Abstract

We demonstrate a gallium arsenide photonic crystal cavity injection-based electro-optic modulator coupled to a fiber taper waveguide. The fiber taper serves as a convenient and tunable waveguide for cavity coupling with minimal loss. Localized electrical injection of carriers into the cavity region via a laterally doped p-i-n diode combined with the small mode volume of the cavity enable ultra-low energy modulation at sub-fJ/bit levels. Speeds of up to 1 GHz are demonstrated with photoluminescence lifetime measurements revealing that the ultimate limit goes well into the tens of GHz.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
    [CrossRef] [PubMed]
  2. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  3. T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17(25), 22505–22513 (2009).
    [CrossRef]
  4. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009).
    [CrossRef]
  5. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [CrossRef]
  6. B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
    [CrossRef]
  7. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
    [CrossRef]
  8. D. Englund, B. Ellis, E. Edwards, T. Sarmiento, J. S. Harris, D. A. B. Miller, and J. Vuckovic, “Electrically controlled modulation in a photonic crystal nanocavity,” Opt. Express 17(18), 15409–15419 (2009).
    [CrossRef] [PubMed]
  9. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [CrossRef] [PubMed]
  10. B. Ellis, T. Sarmiento, M. Mayer, B. Zhang, J. Harris, E. E. Haller, and J. Vuckovic, “Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction,” Appl. Phys. Lett. 96(18), 181103 (2010).
    [CrossRef]
  11. G. Shambat, Y. Gong, J. Lu, S. Yerci, R. Li, L. Dal Negro, and J. Vucković, “Coupled fiber taper extraction of 1.53 microm photoluminescence from erbium doped silicon nitride photonic crystal cavities,” Opt. Express 18(6), 5964–5973 (2010).
    [CrossRef] [PubMed]
  12. G. Shambat, K. Rivoire, J. Lu, F. Hatami, and J. Vucković, “Tunable-wavelength second harmonic generation from GaP photonic crystal cavities coupled to fiber tapers,” Opt. Express 18(12), 12176–12184 (2010).
    [CrossRef] [PubMed]
  13. B. Ellis, M. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultra-low threshold, electrically pumped quantum dot photonic crystal nanocavity laser,” to be published in Nat. Photonics (2011).
  14. T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010).
    [CrossRef]
  15. D. Englund, H. Altug, and J. Vuckovic, “Low-threshold surface-passivated photonic crystal nanocavity laser,” Appl. Phys. Lett. 91(7), 071124 (2007).
    [CrossRef]
  16. S. Manipatruni, K. Preston, L. Chen, and M. Lipson, “Ultra-low voltage, ultra-small mode volume silicon microring modulator,” Opt. Express 18(17), 18235–18242 (2010).
    [CrossRef] [PubMed]

2010 (6)

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

B. Ellis, T. Sarmiento, M. Mayer, B. Zhang, J. Harris, E. E. Haller, and J. Vuckovic, “Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction,” Appl. Phys. Lett. 96(18), 181103 (2010).
[CrossRef]

G. Shambat, Y. Gong, J. Lu, S. Yerci, R. Li, L. Dal Negro, and J. Vucković, “Coupled fiber taper extraction of 1.53 microm photoluminescence from erbium doped silicon nitride photonic crystal cavities,” Opt. Express 18(6), 5964–5973 (2010).
[CrossRef] [PubMed]

G. Shambat, K. Rivoire, J. Lu, F. Hatami, and J. Vucković, “Tunable-wavelength second harmonic generation from GaP photonic crystal cavities coupled to fiber tapers,” Opt. Express 18(12), 12176–12184 (2010).
[CrossRef] [PubMed]

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010).
[CrossRef]

S. Manipatruni, K. Preston, L. Chen, and M. Lipson, “Ultra-low voltage, ultra-small mode volume silicon microring modulator,” Opt. Express 18(17), 18235–18242 (2010).
[CrossRef] [PubMed]

2009 (4)

2007 (2)

W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
[CrossRef] [PubMed]

D. Englund, H. Altug, and J. Vuckovic, “Low-threshold surface-passivated photonic crystal nanocavity laser,” Appl. Phys. Lett. 91(7), 071124 (2007).
[CrossRef]

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

2003 (1)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

1990 (1)

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Altug, H.

D. Englund, H. Altug, and J. Vuckovic, “Low-threshold surface-passivated photonic crystal nanocavity laser,” Appl. Phys. Lett. 91(7), 071124 (2007).
[CrossRef]

Asano, T.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Asghari, M.

Bennett, B. R.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[CrossRef]

Chen, L.

Dal Negro, L.

Del Alamo, J. A.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[CrossRef]

Dong, P.

Edwards, E.

Ellis, B.

B. Ellis, T. Sarmiento, M. Mayer, B. Zhang, J. Harris, E. E. Haller, and J. Vuckovic, “Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction,” Appl. Phys. Lett. 96(18), 181103 (2010).
[CrossRef]

D. Englund, B. Ellis, E. Edwards, T. Sarmiento, J. S. Harris, D. A. B. Miller, and J. Vuckovic, “Electrically controlled modulation in a photonic crystal nanocavity,” Opt. Express 17(18), 15409–15419 (2009).
[CrossRef] [PubMed]

Englund, D.

Feng, D.

Gong, Y.

Green, W. M.

Haller, E. E.

B. Ellis, T. Sarmiento, M. Mayer, B. Zhang, J. Harris, E. E. Haller, and J. Vuckovic, “Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction,” Appl. Phys. Lett. 96(18), 181103 (2010).
[CrossRef]

Harris, J.

B. Ellis, T. Sarmiento, M. Mayer, B. Zhang, J. Harris, E. E. Haller, and J. Vuckovic, “Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction,” Appl. Phys. Lett. 96(18), 181103 (2010).
[CrossRef]

Harris, J. S.

Hatami, F.

Krishnamoorthy, A. V.

Kung, C.-C.

Kuramochi, E.

Li, G.

Li, R.

Liang, H.

Liao, S.

Lipson, M.

Lu, J.

Manipatruni, S.

Matsuo, S.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

Mayer, M.

B. Ellis, T. Sarmiento, M. Mayer, B. Zhang, J. Harris, E. E. Haller, and J. Vuckovic, “Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction,” Appl. Phys. Lett. 96(18), 181103 (2010).
[CrossRef]

Miller, D. A. B.

Nishiguchi, K.

Noda, S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Notomi, M.

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010).
[CrossRef]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17(25), 22505–22513 (2009).
[CrossRef]

Nozaki, K.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Preston, K.

Qian, W.

Rivoire, K.

Rooks, M. J.

Sarmiento, T.

B. Ellis, T. Sarmiento, M. Mayer, B. Zhang, J. Harris, E. E. Haller, and J. Vuckovic, “Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction,” Appl. Phys. Lett. 96(18), 181103 (2010).
[CrossRef]

D. Englund, B. Ellis, E. Edwards, T. Sarmiento, J. S. Harris, D. A. B. Miller, and J. Vuckovic, “Electrically controlled modulation in a photonic crystal nanocavity,” Opt. Express 17(18), 15409–15419 (2009).
[CrossRef] [PubMed]

Sato, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Sekaric, L.

Shafiiha, R.

Shambat, G.

Shinya, A.

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010).
[CrossRef]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Soref, R. A.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[CrossRef]

Sumikura, H.

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010).
[CrossRef]

Tanabe, T.

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010).
[CrossRef]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17(25), 22505–22513 (2009).
[CrossRef]

Taniyama, H.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010).
[CrossRef]

Vlasov, Y. A.

Vuckovic, J.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Yerci, S.

Zhang, B.

B. Ellis, T. Sarmiento, M. Mayer, B. Zhang, J. Harris, E. E. Haller, and J. Vuckovic, “Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction,” Appl. Phys. Lett. 96(18), 181103 (2010).
[CrossRef]

Zheng, D.

Zheng, X.

Appl. Phys. Lett. (3)

B. Ellis, T. Sarmiento, M. Mayer, B. Zhang, J. Harris, E. E. Haller, and J. Vuckovic, “Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction,” Appl. Phys. Lett. 96(18), 181103 (2010).
[CrossRef]

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010).
[CrossRef]

D. Englund, H. Altug, and J. Vuckovic, “Low-threshold surface-passivated photonic crystal nanocavity laser,” Appl. Phys. Lett. 91(7), 071124 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[CrossRef]

Nat. Photonics (1)

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

Nature (2)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Opt. Express (7)

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17(25), 22505–22513 (2009).
[CrossRef]

P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009).
[CrossRef]

W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
[CrossRef] [PubMed]

D. Englund, B. Ellis, E. Edwards, T. Sarmiento, J. S. Harris, D. A. B. Miller, and J. Vuckovic, “Electrically controlled modulation in a photonic crystal nanocavity,” Opt. Express 17(18), 15409–15419 (2009).
[CrossRef] [PubMed]

S. Manipatruni, K. Preston, L. Chen, and M. Lipson, “Ultra-low voltage, ultra-small mode volume silicon microring modulator,” Opt. Express 18(17), 18235–18242 (2010).
[CrossRef] [PubMed]

G. Shambat, Y. Gong, J. Lu, S. Yerci, R. Li, L. Dal Negro, and J. Vucković, “Coupled fiber taper extraction of 1.53 microm photoluminescence from erbium doped silicon nitride photonic crystal cavities,” Opt. Express 18(6), 5964–5973 (2010).
[CrossRef] [PubMed]

G. Shambat, K. Rivoire, J. Lu, F. Hatami, and J. Vucković, “Tunable-wavelength second harmonic generation from GaP photonic crystal cavities coupled to fiber tapers,” Opt. Express 18(12), 12176–12184 (2010).
[CrossRef] [PubMed]

Proc. IEEE (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[CrossRef]

Other (1)

B. Ellis, M. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultra-low threshold, electrically pumped quantum dot photonic crystal nanocavity laser,” to be published in Nat. Photonics (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) SEM image of a fabricated laterally doped PIN photonic crystal diode. Dashed lines indicate the approximate boundaries of the doped regions. The scale bar is 1 μm. (b) Experimental setup for probing the cavity DC transmission characteristics (green path) as well as RF modulation performance (blue path). OSA is optical spectrum analyzer, PD is photodiode, and Pol. C. is polarization controller. The cavity is outlined in the yellow box at the center of the optical picture of the setup and a fiber taper of 1 μm in diameter is seen aligned vertically. DC and RF voltages are applied to the metal contact pads to the left and right of the cavity. The scale bar is 10 μm.

Fig. 2
Fig. 2

(a) Optical transmission of the fiber-coupled PC cavity for several DC current magnitudes. Data is taken by sending broadband unpolarized light from an LED array and detecting the transmission with an optical spectrum analyzer. (b) Position of the cavity resonance versus injected current. The cavity blueshifts monotonically with increasing injection level reaching a 110 pm shift at 200 nA. The inset is the I-V plot of the cavity.

Fig. 3
Fig. 3

(a) Operation of the modulator at 2 kHz using a 0 to 1 V square wave function. A low noise photodetector was connected to an oscilloscope for voltage visualization. (b) 100 MHz modulation from a −1.5V to 1.5V signal using a photodetector with an RF amplifier connected to the oscilloscope. (c) 1 GHz modulation with the device in the same configuration as (b). The detector is at its −3 dB point and so the signal is distorted.

Fig. 4
Fig. 4

Lifetime of gallium arsenide band edge PL as detected by a streak camera. The sample is pumped locally at the PC cavity defect by 3 ps Ti:Sapphire laser pulses. The decay consists of a fast component (PC cavity) and slower background component.

Metrics