Lightwave Technol. 10(4), 401–406 (1992).
[CrossRef]

Brueckner, S.

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

Canning, J.

Cao, W.

Cárdenas-Sevilla, G. A.

Castillo-Guzman, A.

Chen, J.

W. Bock, T. Eftimov, P. Mikulic, and J. Chen, “An inline core-cladding intermodal interferometer using a photonic crystal fiber,” J. Lightwave Technol. 27(17), 3933–3939 (2009).
[CrossRef]

W. J. Bock, J. Chen, P. Mikulic, T. Eftimov, and M. Korwin-Pawlowski, “Pressure sensing using periodically tapered long-period gratings written in photonic crystal fibres,” Meas. Sci. Technol. 18(10), 3098–3102 (2007).
[CrossRef]

Chen, N.

H. Liu, F. Pang, H. Guo, W. Cao, Y. Liu, N. Chen, Z. Chen, and T. Wang, “In-series double cladding fibers for simultaneous refractive index and temperature measurement,” Opt. Express 18(12), 13072–13082 (2010).
[CrossRef] [PubMed]

F. Pang, W. Liang, W. Xiang, N. Chen, X. Zeng, Z. Chen, and T. Wang, “Temperature-insensitivity bending sensor based on cladding-mode resonance of special optical fiber,” IEEE Photon. Technol. Lett. 21(2), 76–78 (2009).
[CrossRef]

Chen, Z.

H. Liu, F. Pang, H. Guo, W. Cao, Y. Liu, N. Chen, Z. Chen, and T. Wang, “In-series double cladding fibers for simultaneous refractive index and temperature measurement,” Opt. Express 18(12), 13072–13082 (2010).
[CrossRef] [PubMed]

F. Pang, W. Liang, W. Xiang, N. Chen, X. Zeng, Z. Chen, and T. Wang, “Temperature-insensitivity bending sensor based on cladding-mode resonance of special optical fiber,” IEEE Photon. Technol. Lett. 21(2), 76–78 (2009).
[CrossRef]

Childs, P. A.

Churikov, V. M.

Demokan, M. S.

Dong, X.

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry-Pérot interferometric strain sensor system,” IEEE Photon. Technol. Lett. 20(15), 1329–1331 (2008).
[CrossRef]

Ecke, W.

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

Eftimov, T.

W. Bock, T. Eftimov, P. Mikulic, and J. Chen, “An inline core-cladding intermodal interferometer using a photonic crystal fiber,” J. Lightwave Technol. 27(17), 3933–3939 (2009).
[CrossRef]

W. J. Bock, J. Chen, P. Mikulic, T. Eftimov, and M. Korwin-Pawlowski, “Pressure sensing using periodically tapered long-period gratings written in photonic crystal fibres,” Meas. Sci. Technol. 18(10), 3098–3102 (2007).
[CrossRef]

Farrell, G.

Finazzi, V.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[CrossRef]

Finazzi, V. P.

Frazão, O.

Fu, H. Y.

Genack, A. Z.

Groothoff, N.

Gu, X.

Guo, H.

Hao, J.

Hu, J.

Jakubczyk, Z.

K. Abe, Y. Lacroix, L. Bonnell, and Z. Jakubczyk, “Modal interference in a short fiber section: fiber length, splice loss, cutoff, and wavelength dependences,” J. Lightwave Technol. 10(4), 401–406 (1992).
[CrossRef]

Jin, L.

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry-Pérot interferometric strain sensor system,” IEEE Photon. Technol. Lett. 20(15), 1329–1331 (2008).
[CrossRef]

Jin, W.

Jung, Y.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129–1133 (2006).
[CrossRef]

Kai, G.

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry-Pérot interferometric strain sensor system,” IEEE Photon. Technol. Lett. 20(15), 1329–1331 (2008).
[CrossRef]

Kautz, M.

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

Kim, S.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129–1133 (2006).
[CrossRef]

Kobelke, J.

S. Silva, J. L. Santos, F. X. Malcata, J. Kobelke, K. Schuster, and O. Frazão, “Optical refractometer based on large-core air-clad photonic crystal fibers,” Opt. Lett. 36(6), 852–854 (2011).
[CrossRef] [PubMed]

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

Kopp, V. I.

Korwin-Pawlowski, M.

W. J. Bock, J. Chen, P. Mikulic, T. Eftimov, and M. Korwin-Pawlowski, “Pressure sensing using periodically tapered long-period gratings written in photonic crystal fibres,” Meas. Sci. Technol. 18(10), 3098–3102 (2007).
[CrossRef]

Kumar, A.

A. Kumar and R. K. Varshney, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219(1-6), 215–219 (2003).
[CrossRef]

Lacroix, Y.

K. Abe, Y. Lacroix, L. Bonnell, and Z. Jakubczyk, “Modal interference in a short fiber section: fiber length, splice loss, cutoff, and wavelength dependences,” J. Lightwave Technol. 10(4), 401–406 (1992).
[CrossRef]

Lee, D.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129–1133 (2006).
[CrossRef]

Li, E.

Li, Y.

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry-Pérot interferometric strain sensor system,” IEEE Photon. Technol. Lett. 20(15), 1329–1331 (2008).
[CrossRef]

Liang, W.

F. Pang, W. Liang, W. Xiang, N. Chen, X. Zeng, Z. Chen, and T. Wang, “Temperature-insensitivity bending sensor based on cladding-mode resonance of special optical fiber,” IEEE Photon. Technol. Lett. 21(2), 76–78 (2009).
[CrossRef]

Liao, Y. B.

Likamwa, P.

Liu, H.

Liu, Y.

Lu, C.

Lu, F.

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry-Pérot interferometric strain sensor system,” IEEE Photon. Technol. Lett. 20(15), 1329–1331 (2008).
[CrossRef]

Lyytikainen, K.

Malcata, F. X.

Martelli, C.

May-Arrioja, D. A.

Mikulic, P.

W. Bock, T. Eftimov, P. Mikulic, and J. Chen, “An inline core-cladding intermodal interferometer using a photonic crystal fiber,” J. Lightwave Technol. 27(17), 3933–3939 (2009).
[CrossRef]

W. J. Bock, J. Chen, P. Mikulic, T. Eftimov, and M. Korwin-Pawlowski, “Pressure sensing using periodically tapered long-period gratings written in photonic crystal fibres,” Meas. Sci. Technol. 18(10), 3098–3102 (2007).
[CrossRef]

Minkovich, V. P.

Mohammed, W. S.

Oh, K.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129–1133 (2006).
[CrossRef]

Pang, F.

H. Liu, F. Pang, H. Guo, W. Cao, Y. Liu, N. Chen, Z. Chen, and T. Wang, “In-series double cladding fibers for simultaneous refractive index and temperature measurement,” Opt. Express 18(12), 13072–13082 (2010).
[CrossRef] [PubMed]

F. Pang, W. Liang, W. Xiang, N. Chen, X. Zeng, Z. Chen, and T. Wang, “Temperature-insensitivity bending sensor based on cladding-mode resonance of special optical fiber,” IEEE Photon. Technol. Lett. 21(2), 76–78 (2009).
[CrossRef]

Pruneri, V.

Rindorf, L.

Rothhardt, M.

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

Russell, P. St. J.

Sales, S.

Santos, J. L.

Schuster, K.

Selvas-Aguilar, R.

Shi, Q.

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry-Pérot interferometric strain sensor system,” IEEE Photon. Technol. Lett. 20(15), 1329–1331 (2008).
[CrossRef]

Shum, P.

Silva, S.

Smith, P. W. E.

Tam, H. Y.

Uranus, H. P.

H. P. Uranus, “Theoretical study on the multimodeness of a commercial endlessly single-mode PCF,” Opt. Commun. 283(23), 4649–4654 (2010).
[CrossRef]

Varshney, R. K.

A. Kumar and R. K. Varshney, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219(1-6), 215–219 (2003).
[CrossRef]

Villatoro, J.

Wai, P. K. A.

Wang, Q.

Wang, T.

H. Liu, F. Pang, H. Guo, W. Cao, Y. Liu, N. Chen, Z. Chen, and T. Wang, “In-series double cladding fibers for simultaneous refractive index and temperature measurement,” Opt. Express 18(12), 13072–13082 (2010).
[CrossRef] [PubMed]

F. Pang, W. Liang, W. Xiang, N. Chen, X. Zeng, Z. Chen, and T. Wang, “Temperature-insensitivity bending sensor based on cladding-mode resonance of special optical fiber,” IEEE Photon. Technol. Lett. 21(2), 76–78 (2009).
[CrossRef]

Wang, Y.

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C. L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25(11), 3563–3574 (2007).
[CrossRef]

Wang, Z.

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry-Pérot interferometric strain sensor system,” IEEE Photon. Technol. Lett. 20(15), 1329–1331 (2008).
[CrossRef]

Willsch, R.

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

Wong, A. C. L.

Xiang, W.

F. Pang, W. Liang, W. Xiang, N. Chen, X. Zeng, Z. Chen, and T. Wang, “Temperature-insensitivity bending sensor based on cladding-mode resonance of special optical fiber,” IEEE Photon. Technol. Lett. 21(2), 76–78 (2009).
[CrossRef]

Xiao, L.

Yan, M.

Yan, W.

Yu, X.

Zeng, X.

F. Pang, W. Liang, W. Xiang, N. Chen, X. Zeng, Z. Chen, and T. Wang, “Temperature-insensitivity bending sensor based on cladding-mode resonance of special optical fiber,” IEEE Photon. Technol. Lett. 21(2), 76–78 (2009).
[CrossRef]

Zhang, H.

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry-Pérot interferometric strain sensor system,” IEEE Photon. Technol. Lett. 20(15), 1329–1331 (2008).
[CrossRef]

Zhao, C. L.

Zhu, Y.

Appl. Phys. Lett.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry-Pérot interferometric strain sensor system,” IEEE Photon. Technol. Lett. 20(15), 1329–1331 (2008).
[CrossRef]

F. Pang, W. Liang, W. Xiang, N. Chen, X. Zeng, Z. Chen, and T. Wang, “Temperature-insensitivity bending sensor based on cladding-mode resonance of special optical fiber,” IEEE Photon. Technol. Lett. 21(2), 76–78 (2009).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Meas. Sci. Technol.

W. J. Bock, J. Chen, P. Mikulic, T. Eftimov, and M. Korwin-Pawlowski, “Pressure sensing using periodically tapered long-period gratings written in photonic crystal fibres,” Meas. Sci. Technol. 18(10), 3098–3102 (2007).
[CrossRef]

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129–1133 (2006).
[CrossRef]

Opt. Commun.

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

A. Kumar and R. K. Varshney, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219(1-6), 215–219 (2003).
[CrossRef]

H. P. Uranus, “Theoretical study on the multimodeness of a commercial endlessly single-mode PCF,” Opt. Commun. 283(23), 4649–4654 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Other

J. M. Lopez-Higuera, ed., Handbook of Optical Fiber Sensing Technology, (Wiley, New York, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Scheme of the proposed device, micrograph of the PCF cross section and of a splice with a 200 µm-long collapsed zone. The broadening of the beam is illustrated by the red cone. L is the PCF length, l1 and l2 are the lengths of the collapsed regions. w 0 and w are the beam radius at the beginning and at the end of the collapsed region, respectively. (b) Transmission spectra of some devices with L = 10.42 mm (dashed line), 10.16 mm (solid line) and 11.02 mm (dotted line).

Fig. 2
Fig. 2

(a) Calculated longitudinal component of the time-averaged Poynting vector of the fundamental HE11 mode (the x and y scales are in μm) and the HE22-like cladding mode (b) at 1550 nm. The parameters of PCF (LMA-10) are described in the text.

Fig. 3
Fig. 3

(a) Transmission spectra at 750 με (dotted line), 1750 με (solid line) and 2500 με (dashed line) observed in a 12 mm-long device. (b). Position of the notch as a function of the applied strain. The measurements were carried out at room temperature.

Fig. 4
Fig. 4

(a) Transmission spectra of a 9.52 mm-long device subjected to 190, 762, and 1333 με at 66 and 111°C. (b) Shift of the notch as a function of the applied strain at room temperature (squares), 66 °C (dots) and 111 °C (triangles).

Fig. 5
Fig. 5

Schematic representation for multiplexing n sensors. λ ni (i = 1,2,3…n) represent the notch position of the i-th sensor in the n-th fiber.

Fig. 6
Fig. 6

(a) Normalized transmission spectra observed when four sensors are set in cascade and one of them is subjected to strain. (b) Shift as a function of applied strain observed in the four devices. S1, S2, S3 and S4 refer to sensors 1, 2, 3, and 4, respectively, being 1 the notch at shorter wavelength and 4 the notch at longer wavelength. The lengths of the devices S1, S2, S3, and S4 were, respectively, 10.2, 12.16, 11.9, and 11.42 mm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

w = w 0 1 + ( λ l 1 / π n f w 0 2 ) 2 ,

Metrics