Abstract

The infrared propagation character of metallic woodpile photonic crystals made of gold in the <110> direction was studied. The bandgap in metallic woodpile was found to be interrupted by a new propagating mode far beyond the waveguide cutoff. This new passband cannot be explained by the defect mode of the photonic crystal or the waveguide theorem. However, studies of surface plasmons within the structure showed that 3-D metallic photonic crystals can expand the propagating mode far beyond waveguide cutoff. This passband mode can be adjusted by design allowing for new optical filtering devices using 3-D photonic crystals. Finite-difference-time-domain (FDTD) simulations were applied to explain this phenomenon and matched well with experimental results.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [CrossRef] [PubMed]
  2. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).
  3. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun. 89(5), 413–416 (1994).
    [CrossRef]
  4. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
    [CrossRef]
  5. A. Moroz and C. Sommers, “Photonic band gaps of three-dimensional face-centered cubic lattices,” J. Phys. Condens. Matter 11(4), 997–1008 (1999).
    [CrossRef]
  6. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
    [CrossRef] [PubMed]
  7. Z. Y. Li, I. El-Kady, K.-M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93(1), 38–42 (2003).
    [CrossRef]
  8. S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
    [CrossRef]
  9. S. Y. Lin, D. X. Ye, T. M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99(8), 083104 (2006).
    [CrossRef]
  10. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
    [CrossRef] [PubMed]
  11. J. F. Chen, R. T. Hong, and J.-Y. Yang, “Analysis of planar defect structures in three-dimensional layer-by-layer photonic crystals,” J. Appl. Phys. 104(6), 063111 (2008).
    [CrossRef]
  12. A. S. P. Chang, Y.-S. Kim, M. Chen, Z.-P. Yang, J. A. Bur, S.-Y. Lin, and K.-M. Ho, “Visible three-dimensional metallic photonic crystal with non-localized propagating modes beyond waveguide cutoff,” Opt. Express 15(13), 8428–8437 (2007).
    [CrossRef] [PubMed]
  13. O. Toader, M. Berciu, and S. John, “Photonic band gaps based on tetragonal lattices of slanted pores,” Phys. Rev. Lett. 90(23), 233901 (2003).
    [CrossRef] [PubMed]
  14. O. Toader and S. John, “Slanted-pore photonic band-gap materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036605 (2005).
    [CrossRef] [PubMed]
  15. J. D. Williams, C. Arrington, W. C. Sweatt, D. W. Peters, I. El-Kady, A. R. Ellis, J. Verley, and F. B. McCormick, “Tilted Logpile photonic crystals using the LIGA technique,” Proc. SPIE 6289, 62890A (2006).
    [CrossRef]
  16. S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8(9), 721–725 (2009).
    [CrossRef] [PubMed]
  17. H. Y. Sang, Z. Y. Li, and B.-Y. Gu, “Engineering the structure-induced enhanced absorption in three-dimensional metallic photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066611 (2004).
    [CrossRef]
  18. H.-Y. Sang, Z.-Y. Li, and B.-Y. Gu, “Photonic states deep into the waveguide cutoff frequency of metallic mesh photonic crystal filters,” J. Appl. Phys. 97(3), 033102 (2005).
    [CrossRef]
  19. J. D. Williams and W. Sweatt, “Method to Fabricate a Tilted Logpile Photonic Crystal,” US Patent No. US 7,820,365 B1 (2010).
  20. J. D. Williams, P. Sun, W. C. Sweatt, and A. R. Ellis, “Metallic-tilted woodpile photonic crystals in the midinfrared,” J. Micro/Nanolith. MEMS MOEMS 9(2), 023011 (2010).
    [CrossRef]
  21. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [CrossRef]
  22. M. N. O. Sadiku, Elements of Electromagnetics, 3rd ed. (Oxford University Press, 2001), pp. 554.

2010 (1)

J. D. Williams, P. Sun, W. C. Sweatt, and A. R. Ellis, “Metallic-tilted woodpile photonic crystals in the midinfrared,” J. Micro/Nanolith. MEMS MOEMS 9(2), 023011 (2010).
[CrossRef]

2009 (1)

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8(9), 721–725 (2009).
[CrossRef] [PubMed]

2008 (1)

J. F. Chen, R. T. Hong, and J.-Y. Yang, “Analysis of planar defect structures in three-dimensional layer-by-layer photonic crystals,” J. Appl. Phys. 104(6), 063111 (2008).
[CrossRef]

2007 (1)

2006 (2)

J. D. Williams, C. Arrington, W. C. Sweatt, D. W. Peters, I. El-Kady, A. R. Ellis, J. Verley, and F. B. McCormick, “Tilted Logpile photonic crystals using the LIGA technique,” Proc. SPIE 6289, 62890A (2006).
[CrossRef]

S. Y. Lin, D. X. Ye, T. M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99(8), 083104 (2006).
[CrossRef]

2005 (2)

O. Toader and S. John, “Slanted-pore photonic band-gap materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036605 (2005).
[CrossRef] [PubMed]

H.-Y. Sang, Z.-Y. Li, and B.-Y. Gu, “Photonic states deep into the waveguide cutoff frequency of metallic mesh photonic crystal filters,” J. Appl. Phys. 97(3), 033102 (2005).
[CrossRef]

2004 (1)

H. Y. Sang, Z. Y. Li, and B.-Y. Gu, “Engineering the structure-induced enhanced absorption in three-dimensional metallic photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066611 (2004).
[CrossRef]

2003 (3)

O. Toader, M. Berciu, and S. John, “Photonic band gaps based on tetragonal lattices of slanted pores,” Phys. Rev. Lett. 90(23), 233901 (2003).
[CrossRef] [PubMed]

Z. Y. Li, I. El-Kady, K.-M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93(1), 38–42 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
[CrossRef]

2002 (1)

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

2000 (1)

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[CrossRef] [PubMed]

1999 (1)

A. Moroz and C. Sommers, “Photonic band gaps of three-dimensional face-centered cubic lattices,” J. Phys. Condens. Matter 11(4), 997–1008 (1999).
[CrossRef]

1998 (2)

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
[CrossRef]

1994 (1)

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun. 89(5), 413–416 (1994).
[CrossRef]

Arrington, C.

J. D. Williams, C. Arrington, W. C. Sweatt, D. W. Peters, I. El-Kady, A. R. Ellis, J. Verley, and F. B. McCormick, “Tilted Logpile photonic crystals using the LIGA technique,” Proc. SPIE 6289, 62890A (2006).
[CrossRef]

Berciu, M.

O. Toader, M. Berciu, and S. John, “Photonic band gaps based on tetragonal lattices of slanted pores,” Phys. Rev. Lett. 90(23), 233901 (2003).
[CrossRef] [PubMed]

Biswas, R.

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun. 89(5), 413–416 (1994).
[CrossRef]

Bur, J.

S. Y. Lin, D. X. Ye, T. M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99(8), 083104 (2006).
[CrossRef]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

Bur, J. A.

Chan, C. T.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun. 89(5), 413–416 (1994).
[CrossRef]

Chang, A. S. P.

Chen, J. F.

J. F. Chen, R. T. Hong, and J.-Y. Yang, “Analysis of planar defect structures in three-dimensional layer-by-layer photonic crystals,” J. Appl. Phys. 104(6), 063111 (2008).
[CrossRef]

Chen, M.

Chutinan, A.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[CrossRef] [PubMed]

Djurišic, A. B.

Elazar, J. M.

El-Kady, I.

J. D. Williams, C. Arrington, W. C. Sweatt, D. W. Peters, I. El-Kady, A. R. Ellis, J. Verley, and F. B. McCormick, “Tilted Logpile photonic crystals using the LIGA technique,” Proc. SPIE 6289, 62890A (2006).
[CrossRef]

Z. Y. Li, I. El-Kady, K.-M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93(1), 38–42 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

Ellis, A. R.

J. D. Williams, P. Sun, W. C. Sweatt, and A. R. Ellis, “Metallic-tilted woodpile photonic crystals in the midinfrared,” J. Micro/Nanolith. MEMS MOEMS 9(2), 023011 (2010).
[CrossRef]

J. D. Williams, C. Arrington, W. C. Sweatt, D. W. Peters, I. El-Kady, A. R. Ellis, J. Verley, and F. B. McCormick, “Tilted Logpile photonic crystals using the LIGA technique,” Proc. SPIE 6289, 62890A (2006).
[CrossRef]

Fleming, J. G.

Z. Y. Li, I. El-Kady, K.-M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93(1), 38–42 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

Gu, B.-Y.

H.-Y. Sang, Z.-Y. Li, and B.-Y. Gu, “Photonic states deep into the waveguide cutoff frequency of metallic mesh photonic crystal filters,” J. Appl. Phys. 97(3), 033102 (2005).
[CrossRef]

H. Y. Sang, Z. Y. Li, and B.-Y. Gu, “Engineering the structure-induced enhanced absorption in three-dimensional metallic photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066611 (2004).
[CrossRef]

Hetherington, D. L.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

Ho, K. M.

S. Y. Lin, D. X. Ye, T. M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99(8), 083104 (2006).
[CrossRef]

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun. 89(5), 413–416 (1994).
[CrossRef]

Ho, K.-M.

Hong, R. T.

J. F. Chen, R. T. Hong, and J.-Y. Yang, “Analysis of planar defect structures in three-dimensional layer-by-layer photonic crystals,” J. Appl. Phys. 104(6), 063111 (2008).
[CrossRef]

Imada, M.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8(9), 721–725 (2009).
[CrossRef] [PubMed]

Ishizaki, K.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8(9), 721–725 (2009).
[CrossRef] [PubMed]

John, S.

O. Toader and S. John, “Slanted-pore photonic band-gap materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036605 (2005).
[CrossRef] [PubMed]

O. Toader, M. Berciu, and S. John, “Photonic band gaps based on tetragonal lattices of slanted pores,” Phys. Rev. Lett. 90(23), 233901 (2003).
[CrossRef] [PubMed]

Kim, Y. S.

S. Y. Lin, D. X. Ye, T. M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99(8), 083104 (2006).
[CrossRef]

Kim, Y.-S.

Kurtz, S. R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

Li, Z. Y.

H. Y. Sang, Z. Y. Li, and B.-Y. Gu, “Engineering the structure-induced enhanced absorption in three-dimensional metallic photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066611 (2004).
[CrossRef]

Z. Y. Li, I. El-Kady, K.-M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93(1), 38–42 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
[CrossRef]

Li, Z.-Y.

H.-Y. Sang, Z.-Y. Li, and B.-Y. Gu, “Photonic states deep into the waveguide cutoff frequency of metallic mesh photonic crystal filters,” J. Appl. Phys. 97(3), 033102 (2005).
[CrossRef]

Lin, S. Y.

S. Y. Lin, D. X. Ye, T. M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99(8), 083104 (2006).
[CrossRef]

Z. Y. Li, I. El-Kady, K.-M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93(1), 38–42 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

Lin, S.-Y.

Lu, T. M.

S. Y. Lin, D. X. Ye, T. M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99(8), 083104 (2006).
[CrossRef]

Majewski, M. L.

McCormick, F. B.

J. D. Williams, C. Arrington, W. C. Sweatt, D. W. Peters, I. El-Kady, A. R. Ellis, J. Verley, and F. B. McCormick, “Tilted Logpile photonic crystals using the LIGA technique,” Proc. SPIE 6289, 62890A (2006).
[CrossRef]

Moroz, A.

A. Moroz and C. Sommers, “Photonic band gaps of three-dimensional face-centered cubic lattices,” J. Phys. Condens. Matter 11(4), 997–1008 (1999).
[CrossRef]

Nakamori, T.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8(9), 721–725 (2009).
[CrossRef] [PubMed]

Noda, S.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8(9), 721–725 (2009).
[CrossRef] [PubMed]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[CrossRef] [PubMed]

Okano, M.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8(9), 721–725 (2009).
[CrossRef] [PubMed]

Ota, Y.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8(9), 721–725 (2009).
[CrossRef] [PubMed]

Peters, D. W.

J. D. Williams, C. Arrington, W. C. Sweatt, D. W. Peters, I. El-Kady, A. R. Ellis, J. Verley, and F. B. McCormick, “Tilted Logpile photonic crystals using the LIGA technique,” Proc. SPIE 6289, 62890A (2006).
[CrossRef]

Rakic, A. D.

Sang, H. Y.

H. Y. Sang, Z. Y. Li, and B.-Y. Gu, “Engineering the structure-induced enhanced absorption in three-dimensional metallic photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066611 (2004).
[CrossRef]

Sang, H.-Y.

H.-Y. Sang, Z.-Y. Li, and B.-Y. Gu, “Photonic states deep into the waveguide cutoff frequency of metallic mesh photonic crystal filters,” J. Appl. Phys. 97(3), 033102 (2005).
[CrossRef]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Sigalas, M.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun. 89(5), 413–416 (1994).
[CrossRef]

Sigalas, M. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

Smith, B. K.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Sommers, C.

A. Moroz and C. Sommers, “Photonic band gaps of three-dimensional face-centered cubic lattices,” J. Phys. Condens. Matter 11(4), 997–1008 (1999).
[CrossRef]

Soukoulis, C. M.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun. 89(5), 413–416 (1994).
[CrossRef]

Sun, P.

J. D. Williams, P. Sun, W. C. Sweatt, and A. R. Ellis, “Metallic-tilted woodpile photonic crystals in the midinfrared,” J. Micro/Nanolith. MEMS MOEMS 9(2), 023011 (2010).
[CrossRef]

Suzuki, K.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8(9), 721–725 (2009).
[CrossRef] [PubMed]

Sweatt, W. C.

J. D. Williams, P. Sun, W. C. Sweatt, and A. R. Ellis, “Metallic-tilted woodpile photonic crystals in the midinfrared,” J. Micro/Nanolith. MEMS MOEMS 9(2), 023011 (2010).
[CrossRef]

J. D. Williams, C. Arrington, W. C. Sweatt, D. W. Peters, I. El-Kady, A. R. Ellis, J. Verley, and F. B. McCormick, “Tilted Logpile photonic crystals using the LIGA technique,” Proc. SPIE 6289, 62890A (2006).
[CrossRef]

Takahashi, S.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8(9), 721–725 (2009).
[CrossRef] [PubMed]

Toader, O.

O. Toader and S. John, “Slanted-pore photonic band-gap materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036605 (2005).
[CrossRef] [PubMed]

O. Toader, M. Berciu, and S. John, “Photonic band gaps based on tetragonal lattices of slanted pores,” Phys. Rev. Lett. 90(23), 233901 (2003).
[CrossRef] [PubMed]

Tomoda, K.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[CrossRef] [PubMed]

Verley, J.

J. D. Williams, C. Arrington, W. C. Sweatt, D. W. Peters, I. El-Kady, A. R. Ellis, J. Verley, and F. B. McCormick, “Tilted Logpile photonic crystals using the LIGA technique,” Proc. SPIE 6289, 62890A (2006).
[CrossRef]

Williams, J. D.

J. D. Williams, P. Sun, W. C. Sweatt, and A. R. Ellis, “Metallic-tilted woodpile photonic crystals in the midinfrared,” J. Micro/Nanolith. MEMS MOEMS 9(2), 023011 (2010).
[CrossRef]

J. D. Williams, C. Arrington, W. C. Sweatt, D. W. Peters, I. El-Kady, A. R. Ellis, J. Verley, and F. B. McCormick, “Tilted Logpile photonic crystals using the LIGA technique,” Proc. SPIE 6289, 62890A (2006).
[CrossRef]

Yamamoto, N.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[CrossRef] [PubMed]

Yang, J.-Y.

J. F. Chen, R. T. Hong, and J.-Y. Yang, “Analysis of planar defect structures in three-dimensional layer-by-layer photonic crystals,” J. Appl. Phys. 104(6), 063111 (2008).
[CrossRef]

Yang, Z.-P.

Ye, D. X.

S. Y. Lin, D. X. Ye, T. M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99(8), 083104 (2006).
[CrossRef]

Zubrzycki, W.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

Appl. Opt. (1)

J. Appl. Phys. (4)

J. F. Chen, R. T. Hong, and J.-Y. Yang, “Analysis of planar defect structures in three-dimensional layer-by-layer photonic crystals,” J. Appl. Phys. 104(6), 063111 (2008).
[CrossRef]

Z. Y. Li, I. El-Kady, K.-M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93(1), 38–42 (2003).
[CrossRef]

H.-Y. Sang, Z.-Y. Li, and B.-Y. Gu, “Photonic states deep into the waveguide cutoff frequency of metallic mesh photonic crystal filters,” J. Appl. Phys. 97(3), 033102 (2005).
[CrossRef]

S. Y. Lin, D. X. Ye, T. M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99(8), 083104 (2006).
[CrossRef]

J. Micro/Nanolith. MEMS MOEMS (1)

J. D. Williams, P. Sun, W. C. Sweatt, and A. R. Ellis, “Metallic-tilted woodpile photonic crystals in the midinfrared,” J. Micro/Nanolith. MEMS MOEMS 9(2), 023011 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

A. Moroz and C. Sommers, “Photonic band gaps of three-dimensional face-centered cubic lattices,” J. Phys. Condens. Matter 11(4), 997–1008 (1999).
[CrossRef]

Nat. Mater. (1)

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8(9), 721–725 (2009).
[CrossRef] [PubMed]

Nature (2)

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

Opt. Express (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

H. Y. Sang, Z. Y. Li, and B.-Y. Gu, “Engineering the structure-induced enhanced absorption in three-dimensional metallic photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066611 (2004).
[CrossRef]

O. Toader and S. John, “Slanted-pore photonic band-gap materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036605 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

O. Toader, M. Berciu, and S. John, “Photonic band gaps based on tetragonal lattices of slanted pores,” Phys. Rev. Lett. 90(23), 233901 (2003).
[CrossRef] [PubMed]

Proc. SPIE (1)

J. D. Williams, C. Arrington, W. C. Sweatt, D. W. Peters, I. El-Kady, A. R. Ellis, J. Verley, and F. B. McCormick, “Tilted Logpile photonic crystals using the LIGA technique,” Proc. SPIE 6289, 62890A (2006).
[CrossRef]

Science (2)

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Solid State Commun. (1)

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun. 89(5), 413–416 (1994).
[CrossRef]

Other (3)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).

J. D. Williams and W. Sweatt, “Method to Fabricate a Tilted Logpile Photonic Crystal,” US Patent No. US 7,820,365 B1 (2010).

M. N. O. Sadiku, Elements of Electromagnetics, 3rd ed. (Oxford University Press, 2001), pp. 554.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematics of (a) the tilted-woodpile photonic crystal created by top-down method, whose surface normal is in the <110> direction, and (b) the conventional photonic crystal created by layer-by-layer method, whose surface normal is in the <001> direction.

Fig. 2
Fig. 2

Measured total reflectance of a tilted-woodpile depicted in Fig. 1(a) made of gold with h = 2.4 μm, w = 1 μm and d = 4 μm.

Fig. 3
Fig. 3

Normal incidence reflection from the gold woodpile photonic crystal with h = 1 μm, w = 1 μm and d = 4 μm using traditional fabrication approaches, <001> direction, and the tilt-woodpile, <110> direction.

Fig. 4
Fig. 4

Electric field contours for different cross sections of the gold woodpile photonic crystal with h = 1 μm, w = 1 μm and d = 4 μm. (a) Cross section normal to <001> direction; (b) cross section normal to <110> direction; (c) cross section normal to <1,-1,0> direction.

Fig. 5
Fig. 5

Measured total reflectance of different log size tilt-woodpiles, the smaller dip represents the larger rod size and the smaller space between rods.

Fig. 6
Fig. 6

Simulation reflectance of tilted-woodpile with (a) different log thickness and (b) different log width.

Metrics