Abstract

Human perception becomes difficult in the event of binocular color fusion when the color difference presented for the left and right eyes exceeds a certain threshold value, known as the binocular color fusion limit. This paper discusses the binocular color fusion limit for non-spectral colors within the color gamut of a conventional LCD 3DTV. We performed experiments to measure the color fusion limit for eight chromaticity points sampled from the CIE 1976 chromaticity diagram. A total of 2480 trials were recorded for a single observer. By analyzing the results, the color fusion limit was quantified by ellipses in the chromaticity diagram. The semi-minor axis of the ellipses ranges from 0.0415 to 0.0923 in terms of the Euclidean distance in the u’v´ chromaticity diagram and the semi-major axis ranges from 0.0640 to 0.1560. These eight ellipses are drawn on the chromaticity diagram.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Lambooij, W. Ijsselsteijn, M. Fortuin, and I. Heynderickx, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imaging Sci. Technol. 53(3), 1–14 (2009).
    [CrossRef]
  2. J. K. Hovis, “Review of dichoptic color mixing,” Optom. Vis. Sci. 66(3), 181–190 (1989).
    [CrossRef] [PubMed]
  3. I. P. Howard, Seeing in depth (I. Porteous, 2002), Chap. 7.
  4. M. Ikeda and K. Sagawa, “Binocular color fusion limit,” J. Opt. Soc. Am. 69(2), 316–320 (1979).
    [CrossRef] [PubMed]
  5. M. Ikeda and Y. Nakashima, “Wavelength difference limit for binocular color fusion,” Vision Res. 20(8), 693–697 (1980).
    [CrossRef] [PubMed]
  6. H. Ujike, et al., “ISO International Workshop Agreement-IWA3 Image Safety - reducing the incidence of undesirable biomedical effects caused by visual image sequences. IWA 3:2005(E), ” (ISO copyright office, Case postale 56, CH-1211 Geneva 20, 2005).
  7. C. Shigeru, “3D consortium safety guidelines for popularization of human-friendly 3D,” Tech. Rep. 3D Consortium (Japan, 1996).
  8. Q. Huynh-Thu, P. L. Callet, and M. Barkowsky, “Video quality assessment: from 2D to 3D - challenges and future trends,” in Proceedings of IEEE International Conference on Image Processing (Institute of Electrical and Electronics Engineers, New York, 2010), pp. 4025–4028.
  9. D. L. Macadam, “Visual sensitivities to color differences in daylight,” J. Opt. Soc. Am. 32(5), 247–274 (1942).
    [CrossRef]
  10. D. Qin, M. Takamatsu, Y. Nakashima, and X. Qin, “Change of wavelength difference limit for binocular color fusion with wavelength and brightness of stimuli,” J. Light Vis. Environ. 30(1), 43–45 (2006).
    [CrossRef]
  11. W. D. Wright, “The sensitivity of the eye to small colour differences,” Proc. Phys. Soc. 53(2), 93–112 (1941).
    [CrossRef]
  12. E. F. Schubert, Light-emitting diodes (Cambridge Univ. Press, 2006), Chap. 17.
  13. G. Verriest, J. Van Laethem, and A. Uvijls, “A new assessment of the normal ranges of the Farnsworth-Munsell 100-hue test scores,” Am. J. Ophthalmol. 93(5), 635–642 (1982).
    [PubMed]
  14. A. Woods, “Understanding crosstalk in stereoscopic displays,” presented in Keynote Presentation at the Three-Dimensional Systems and Applications Conference, Tokyo, Japan, 19–21 May 2010.
  15. J.-C. Liou, K. Lee, F.-G. Tseng, J.-F. Huang, W.-T. Yen, and W.-L. Hsu, “Sutter glasses stereo LCD with a dynamic backlight,” Proc. SPIE 7237, 72370X, 72370X-8 (2009).
    [CrossRef]
  16. G. Sharma, “LCDs versus CRTs - color-calibration and gamut considerations,” Proc. IEEE 90(4), 605–622 (2002).
    [CrossRef]
  17. Y.-K. Cheng and H.-P. D. Shieh, “Colorimetric characterization of high dynamic range liquid crystal displays and its application,” J. Display Technol. 5(1), 40–45 (2009).
    [CrossRef]
  18. P. L. Rosin, “Fitting superellipses,” IEEE Trans. Pattern Anal. Mach. Intell. 22(7), 726–732 (2000).
    [CrossRef]
  19. A. S. H. Ler, M. A. Cohen, and J. A. Taylor, “A planar elliptical model of cardio-vagal hysteresis,” Physiol. Meas. 31(6), 857–873 (2010).
    [CrossRef] [PubMed]
  20. ITU-R BT-500, 11, “Methodology for the subjective assessment of the quality of television pictures,” International Telecommunications Union (2002).

2010 (1)

A. S. H. Ler, M. A. Cohen, and J. A. Taylor, “A planar elliptical model of cardio-vagal hysteresis,” Physiol. Meas. 31(6), 857–873 (2010).
[CrossRef] [PubMed]

2009 (3)

J.-C. Liou, K. Lee, F.-G. Tseng, J.-F. Huang, W.-T. Yen, and W.-L. Hsu, “Sutter glasses stereo LCD with a dynamic backlight,” Proc. SPIE 7237, 72370X, 72370X-8 (2009).
[CrossRef]

M. Lambooij, W. Ijsselsteijn, M. Fortuin, and I. Heynderickx, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imaging Sci. Technol. 53(3), 1–14 (2009).
[CrossRef]

Y.-K. Cheng and H.-P. D. Shieh, “Colorimetric characterization of high dynamic range liquid crystal displays and its application,” J. Display Technol. 5(1), 40–45 (2009).
[CrossRef]

2006 (1)

D. Qin, M. Takamatsu, Y. Nakashima, and X. Qin, “Change of wavelength difference limit for binocular color fusion with wavelength and brightness of stimuli,” J. Light Vis. Environ. 30(1), 43–45 (2006).
[CrossRef]

2002 (1)

G. Sharma, “LCDs versus CRTs - color-calibration and gamut considerations,” Proc. IEEE 90(4), 605–622 (2002).
[CrossRef]

2000 (1)

P. L. Rosin, “Fitting superellipses,” IEEE Trans. Pattern Anal. Mach. Intell. 22(7), 726–732 (2000).
[CrossRef]

1989 (1)

J. K. Hovis, “Review of dichoptic color mixing,” Optom. Vis. Sci. 66(3), 181–190 (1989).
[CrossRef] [PubMed]

1982 (1)

G. Verriest, J. Van Laethem, and A. Uvijls, “A new assessment of the normal ranges of the Farnsworth-Munsell 100-hue test scores,” Am. J. Ophthalmol. 93(5), 635–642 (1982).
[PubMed]

1980 (1)

M. Ikeda and Y. Nakashima, “Wavelength difference limit for binocular color fusion,” Vision Res. 20(8), 693–697 (1980).
[CrossRef] [PubMed]

1979 (1)

1942 (1)

1941 (1)

W. D. Wright, “The sensitivity of the eye to small colour differences,” Proc. Phys. Soc. 53(2), 93–112 (1941).
[CrossRef]

Cheng, Y.-K.

Cohen, M. A.

A. S. H. Ler, M. A. Cohen, and J. A. Taylor, “A planar elliptical model of cardio-vagal hysteresis,” Physiol. Meas. 31(6), 857–873 (2010).
[CrossRef] [PubMed]

Fortuin, M.

M. Lambooij, W. Ijsselsteijn, M. Fortuin, and I. Heynderickx, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imaging Sci. Technol. 53(3), 1–14 (2009).
[CrossRef]

Heynderickx, I.

M. Lambooij, W. Ijsselsteijn, M. Fortuin, and I. Heynderickx, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imaging Sci. Technol. 53(3), 1–14 (2009).
[CrossRef]

Hovis, J. K.

J. K. Hovis, “Review of dichoptic color mixing,” Optom. Vis. Sci. 66(3), 181–190 (1989).
[CrossRef] [PubMed]

Hsu, W.-L.

J.-C. Liou, K. Lee, F.-G. Tseng, J.-F. Huang, W.-T. Yen, and W.-L. Hsu, “Sutter glasses stereo LCD with a dynamic backlight,” Proc. SPIE 7237, 72370X, 72370X-8 (2009).
[CrossRef]

Huang, J.-F.

J.-C. Liou, K. Lee, F.-G. Tseng, J.-F. Huang, W.-T. Yen, and W.-L. Hsu, “Sutter glasses stereo LCD with a dynamic backlight,” Proc. SPIE 7237, 72370X, 72370X-8 (2009).
[CrossRef]

Ijsselsteijn, W.

M. Lambooij, W. Ijsselsteijn, M. Fortuin, and I. Heynderickx, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imaging Sci. Technol. 53(3), 1–14 (2009).
[CrossRef]

Ikeda, M.

M. Ikeda and Y. Nakashima, “Wavelength difference limit for binocular color fusion,” Vision Res. 20(8), 693–697 (1980).
[CrossRef] [PubMed]

M. Ikeda and K. Sagawa, “Binocular color fusion limit,” J. Opt. Soc. Am. 69(2), 316–320 (1979).
[CrossRef] [PubMed]

Lambooij, M.

M. Lambooij, W. Ijsselsteijn, M. Fortuin, and I. Heynderickx, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imaging Sci. Technol. 53(3), 1–14 (2009).
[CrossRef]

Lee, K.

J.-C. Liou, K. Lee, F.-G. Tseng, J.-F. Huang, W.-T. Yen, and W.-L. Hsu, “Sutter glasses stereo LCD with a dynamic backlight,” Proc. SPIE 7237, 72370X, 72370X-8 (2009).
[CrossRef]

Ler, A. S. H.

A. S. H. Ler, M. A. Cohen, and J. A. Taylor, “A planar elliptical model of cardio-vagal hysteresis,” Physiol. Meas. 31(6), 857–873 (2010).
[CrossRef] [PubMed]

Liou, J.-C.

J.-C. Liou, K. Lee, F.-G. Tseng, J.-F. Huang, W.-T. Yen, and W.-L. Hsu, “Sutter glasses stereo LCD with a dynamic backlight,” Proc. SPIE 7237, 72370X, 72370X-8 (2009).
[CrossRef]

Macadam, D. L.

Nakashima, Y.

D. Qin, M. Takamatsu, Y. Nakashima, and X. Qin, “Change of wavelength difference limit for binocular color fusion with wavelength and brightness of stimuli,” J. Light Vis. Environ. 30(1), 43–45 (2006).
[CrossRef]

M. Ikeda and Y. Nakashima, “Wavelength difference limit for binocular color fusion,” Vision Res. 20(8), 693–697 (1980).
[CrossRef] [PubMed]

Qin, D.

D. Qin, M. Takamatsu, Y. Nakashima, and X. Qin, “Change of wavelength difference limit for binocular color fusion with wavelength and brightness of stimuli,” J. Light Vis. Environ. 30(1), 43–45 (2006).
[CrossRef]

Qin, X.

D. Qin, M. Takamatsu, Y. Nakashima, and X. Qin, “Change of wavelength difference limit for binocular color fusion with wavelength and brightness of stimuli,” J. Light Vis. Environ. 30(1), 43–45 (2006).
[CrossRef]

Rosin, P. L.

P. L. Rosin, “Fitting superellipses,” IEEE Trans. Pattern Anal. Mach. Intell. 22(7), 726–732 (2000).
[CrossRef]

Sagawa, K.

Sharma, G.

G. Sharma, “LCDs versus CRTs - color-calibration and gamut considerations,” Proc. IEEE 90(4), 605–622 (2002).
[CrossRef]

Shieh, H.-P. D.

Takamatsu, M.

D. Qin, M. Takamatsu, Y. Nakashima, and X. Qin, “Change of wavelength difference limit for binocular color fusion with wavelength and brightness of stimuli,” J. Light Vis. Environ. 30(1), 43–45 (2006).
[CrossRef]

Taylor, J. A.

A. S. H. Ler, M. A. Cohen, and J. A. Taylor, “A planar elliptical model of cardio-vagal hysteresis,” Physiol. Meas. 31(6), 857–873 (2010).
[CrossRef] [PubMed]

Tseng, F.-G.

J.-C. Liou, K. Lee, F.-G. Tseng, J.-F. Huang, W.-T. Yen, and W.-L. Hsu, “Sutter glasses stereo LCD with a dynamic backlight,” Proc. SPIE 7237, 72370X, 72370X-8 (2009).
[CrossRef]

Uvijls, A.

G. Verriest, J. Van Laethem, and A. Uvijls, “A new assessment of the normal ranges of the Farnsworth-Munsell 100-hue test scores,” Am. J. Ophthalmol. 93(5), 635–642 (1982).
[PubMed]

Van Laethem, J.

G. Verriest, J. Van Laethem, and A. Uvijls, “A new assessment of the normal ranges of the Farnsworth-Munsell 100-hue test scores,” Am. J. Ophthalmol. 93(5), 635–642 (1982).
[PubMed]

Verriest, G.

G. Verriest, J. Van Laethem, and A. Uvijls, “A new assessment of the normal ranges of the Farnsworth-Munsell 100-hue test scores,” Am. J. Ophthalmol. 93(5), 635–642 (1982).
[PubMed]

Wright, W. D.

W. D. Wright, “The sensitivity of the eye to small colour differences,” Proc. Phys. Soc. 53(2), 93–112 (1941).
[CrossRef]

Yen, W.-T.

J.-C. Liou, K. Lee, F.-G. Tseng, J.-F. Huang, W.-T. Yen, and W.-L. Hsu, “Sutter glasses stereo LCD with a dynamic backlight,” Proc. SPIE 7237, 72370X, 72370X-8 (2009).
[CrossRef]

Am. J. Ophthalmol. (1)

G. Verriest, J. Van Laethem, and A. Uvijls, “A new assessment of the normal ranges of the Farnsworth-Munsell 100-hue test scores,” Am. J. Ophthalmol. 93(5), 635–642 (1982).
[PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

P. L. Rosin, “Fitting superellipses,” IEEE Trans. Pattern Anal. Mach. Intell. 22(7), 726–732 (2000).
[CrossRef]

J. Display Technol. (1)

J. Imaging Sci. Technol. (1)

M. Lambooij, W. Ijsselsteijn, M. Fortuin, and I. Heynderickx, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imaging Sci. Technol. 53(3), 1–14 (2009).
[CrossRef]

J. Light Vis. Environ. (1)

D. Qin, M. Takamatsu, Y. Nakashima, and X. Qin, “Change of wavelength difference limit for binocular color fusion with wavelength and brightness of stimuli,” J. Light Vis. Environ. 30(1), 43–45 (2006).
[CrossRef]

J. Opt. Soc. Am. (2)

Optom. Vis. Sci. (1)

J. K. Hovis, “Review of dichoptic color mixing,” Optom. Vis. Sci. 66(3), 181–190 (1989).
[CrossRef] [PubMed]

Physiol. Meas. (1)

A. S. H. Ler, M. A. Cohen, and J. A. Taylor, “A planar elliptical model of cardio-vagal hysteresis,” Physiol. Meas. 31(6), 857–873 (2010).
[CrossRef] [PubMed]

Proc. IEEE (1)

G. Sharma, “LCDs versus CRTs - color-calibration and gamut considerations,” Proc. IEEE 90(4), 605–622 (2002).
[CrossRef]

Proc. Phys. Soc. (1)

W. D. Wright, “The sensitivity of the eye to small colour differences,” Proc. Phys. Soc. 53(2), 93–112 (1941).
[CrossRef]

Proc. SPIE (1)

J.-C. Liou, K. Lee, F.-G. Tseng, J.-F. Huang, W.-T. Yen, and W.-L. Hsu, “Sutter glasses stereo LCD with a dynamic backlight,” Proc. SPIE 7237, 72370X, 72370X-8 (2009).
[CrossRef]

Vision Res. (1)

M. Ikeda and Y. Nakashima, “Wavelength difference limit for binocular color fusion,” Vision Res. 20(8), 693–697 (1980).
[CrossRef] [PubMed]

Other (7)

H. Ujike, et al., “ISO International Workshop Agreement-IWA3 Image Safety - reducing the incidence of undesirable biomedical effects caused by visual image sequences. IWA 3:2005(E), ” (ISO copyright office, Case postale 56, CH-1211 Geneva 20, 2005).

C. Shigeru, “3D consortium safety guidelines for popularization of human-friendly 3D,” Tech. Rep. 3D Consortium (Japan, 1996).

Q. Huynh-Thu, P. L. Callet, and M. Barkowsky, “Video quality assessment: from 2D to 3D - challenges and future trends,” in Proceedings of IEEE International Conference on Image Processing (Institute of Electrical and Electronics Engineers, New York, 2010), pp. 4025–4028.

E. F. Schubert, Light-emitting diodes (Cambridge Univ. Press, 2006), Chap. 17.

I. P. Howard, Seeing in depth (I. Porteous, 2002), Chap. 7.

A. Woods, “Understanding crosstalk in stereoscopic displays,” presented in Keynote Presentation at the Three-Dimensional Systems and Applications Conference, Tokyo, Japan, 19–21 May 2010.

ITU-R BT-500, 11, “Methodology for the subjective assessment of the quality of television pictures,” International Telecommunications Union (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Apparatus and (b) viewing environment used in our experiment for the investigation of the color fusion limit.

Fig. 2
Fig. 2

The total of 8 sample points in the CIE 1976 chromaticity diagram where we quantify color fusion limit through our experiment. The triangle represents the color gamut of the LCD display used in our experiments. The numbers indicate the sample numbers (from No. 1 to No. 8). These sample points were presented for the right eye.

Fig. 3
Fig. 3

Examples of the neighbor selection scheme for the (a) No. 3 and (b) No. 5 sample points illustrated in Fig. 2. The selections were sampled along straight lines in six directions with a uniform step size of 0.02. The triangle represents the color gamut of the LCD display used in our experiments. The colors of the selected neighbor points were presented for the left eye.

Fig. 4
Fig. 4

Example of a stimulus used in the binocular color fusion limit experiment (a) for the left eye and (b) for the right eye. The test field size was 2° in diameter, and the surrounding field size was 33°.

Fig. 5
Fig. 5

Percentage of fused perceptions regarding the left stimuli sampled in each neighbor’s direction from the No. 1 point (u´=0.15, v´=0.55). The abscissa represents the Euclidean distance from the point (u´=0.15, v´=0.55). p(%) denotes the percentage of fused perceptions. Observer: DH. (a) Red direction, (b) blue direction, and (c) blue-red direction.

Fig. 6
Fig. 6

Percentage of fused perceptions regarding the left stimuli sampled in each neighbor’s direction from the No. 6 point (u´=0.3, v´=0.4). Observer: DH. (a) Red direction, (b) red-green direction (c) green direction (d) green-blue direction, and (e) blue direction.

Fig. 7
Fig. 7

Binocular color fusion limit for each of the chromaticity points in Fig. 2. The parameters of the ellipses were obtained by nonlinear regression. (a) No. 1 point (u´ = 0.15, v´ = 0.55), (b) No. 2 point (u´ = 0.2, v´ = 0.5), (c) No. 3 point (u´ = 0.3, v´ = 0.5), (d) No. 4 point (u´ = 0.4, v´ = 0.5), (e) No. 5 point (u´ = 0.2, v´ = 0.4), and (f) No. 6 point (u´ = 0.3, v´ = 0.4). The fusion limit along each line was marked.

Fig. 8
Fig. 8

Binocular color fusion limit for each of the chromaticity points in Fig. 2. The parameters of the ellipses were obtained by nonlinear regression. (a) No. 7 point (u´ = 0.2, v´ = 0.3), and (b) No. 8 point (u´ = 0.2, v´ = 0.2). The fusion limit along each line was marked.

Fig. 9
Fig. 9

Overall results of the color fusion limit plotted on the CIE 1976 chromaticity diagram. For clarity, the ellipses are downscaled to one third of their actual lengths.

Tables (4)

Tables Icon

Table 1 Specifications of LCD Displays Used in Our Experiment. The Brightness and Chromaticity Were Measured at the Center Point of the Monitor With a Spectroradiometer. H and V Respectively Denote the Horizontal and Vertical Size of the Display

Tables Icon

Table 3 Stimuli and Percentages of Fused Perceptions for Binocular Color Fusion. p(%) Refers to the Percentage of Fused Perceptions

Tables Icon

Table 2 Estimated Parameter Values and the Goodness-of-Fit Statistics of Ellipses for Each of the Eight Chromaticity Points

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

u f ' = u i ' + ( u i 1 ' u i ' ) 50 p i p i 1 p i ,
v f ' = v i ' + ( v i 1 ' v i ' ) 50 p i p i 1 p i ,
( ( u ' C 1 ) cos θ + ( v ' C 2 ) sin θ ) 2 a 2 + ( ( u ' C 1 ) sin θ + ( v ' C 2 ) cos θ ) 2 b 2 = 1 ,
S S E = f = 1 n ( ( ( u f ' C 1 ) cos θ + ( v f ' C 2 ) sin θ a ) 2 + ( ( u f ' C 1 ) sin θ + ( v f ' C 2 ) cos θ b ) 2 1 ) 2 ,

Metrics