Abstract

We present a full-field reflection phase microscope that combines low-coherence interferometry and off-axis digital holographic microscopy (DHM). The reflection-based DHM provides highly sensitive and a single-shot imaging of cellular dynamics while the use of low coherence source provides a depth-selective measurement. The setup uniquely uses a diffraction grating in the reference arm to generate an interference image of uniform contrast over the entire field-of-view albeit low-coherence light source. We have measured the path-length sensitivity of our instrument to be approximately 21picometers/Hz that makes it suitable for nanometer-scale full-field measurement of membrane dynamics in live cells.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Weihs, T. G. Mason, and M. A. Teitell, “Bio-microrheology: a frontier in microrheology,” Biophys. J. 91(11), 4296–4305 (2006).
    [CrossRef] [PubMed]
  2. M. Beil, A. Micoulet, G. von Wichert, S. Paschke, P. Walther, M. B. Omary, P. P. Van Veldhoven, U. Gern, E. Wolff-Hieber, J. Eggermann, J. Waltenberger, G. Adler, J. Spatz, and T. Seufferlein, “Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells,” Nat. Cell Biol. 5(9), 803–811 (2003).
    [CrossRef] [PubMed]
  3. Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. S. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
    [CrossRef] [PubMed]
  4. N. Almqvist, R. Bhatia, G. Primbs, N. Desai, S. Banerjee, and R. Lal, “Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties,” Biophys. J. 86(3), 1753–1762 (2004).
    [CrossRef] [PubMed]
  5. J. Alcaraz, L. Buscemi, M. Grabulosa, X. Trepat, B. Fabry, R. Farre, and D. Navajas, “Microrheology of human lung epithelial cells measured by atomic force microscopy,” Biophys. J. 84(3), 2071–2079 (2003).
    [CrossRef] [PubMed]
  6. M. Puig-de-Morales-Marinkovic, K. T. Turner, J. P. Butler, J. J. Fredberg, and S. Suresh, “Viscoelasticity of the human red blood cell,” Am. J. Physiol. Cell Physiol. 293(2), C597–C605 (2007).
    [CrossRef] [PubMed]
  7. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
    [CrossRef] [PubMed]
  8. E. Evans and A. Leung, “Adhesivity and rigidity of erythrocyte membrane in relation to wheat germ agglutinin binding,” J. Cell Biol. 98(4), 1201–1208 (1984).
    [CrossRef] [PubMed]
  9. R. P. Hebbel, A. Leung, and N. Mohandas, “Oxidation-induced changes in microrheologic properties of the red blood cell membrane,” Blood 76(5), 1015–1020 (1990).
    [PubMed]
  10. K. G. Engstrom, B. Moller, and H. J. Meiselman, “Optical Evaluation of Red Blood Cell Geometry Using Micropipette aspiration,” Blood Cells 18(2), 241–257, discussion 258–265 (1992).
    [PubMed]
  11. H. Engelhardt, H. Gaub, and E. Sackmann, “Viscoelastic properties of Erythrocyte Membranes in High-Frequency Electric Fields,” Nature 307(5949), 378–380 (1984).
    [CrossRef] [PubMed]
  12. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
    [CrossRef] [PubMed]
  13. Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
    [CrossRef] [PubMed]
  14. R. Wang, H. Ding, M. Mir, K. Tangella, and G. Popescu, “Effective 3D viscoelasticity of red blood cells measured by diffraction phase microscopy,” Biomed. Opt. Express 2(3), 485–490 (2011).
    [CrossRef] [PubMed]
  15. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005).
    [CrossRef] [PubMed]
  16. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett. 30(16), 2131–2133 (2005).
    [CrossRef] [PubMed]
  17. M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett. 31(10), 1462–1464 (2006).
    [CrossRef] [PubMed]
  18. T. Yamauchi, H. Iwai, M. Miwa, and Y. Yamashita, “Low-coherent quantitative phase microscope for nanometer-scale measurement of living cells morphology,” Opt. Express 16(16), 12227–12238 (2008).
    [CrossRef] [PubMed]
  19. Z. Yaqoob, W. Choi, S. Oh, N. Lue, Y. Park, C. Fang-Yen, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Improved phase sensitivity in spectral domain phase microscopy using line-field illumination and self phase-referencing,” Opt. Express 17(13), 10681–10687 (2009).
    [CrossRef] [PubMed]
  20. A. K. Ellerbee, T. L. Creazzo, and J. A. Izatt, “Investigating nanoscale cellular dynamics with cross-sectional spectral domain phase microscopy,” Opt. Express 15(13), 8115–8124 (2007).
    [CrossRef] [PubMed]
  21. P. Massatsch, F. Charriere, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. 44(10), 1806–1812 (2005).
    [CrossRef] [PubMed]
  22. H. Iwai, C. Fang-Yen, G. Popescu, A. Wax, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry,” Opt. Lett. 29(20), 2399–2401 (2004).
    [CrossRef] [PubMed]
  23. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
    [CrossRef] [PubMed]
  24. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
    [CrossRef] [PubMed]
  25. J. F. Casella, M. D. Flanagan, and S. Lin, “Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change,” Nature 293(5830), 302–305 (1981).
    [CrossRef] [PubMed]
  26. P. C. Zhang, A. M. Keleshian, and F. Sachs, “Voltage-induced membrane movement,” Nature 413(6854), 428–432 (2001).
    [CrossRef] [PubMed]

2011

2010

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

2009

2008

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. S. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[CrossRef] [PubMed]

T. Yamauchi, H. Iwai, M. Miwa, and Y. Yamashita, “Low-coherent quantitative phase microscope for nanometer-scale measurement of living cells morphology,” Opt. Express 16(16), 12227–12238 (2008).
[CrossRef] [PubMed]

2007

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

M. Puig-de-Morales-Marinkovic, K. T. Turner, J. P. Butler, J. J. Fredberg, and S. Suresh, “Viscoelasticity of the human red blood cell,” Am. J. Physiol. Cell Physiol. 293(2), C597–C605 (2007).
[CrossRef] [PubMed]

A. K. Ellerbee, T. L. Creazzo, and J. A. Izatt, “Investigating nanoscale cellular dynamics with cross-sectional spectral domain phase microscopy,” Opt. Express 15(13), 8115–8124 (2007).
[CrossRef] [PubMed]

2006

2005

2004

H. Iwai, C. Fang-Yen, G. Popescu, A. Wax, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry,” Opt. Lett. 29(20), 2399–2401 (2004).
[CrossRef] [PubMed]

N. Almqvist, R. Bhatia, G. Primbs, N. Desai, S. Banerjee, and R. Lal, “Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties,” Biophys. J. 86(3), 1753–1762 (2004).
[CrossRef] [PubMed]

2003

J. Alcaraz, L. Buscemi, M. Grabulosa, X. Trepat, B. Fabry, R. Farre, and D. Navajas, “Microrheology of human lung epithelial cells measured by atomic force microscopy,” Biophys. J. 84(3), 2071–2079 (2003).
[CrossRef] [PubMed]

M. Beil, A. Micoulet, G. von Wichert, S. Paschke, P. Walther, M. B. Omary, P. P. Van Veldhoven, U. Gern, E. Wolff-Hieber, J. Eggermann, J. Waltenberger, G. Adler, J. Spatz, and T. Seufferlein, “Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells,” Nat. Cell Biol. 5(9), 803–811 (2003).
[CrossRef] [PubMed]

2001

P. C. Zhang, A. M. Keleshian, and F. Sachs, “Voltage-induced membrane movement,” Nature 413(6854), 428–432 (2001).
[CrossRef] [PubMed]

1994

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[CrossRef] [PubMed]

1992

K. G. Engstrom, B. Moller, and H. J. Meiselman, “Optical Evaluation of Red Blood Cell Geometry Using Micropipette aspiration,” Blood Cells 18(2), 241–257, discussion 258–265 (1992).
[PubMed]

1990

R. P. Hebbel, A. Leung, and N. Mohandas, “Oxidation-induced changes in microrheologic properties of the red blood cell membrane,” Blood 76(5), 1015–1020 (1990).
[PubMed]

1984

H. Engelhardt, H. Gaub, and E. Sackmann, “Viscoelastic properties of Erythrocyte Membranes in High-Frequency Electric Fields,” Nature 307(5949), 378–380 (1984).
[CrossRef] [PubMed]

E. Evans and A. Leung, “Adhesivity and rigidity of erythrocyte membrane in relation to wheat germ agglutinin binding,” J. Cell Biol. 98(4), 1201–1208 (1984).
[CrossRef] [PubMed]

1981

J. F. Casella, M. D. Flanagan, and S. Lin, “Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change,” Nature 293(5830), 302–305 (1981).
[CrossRef] [PubMed]

Adler, G.

M. Beil, A. Micoulet, G. von Wichert, S. Paschke, P. Walther, M. B. Omary, P. P. Van Veldhoven, U. Gern, E. Wolff-Hieber, J. Eggermann, J. Waltenberger, G. Adler, J. Spatz, and T. Seufferlein, “Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells,” Nat. Cell Biol. 5(9), 803–811 (2003).
[CrossRef] [PubMed]

Akkin, T.

Alcaraz, J.

J. Alcaraz, L. Buscemi, M. Grabulosa, X. Trepat, B. Fabry, R. Farre, and D. Navajas, “Microrheology of human lung epithelial cells measured by atomic force microscopy,” Biophys. J. 84(3), 2071–2079 (2003).
[CrossRef] [PubMed]

Almqvist, N.

N. Almqvist, R. Bhatia, G. Primbs, N. Desai, S. Banerjee, and R. Lal, “Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties,” Biophys. J. 86(3), 1753–1762 (2004).
[CrossRef] [PubMed]

Badizadegan, K.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

Z. Yaqoob, W. Choi, S. Oh, N. Lue, Y. Park, C. Fang-Yen, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Improved phase sensitivity in spectral domain phase microscopy using line-field illumination and self phase-referencing,” Opt. Express 17(13), 10681–10687 (2009).
[CrossRef] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

H. Iwai, C. Fang-Yen, G. Popescu, A. Wax, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry,” Opt. Lett. 29(20), 2399–2401 (2004).
[CrossRef] [PubMed]

Banerjee, S.

N. Almqvist, R. Bhatia, G. Primbs, N. Desai, S. Banerjee, and R. Lal, “Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties,” Biophys. J. 86(3), 1753–1762 (2004).
[CrossRef] [PubMed]

Beil, M.

M. Beil, A. Micoulet, G. von Wichert, S. Paschke, P. Walther, M. B. Omary, P. P. Van Veldhoven, U. Gern, E. Wolff-Hieber, J. Eggermann, J. Waltenberger, G. Adler, J. Spatz, and T. Seufferlein, “Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells,” Nat. Cell Biol. 5(9), 803–811 (2003).
[CrossRef] [PubMed]

Best, C. A.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

Bhatia, R.

N. Almqvist, R. Bhatia, G. Primbs, N. Desai, S. Banerjee, and R. Lal, “Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties,” Biophys. J. 86(3), 1753–1762 (2004).
[CrossRef] [PubMed]

Block, S. M.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[CrossRef] [PubMed]

Buscemi, L.

J. Alcaraz, L. Buscemi, M. Grabulosa, X. Trepat, B. Fabry, R. Farre, and D. Navajas, “Microrheology of human lung epithelial cells measured by atomic force microscopy,” Biophys. J. 84(3), 2071–2079 (2003).
[CrossRef] [PubMed]

Butler, J. P.

M. Puig-de-Morales-Marinkovic, K. T. Turner, J. P. Butler, J. J. Fredberg, and S. Suresh, “Viscoelasticity of the human red blood cell,” Am. J. Physiol. Cell Physiol. 293(2), C597–C605 (2007).
[CrossRef] [PubMed]

Casella, J. F.

J. F. Casella, M. D. Flanagan, and S. Lin, “Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change,” Nature 293(5830), 302–305 (1981).
[CrossRef] [PubMed]

Cense, B.

Charriere, F.

Choi, W.

Choi, W. S.

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. S. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[CrossRef] [PubMed]

Choma, M. A.

Creazzo, T. L.

Cuche, E.

Dasari, R. R.

de Boer, J. F.

Depeursinge, C. D.

Desai, N.

N. Almqvist, R. Bhatia, G. Primbs, N. Desai, S. Banerjee, and R. Lal, “Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties,” Biophys. J. 86(3), 1753–1762 (2004).
[CrossRef] [PubMed]

Diez-Silva, M.

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. S. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[CrossRef] [PubMed]

Ding, H.

Eggermann, J.

M. Beil, A. Micoulet, G. von Wichert, S. Paschke, P. Walther, M. B. Omary, P. P. Van Veldhoven, U. Gern, E. Wolff-Hieber, J. Eggermann, J. Waltenberger, G. Adler, J. Spatz, and T. Seufferlein, “Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells,” Nat. Cell Biol. 5(9), 803–811 (2003).
[CrossRef] [PubMed]

Ellerbee, A. K.

Engelhardt, H.

H. Engelhardt, H. Gaub, and E. Sackmann, “Viscoelastic properties of Erythrocyte Membranes in High-Frequency Electric Fields,” Nature 307(5949), 378–380 (1984).
[CrossRef] [PubMed]

Engstrom, K. G.

K. G. Engstrom, B. Moller, and H. J. Meiselman, “Optical Evaluation of Red Blood Cell Geometry Using Micropipette aspiration,” Blood Cells 18(2), 241–257, discussion 258–265 (1992).
[PubMed]

Evans, E.

E. Evans and A. Leung, “Adhesivity and rigidity of erythrocyte membrane in relation to wheat germ agglutinin binding,” J. Cell Biol. 98(4), 1201–1208 (1984).
[CrossRef] [PubMed]

Fabry, B.

J. Alcaraz, L. Buscemi, M. Grabulosa, X. Trepat, B. Fabry, R. Farre, and D. Navajas, “Microrheology of human lung epithelial cells measured by atomic force microscopy,” Biophys. J. 84(3), 2071–2079 (2003).
[CrossRef] [PubMed]

Fang-Yen, C.

Farre, R.

J. Alcaraz, L. Buscemi, M. Grabulosa, X. Trepat, B. Fabry, R. Farre, and D. Navajas, “Microrheology of human lung epithelial cells measured by atomic force microscopy,” Biophys. J. 84(3), 2071–2079 (2003).
[CrossRef] [PubMed]

Feld, M. S.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

Z. Yaqoob, W. Choi, S. Oh, N. Lue, Y. Park, C. Fang-Yen, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Improved phase sensitivity in spectral domain phase microscopy using line-field illumination and self phase-referencing,” Opt. Express 17(13), 10681–10687 (2009).
[CrossRef] [PubMed]

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. S. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[CrossRef] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
[CrossRef] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
[CrossRef] [PubMed]

H. Iwai, C. Fang-Yen, G. Popescu, A. Wax, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry,” Opt. Lett. 29(20), 2399–2401 (2004).
[CrossRef] [PubMed]

Flanagan, M. D.

J. F. Casella, M. D. Flanagan, and S. Lin, “Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change,” Nature 293(5830), 302–305 (1981).
[CrossRef] [PubMed]

Fredberg, J. J.

M. Puig-de-Morales-Marinkovic, K. T. Turner, J. P. Butler, J. J. Fredberg, and S. Suresh, “Viscoelasticity of the human red blood cell,” Am. J. Physiol. Cell Physiol. 293(2), C597–C605 (2007).
[CrossRef] [PubMed]

Gaub, H.

H. Engelhardt, H. Gaub, and E. Sackmann, “Viscoelastic properties of Erythrocyte Membranes in High-Frequency Electric Fields,” Nature 307(5949), 378–380 (1984).
[CrossRef] [PubMed]

Gern, U.

M. Beil, A. Micoulet, G. von Wichert, S. Paschke, P. Walther, M. B. Omary, P. P. Van Veldhoven, U. Gern, E. Wolff-Hieber, J. Eggermann, J. Waltenberger, G. Adler, J. Spatz, and T. Seufferlein, “Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells,” Nat. Cell Biol. 5(9), 803–811 (2003).
[CrossRef] [PubMed]

Grabulosa, M.

J. Alcaraz, L. Buscemi, M. Grabulosa, X. Trepat, B. Fabry, R. Farre, and D. Navajas, “Microrheology of human lung epithelial cells measured by atomic force microscopy,” Biophys. J. 84(3), 2071–2079 (2003).
[CrossRef] [PubMed]

Hebbel, R. P.

R. P. Hebbel, A. Leung, and N. Mohandas, “Oxidation-induced changes in microrheologic properties of the red blood cell membrane,” Blood 76(5), 1015–1020 (1990).
[PubMed]

Henle, M. L.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

Ikeda, T.

Iwai, H.

Izatt, J. A.

Joo, C.

Keleshian, A. M.

P. C. Zhang, A. M. Keleshian, and F. Sachs, “Voltage-induced membrane movement,” Nature 413(6854), 428–432 (2001).
[CrossRef] [PubMed]

Kuriabova, T.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

Lal, R.

N. Almqvist, R. Bhatia, G. Primbs, N. Desai, S. Banerjee, and R. Lal, “Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties,” Biophys. J. 86(3), 1753–1762 (2004).
[CrossRef] [PubMed]

Leung, A.

R. P. Hebbel, A. Leung, and N. Mohandas, “Oxidation-induced changes in microrheologic properties of the red blood cell membrane,” Blood 76(5), 1015–1020 (1990).
[PubMed]

E. Evans and A. Leung, “Adhesivity and rigidity of erythrocyte membrane in relation to wheat germ agglutinin binding,” J. Cell Biol. 98(4), 1201–1208 (1984).
[CrossRef] [PubMed]

Levine, A. J.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

Lin, S.

J. F. Casella, M. D. Flanagan, and S. Lin, “Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change,” Nature 293(5830), 302–305 (1981).
[CrossRef] [PubMed]

Lue, N.

Lykotrafitis, G.

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. S. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[CrossRef] [PubMed]

Marquet, P.

Mason, T. G.

D. Weihs, T. G. Mason, and M. A. Teitell, “Bio-microrheology: a frontier in microrheology,” Biophys. J. 91(11), 4296–4305 (2006).
[CrossRef] [PubMed]

Massatsch, P.

Meiselman, H. J.

K. G. Engstrom, B. Moller, and H. J. Meiselman, “Optical Evaluation of Red Blood Cell Geometry Using Micropipette aspiration,” Blood Cells 18(2), 241–257, discussion 258–265 (1992).
[PubMed]

Micoulet, A.

M. Beil, A. Micoulet, G. von Wichert, S. Paschke, P. Walther, M. B. Omary, P. P. Van Veldhoven, U. Gern, E. Wolff-Hieber, J. Eggermann, J. Waltenberger, G. Adler, J. Spatz, and T. Seufferlein, “Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells,” Nat. Cell Biol. 5(9), 803–811 (2003).
[CrossRef] [PubMed]

Mir, M.

Miwa, M.

Mohandas, N.

R. P. Hebbel, A. Leung, and N. Mohandas, “Oxidation-induced changes in microrheologic properties of the red blood cell membrane,” Blood 76(5), 1015–1020 (1990).
[PubMed]

Moller, B.

K. G. Engstrom, B. Moller, and H. J. Meiselman, “Optical Evaluation of Red Blood Cell Geometry Using Micropipette aspiration,” Blood Cells 18(2), 241–257, discussion 258–265 (1992).
[PubMed]

Navajas, D.

J. Alcaraz, L. Buscemi, M. Grabulosa, X. Trepat, B. Fabry, R. Farre, and D. Navajas, “Microrheology of human lung epithelial cells measured by atomic force microscopy,” Biophys. J. 84(3), 2071–2079 (2003).
[CrossRef] [PubMed]

Oh, S.

Omary, M. B.

M. Beil, A. Micoulet, G. von Wichert, S. Paschke, P. Walther, M. B. Omary, P. P. Van Veldhoven, U. Gern, E. Wolff-Hieber, J. Eggermann, J. Waltenberger, G. Adler, J. Spatz, and T. Seufferlein, “Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells,” Nat. Cell Biol. 5(9), 803–811 (2003).
[CrossRef] [PubMed]

Park, B. H.

Park, Y.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

Z. Yaqoob, W. Choi, S. Oh, N. Lue, Y. Park, C. Fang-Yen, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Improved phase sensitivity in spectral domain phase microscopy using line-field illumination and self phase-referencing,” Opt. Express 17(13), 10681–10687 (2009).
[CrossRef] [PubMed]

Park, Y. K.

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. S. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[CrossRef] [PubMed]

Paschke, S.

M. Beil, A. Micoulet, G. von Wichert, S. Paschke, P. Walther, M. B. Omary, P. P. Van Veldhoven, U. Gern, E. Wolff-Hieber, J. Eggermann, J. Waltenberger, G. Adler, J. Spatz, and T. Seufferlein, “Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells,” Nat. Cell Biol. 5(9), 803–811 (2003).
[CrossRef] [PubMed]

Popescu, G.

Primbs, G.

N. Almqvist, R. Bhatia, G. Primbs, N. Desai, S. Banerjee, and R. Lal, “Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties,” Biophys. J. 86(3), 1753–1762 (2004).
[CrossRef] [PubMed]

Puig-de-Morales-Marinkovic, M.

M. Puig-de-Morales-Marinkovic, K. T. Turner, J. P. Butler, J. J. Fredberg, and S. Suresh, “Viscoelasticity of the human red blood cell,” Am. J. Physiol. Cell Physiol. 293(2), C597–C605 (2007).
[CrossRef] [PubMed]

Sachs, F.

P. C. Zhang, A. M. Keleshian, and F. Sachs, “Voltage-induced membrane movement,” Nature 413(6854), 428–432 (2001).
[CrossRef] [PubMed]

Sackmann, E.

H. Engelhardt, H. Gaub, and E. Sackmann, “Viscoelastic properties of Erythrocyte Membranes in High-Frequency Electric Fields,” Nature 307(5949), 378–380 (1984).
[CrossRef] [PubMed]

Sarunic, M. V.

Seufferlein, T.

M. Beil, A. Micoulet, G. von Wichert, S. Paschke, P. Walther, M. B. Omary, P. P. Van Veldhoven, U. Gern, E. Wolff-Hieber, J. Eggermann, J. Waltenberger, G. Adler, J. Spatz, and T. Seufferlein, “Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells,” Nat. Cell Biol. 5(9), 803–811 (2003).
[CrossRef] [PubMed]

Spatz, J.

M. Beil, A. Micoulet, G. von Wichert, S. Paschke, P. Walther, M. B. Omary, P. P. Van Veldhoven, U. Gern, E. Wolff-Hieber, J. Eggermann, J. Waltenberger, G. Adler, J. Spatz, and T. Seufferlein, “Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells,” Nat. Cell Biol. 5(9), 803–811 (2003).
[CrossRef] [PubMed]

Suresh, S.

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. S. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[CrossRef] [PubMed]

M. Puig-de-Morales-Marinkovic, K. T. Turner, J. P. Butler, J. J. Fredberg, and S. Suresh, “Viscoelasticity of the human red blood cell,” Am. J. Physiol. Cell Physiol. 293(2), C597–C605 (2007).
[CrossRef] [PubMed]

Svoboda, K.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[CrossRef] [PubMed]

Tangella, K.

Teitell, M. A.

D. Weihs, T. G. Mason, and M. A. Teitell, “Bio-microrheology: a frontier in microrheology,” Biophys. J. 91(11), 4296–4305 (2006).
[CrossRef] [PubMed]

Trepat, X.

J. Alcaraz, L. Buscemi, M. Grabulosa, X. Trepat, B. Fabry, R. Farre, and D. Navajas, “Microrheology of human lung epithelial cells measured by atomic force microscopy,” Biophys. J. 84(3), 2071–2079 (2003).
[CrossRef] [PubMed]

Turner, K. T.

M. Puig-de-Morales-Marinkovic, K. T. Turner, J. P. Butler, J. J. Fredberg, and S. Suresh, “Viscoelasticity of the human red blood cell,” Am. J. Physiol. Cell Physiol. 293(2), C597–C605 (2007).
[CrossRef] [PubMed]

Van Veldhoven, P. P.

M. Beil, A. Micoulet, G. von Wichert, S. Paschke, P. Walther, M. B. Omary, P. P. Van Veldhoven, U. Gern, E. Wolff-Hieber, J. Eggermann, J. Waltenberger, G. Adler, J. Spatz, and T. Seufferlein, “Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells,” Nat. Cell Biol. 5(9), 803–811 (2003).
[CrossRef] [PubMed]

von Wichert, G.

M. Beil, A. Micoulet, G. von Wichert, S. Paschke, P. Walther, M. B. Omary, P. P. Van Veldhoven, U. Gern, E. Wolff-Hieber, J. Eggermann, J. Waltenberger, G. Adler, J. Spatz, and T. Seufferlein, “Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells,” Nat. Cell Biol. 5(9), 803–811 (2003).
[CrossRef] [PubMed]

Waltenberger, J.

M. Beil, A. Micoulet, G. von Wichert, S. Paschke, P. Walther, M. B. Omary, P. P. Van Veldhoven, U. Gern, E. Wolff-Hieber, J. Eggermann, J. Waltenberger, G. Adler, J. Spatz, and T. Seufferlein, “Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells,” Nat. Cell Biol. 5(9), 803–811 (2003).
[CrossRef] [PubMed]

Walther, P.

M. Beil, A. Micoulet, G. von Wichert, S. Paschke, P. Walther, M. B. Omary, P. P. Van Veldhoven, U. Gern, E. Wolff-Hieber, J. Eggermann, J. Waltenberger, G. Adler, J. Spatz, and T. Seufferlein, “Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells,” Nat. Cell Biol. 5(9), 803–811 (2003).
[CrossRef] [PubMed]

Wang, R.

Wax, A.

Weihs, D.

D. Weihs, T. G. Mason, and M. A. Teitell, “Bio-microrheology: a frontier in microrheology,” Biophys. J. 91(11), 4296–4305 (2006).
[CrossRef] [PubMed]

Weinberg, S.

Wolff-Hieber, E.

M. Beil, A. Micoulet, G. von Wichert, S. Paschke, P. Walther, M. B. Omary, P. P. Van Veldhoven, U. Gern, E. Wolff-Hieber, J. Eggermann, J. Waltenberger, G. Adler, J. Spatz, and T. Seufferlein, “Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells,” Nat. Cell Biol. 5(9), 803–811 (2003).
[CrossRef] [PubMed]

Yamashita, Y.

Yamauchi, T.

Yang, C.

Yaqoob, Z.

Zhang, P. C.

P. C. Zhang, A. M. Keleshian, and F. Sachs, “Voltage-induced membrane movement,” Nature 413(6854), 428–432 (2001).
[CrossRef] [PubMed]

Am. J. Physiol. Cell Physiol.

M. Puig-de-Morales-Marinkovic, K. T. Turner, J. P. Butler, J. J. Fredberg, and S. Suresh, “Viscoelasticity of the human red blood cell,” Am. J. Physiol. Cell Physiol. 293(2), C597–C605 (2007).
[CrossRef] [PubMed]

Annu. Rev. Biophys. Biomol. Struct.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[CrossRef] [PubMed]

Appl. Opt.

Biomed. Opt. Express

Biophys. J.

D. Weihs, T. G. Mason, and M. A. Teitell, “Bio-microrheology: a frontier in microrheology,” Biophys. J. 91(11), 4296–4305 (2006).
[CrossRef] [PubMed]

N. Almqvist, R. Bhatia, G. Primbs, N. Desai, S. Banerjee, and R. Lal, “Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties,” Biophys. J. 86(3), 1753–1762 (2004).
[CrossRef] [PubMed]

J. Alcaraz, L. Buscemi, M. Grabulosa, X. Trepat, B. Fabry, R. Farre, and D. Navajas, “Microrheology of human lung epithelial cells measured by atomic force microscopy,” Biophys. J. 84(3), 2071–2079 (2003).
[CrossRef] [PubMed]

Blood

R. P. Hebbel, A. Leung, and N. Mohandas, “Oxidation-induced changes in microrheologic properties of the red blood cell membrane,” Blood 76(5), 1015–1020 (1990).
[PubMed]

Blood Cells

K. G. Engstrom, B. Moller, and H. J. Meiselman, “Optical Evaluation of Red Blood Cell Geometry Using Micropipette aspiration,” Blood Cells 18(2), 241–257, discussion 258–265 (1992).
[PubMed]

J. Cell Biol.

E. Evans and A. Leung, “Adhesivity and rigidity of erythrocyte membrane in relation to wheat germ agglutinin binding,” J. Cell Biol. 98(4), 1201–1208 (1984).
[CrossRef] [PubMed]

Nat. Cell Biol.

M. Beil, A. Micoulet, G. von Wichert, S. Paschke, P. Walther, M. B. Omary, P. P. Van Veldhoven, U. Gern, E. Wolff-Hieber, J. Eggermann, J. Waltenberger, G. Adler, J. Spatz, and T. Seufferlein, “Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells,” Nat. Cell Biol. 5(9), 803–811 (2003).
[CrossRef] [PubMed]

Nat. Methods

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

Nature

J. F. Casella, M. D. Flanagan, and S. Lin, “Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change,” Nature 293(5830), 302–305 (1981).
[CrossRef] [PubMed]

P. C. Zhang, A. M. Keleshian, and F. Sachs, “Voltage-induced membrane movement,” Nature 413(6854), 428–432 (2001).
[CrossRef] [PubMed]

H. Engelhardt, H. Gaub, and E. Sackmann, “Viscoelastic properties of Erythrocyte Membranes in High-Frequency Electric Fields,” Nature 307(5949), 378–380 (1984).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. Natl. Acad. Sci. U.S.A.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. S. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of full-field single-shot reflection phase microscope. SMF: single mode fiber, Li: ith spherical lens, BSi: ith beam splitter, G: diffraction grating, Si: ith spatial filter. (b) Typical interferogram with a flat surface as the sample after subtracting the no fringe image representing the DC signal.

Fig. 2
Fig. 2

Surface profile of a 40 microns diameter polystyrene microsphere measured using our single-shot full-field reflection phase microscope. (a) Interferogram after subtracting the no fringe image representing the DC signal, (b) amplitude component of the 2-dimensional Fourier transform of (a), (c) spatially filtered image of (b), (d) phase component of the inverse Fourier transform of (c), and (e) unwrapped phase image derived from (d).

Fig. 3
Fig. 3

(a) Configuration to determine the sensitivity of FF-RPM. and (b) Measured phase fluctuation (radian) as a function of applied voltage. Mi: ith mirror, PZT: Lead Zirconate Titanate.

Fig. 4
Fig. 4

(a,b) Location of coherence gate for double-pass transmission and reflection phase imaging, respectively. (c) Double-pass transmission phase image of a HeLa cell, and (d) Single-shot reflection phase image of the region inside square box in (c).

Fig. 5
Fig. 5

Setup and results of the cell membrane fluctuation measurement. (a) Location of coherence gate; the sample is tilted to simultaneously acquire membrane fluctuations as well as background phase from the coverslip. (b) Power spectral density of membrane fluctuations as a function of frequency for three different populations: blue, formalin fixed; green, normal; and red, Cytochalasin-D treated HeLa cells.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = I R + I S ( x , y ) + 2 I R I S ( x , y ) cos [ u x + v y + φ ( x , y ) ] ,
Δ l = λ 4 n m π Δ φ ,
h ( x , y ) = λ 2 Δ n ¯ Δ φ T ( x , y ) 2 π .
Δ h ( x , y ) = 1 2 n m λ Δ φ R ( x , y ) 2 π ,

Metrics