Abstract

The growth and performance of top-illuminated metamorphic In0.20Ga0.80As p-i-n photodetectors grown on GaAs substrates using a step-graded InxGa1-xAs buffer is reported. The p-i-n photodetectors display a low room-temperature reverse bias dark current density of ~1.4×10−7 A/cm2 at −2 V. Responsivity and specific detectivity values of 0.72 A/W, 2.3×1012 cm·Hz1/2/W and 0.69 A/W, 2.2×1012 cm·Hz1/2/W are achieved for Yb:YAG (1030 nm) and Nd:YAG (1064 nm) laser wavelengths at −2 V, respectively. A high theoretical bandwidth-responsivity product of 0.21 GHz·A/W was estimated at 1064 nm. Device performance metrics for these GaAs substrate-based detectors compare favorably with those based on InP technology due to the close tuning of the detector bandgap to the target wavelengths, despite the presence of a residual threading dislocation density. This work demonstrates the great potential for high performance metamorphic near-infrared InGaAs detectors with optimally tuned bandgaps, which can be grown on GaAs substrates, for a wide variety of applications.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16(14), 1089–1091 (1991).
    [CrossRef] [PubMed]
  2. S. Donati, Photodetectors: Devices, Circuits and Applications (Prentice Hall, 2000), pp. 109–214.
  3. D. Jackrel, H. Yuen, S. Bank, M. Wistey, J. Fu, X. Yu, Z. Rao, and J. S. Harris, “Thick lattice-matched GaInNAs films in photodetector applications,” Proc. SPIE 5726, 27–34 (2005).
    [CrossRef]
  4. W. K. Loke, S. F. Yoon, K. H. Tan, S. Wicaksono, and W. J. Fan, “Improvement of GaInNAs p-i-n photodetector responsivity by antimony incorporation,” J. Appl. Phys. 101(3), 033122 (2007).
    [CrossRef]
  5. G. Lin, H. Kuo, C. Lin, and M. Feng, “Ultralow Leakage In0.53Ga0.47As p-i-n photodetector grown on linearly graded metamorphic InxGa1-xP buffered GaAs substrate,” IEEE J. Quantum Electron. 41(6), 749–752 (2005).
    [CrossRef]
  6. S. Sinharoy, M. Patton, T. Valko, and V. Weizer, “Progress in the development of metamorphic multi-junction III–V space solar cells,” Prog. Photovolt. Res. Appl. 10(6), 427–432 (2002).
    [CrossRef]
  7. D. Pal, E. Gombia, R. Mosca, A. Bosacchi, and S. Franchi, “Deep levels in virtually unstrained InGaAs layers deposited on GaAs,” J. Appl. Phys. 84(5), 2965–2967 (1998).
    [CrossRef]
  8. S. P. Ahrenkiel, M. W. Wanlass, J. J. Carapella, R. K. Ahrenkiel, S. W. Johnston, and L. M. Gedvilas, “Optimization of buffer layers for lattice-mismatched epitaxy of GaxIn1−xAs/InAsyP1−y double-heterostructures on InP,” Sol. Energy Mater. Sol. Cells 91(10), 908–918 (2007).
    [CrossRef]
  9. E. A. Fitzgerald, A. Y. Kim, M. T. Currie, T. A. Langdo, G. Taraschi, and M. T. Bulsara, “Dislocation dynamics in relaxed graded composition semiconductors,” Mat. Sci. Eng. B-Solid 67(1-2), 53–61 (1999).
    [CrossRef]
  10. D. B. Jackrel, “InGaAs and GaInNAs(Sb) 1064 nm photodetectors and solar cells on GaAs substrates,” Doctoral dissertation (Dept. of Materials Science and Engineering, Stanford University, 2005), pp. 127–150.
  11. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, 2007), Chap.13.
  12. Hamamatsu Photonics, “InGaAs p-i-n photodiode G8941 series data sheet,” http://sales.hamamatsu.com/assets/pdf/parts_G/G8941_series.pdf .
  13. Pacific Silicon sensor, “1064 nm enhanced silicon quadrant photodiode (Series Q) data sheet,” http://www.pacific-sensor.com/pages/sp_sq.html .

2007 (2)

W. K. Loke, S. F. Yoon, K. H. Tan, S. Wicaksono, and W. J. Fan, “Improvement of GaInNAs p-i-n photodetector responsivity by antimony incorporation,” J. Appl. Phys. 101(3), 033122 (2007).
[CrossRef]

S. P. Ahrenkiel, M. W. Wanlass, J. J. Carapella, R. K. Ahrenkiel, S. W. Johnston, and L. M. Gedvilas, “Optimization of buffer layers for lattice-mismatched epitaxy of GaxIn1−xAs/InAsyP1−y double-heterostructures on InP,” Sol. Energy Mater. Sol. Cells 91(10), 908–918 (2007).
[CrossRef]

2005 (2)

D. Jackrel, H. Yuen, S. Bank, M. Wistey, J. Fu, X. Yu, Z. Rao, and J. S. Harris, “Thick lattice-matched GaInNAs films in photodetector applications,” Proc. SPIE 5726, 27–34 (2005).
[CrossRef]

G. Lin, H. Kuo, C. Lin, and M. Feng, “Ultralow Leakage In0.53Ga0.47As p-i-n photodetector grown on linearly graded metamorphic InxGa1-xP buffered GaAs substrate,” IEEE J. Quantum Electron. 41(6), 749–752 (2005).
[CrossRef]

2002 (1)

S. Sinharoy, M. Patton, T. Valko, and V. Weizer, “Progress in the development of metamorphic multi-junction III–V space solar cells,” Prog. Photovolt. Res. Appl. 10(6), 427–432 (2002).
[CrossRef]

1999 (1)

E. A. Fitzgerald, A. Y. Kim, M. T. Currie, T. A. Langdo, G. Taraschi, and M. T. Bulsara, “Dislocation dynamics in relaxed graded composition semiconductors,” Mat. Sci. Eng. B-Solid 67(1-2), 53–61 (1999).
[CrossRef]

1998 (1)

D. Pal, E. Gombia, R. Mosca, A. Bosacchi, and S. Franchi, “Deep levels in virtually unstrained InGaAs layers deposited on GaAs,” J. Appl. Phys. 84(5), 2965–2967 (1998).
[CrossRef]

1991 (1)

Aggarwal, R. L.

Ahrenkiel, R. K.

S. P. Ahrenkiel, M. W. Wanlass, J. J. Carapella, R. K. Ahrenkiel, S. W. Johnston, and L. M. Gedvilas, “Optimization of buffer layers for lattice-mismatched epitaxy of GaxIn1−xAs/InAsyP1−y double-heterostructures on InP,” Sol. Energy Mater. Sol. Cells 91(10), 908–918 (2007).
[CrossRef]

Ahrenkiel, S. P.

S. P. Ahrenkiel, M. W. Wanlass, J. J. Carapella, R. K. Ahrenkiel, S. W. Johnston, and L. M. Gedvilas, “Optimization of buffer layers for lattice-mismatched epitaxy of GaxIn1−xAs/InAsyP1−y double-heterostructures on InP,” Sol. Energy Mater. Sol. Cells 91(10), 908–918 (2007).
[CrossRef]

Bank, S.

D. Jackrel, H. Yuen, S. Bank, M. Wistey, J. Fu, X. Yu, Z. Rao, and J. S. Harris, “Thick lattice-matched GaInNAs films in photodetector applications,” Proc. SPIE 5726, 27–34 (2005).
[CrossRef]

Bosacchi, A.

D. Pal, E. Gombia, R. Mosca, A. Bosacchi, and S. Franchi, “Deep levels in virtually unstrained InGaAs layers deposited on GaAs,” J. Appl. Phys. 84(5), 2965–2967 (1998).
[CrossRef]

Bulsara, M. T.

E. A. Fitzgerald, A. Y. Kim, M. T. Currie, T. A. Langdo, G. Taraschi, and M. T. Bulsara, “Dislocation dynamics in relaxed graded composition semiconductors,” Mat. Sci. Eng. B-Solid 67(1-2), 53–61 (1999).
[CrossRef]

Carapella, J. J.

S. P. Ahrenkiel, M. W. Wanlass, J. J. Carapella, R. K. Ahrenkiel, S. W. Johnston, and L. M. Gedvilas, “Optimization of buffer layers for lattice-mismatched epitaxy of GaxIn1−xAs/InAsyP1−y double-heterostructures on InP,” Sol. Energy Mater. Sol. Cells 91(10), 908–918 (2007).
[CrossRef]

Choi, H. K.

Currie, M. T.

E. A. Fitzgerald, A. Y. Kim, M. T. Currie, T. A. Langdo, G. Taraschi, and M. T. Bulsara, “Dislocation dynamics in relaxed graded composition semiconductors,” Mat. Sci. Eng. B-Solid 67(1-2), 53–61 (1999).
[CrossRef]

Fan, T. Y.

Fan, W. J.

W. K. Loke, S. F. Yoon, K. H. Tan, S. Wicaksono, and W. J. Fan, “Improvement of GaInNAs p-i-n photodetector responsivity by antimony incorporation,” J. Appl. Phys. 101(3), 033122 (2007).
[CrossRef]

Feng, M.

G. Lin, H. Kuo, C. Lin, and M. Feng, “Ultralow Leakage In0.53Ga0.47As p-i-n photodetector grown on linearly graded metamorphic InxGa1-xP buffered GaAs substrate,” IEEE J. Quantum Electron. 41(6), 749–752 (2005).
[CrossRef]

Fitzgerald, E. A.

E. A. Fitzgerald, A. Y. Kim, M. T. Currie, T. A. Langdo, G. Taraschi, and M. T. Bulsara, “Dislocation dynamics in relaxed graded composition semiconductors,” Mat. Sci. Eng. B-Solid 67(1-2), 53–61 (1999).
[CrossRef]

Franchi, S.

D. Pal, E. Gombia, R. Mosca, A. Bosacchi, and S. Franchi, “Deep levels in virtually unstrained InGaAs layers deposited on GaAs,” J. Appl. Phys. 84(5), 2965–2967 (1998).
[CrossRef]

Fu, J.

D. Jackrel, H. Yuen, S. Bank, M. Wistey, J. Fu, X. Yu, Z. Rao, and J. S. Harris, “Thick lattice-matched GaInNAs films in photodetector applications,” Proc. SPIE 5726, 27–34 (2005).
[CrossRef]

Gedvilas, L. M.

S. P. Ahrenkiel, M. W. Wanlass, J. J. Carapella, R. K. Ahrenkiel, S. W. Johnston, and L. M. Gedvilas, “Optimization of buffer layers for lattice-mismatched epitaxy of GaxIn1−xAs/InAsyP1−y double-heterostructures on InP,” Sol. Energy Mater. Sol. Cells 91(10), 908–918 (2007).
[CrossRef]

Gombia, E.

D. Pal, E. Gombia, R. Mosca, A. Bosacchi, and S. Franchi, “Deep levels in virtually unstrained InGaAs layers deposited on GaAs,” J. Appl. Phys. 84(5), 2965–2967 (1998).
[CrossRef]

Harris, J. S.

D. Jackrel, H. Yuen, S. Bank, M. Wistey, J. Fu, X. Yu, Z. Rao, and J. S. Harris, “Thick lattice-matched GaInNAs films in photodetector applications,” Proc. SPIE 5726, 27–34 (2005).
[CrossRef]

Jackrel, D.

D. Jackrel, H. Yuen, S. Bank, M. Wistey, J. Fu, X. Yu, Z. Rao, and J. S. Harris, “Thick lattice-matched GaInNAs films in photodetector applications,” Proc. SPIE 5726, 27–34 (2005).
[CrossRef]

Johnston, S. W.

S. P. Ahrenkiel, M. W. Wanlass, J. J. Carapella, R. K. Ahrenkiel, S. W. Johnston, and L. M. Gedvilas, “Optimization of buffer layers for lattice-mismatched epitaxy of GaxIn1−xAs/InAsyP1−y double-heterostructures on InP,” Sol. Energy Mater. Sol. Cells 91(10), 908–918 (2007).
[CrossRef]

Kim, A. Y.

E. A. Fitzgerald, A. Y. Kim, M. T. Currie, T. A. Langdo, G. Taraschi, and M. T. Bulsara, “Dislocation dynamics in relaxed graded composition semiconductors,” Mat. Sci. Eng. B-Solid 67(1-2), 53–61 (1999).
[CrossRef]

Kuo, H.

G. Lin, H. Kuo, C. Lin, and M. Feng, “Ultralow Leakage In0.53Ga0.47As p-i-n photodetector grown on linearly graded metamorphic InxGa1-xP buffered GaAs substrate,” IEEE J. Quantum Electron. 41(6), 749–752 (2005).
[CrossRef]

Lacovara, P.

Langdo, T. A.

E. A. Fitzgerald, A. Y. Kim, M. T. Currie, T. A. Langdo, G. Taraschi, and M. T. Bulsara, “Dislocation dynamics in relaxed graded composition semiconductors,” Mat. Sci. Eng. B-Solid 67(1-2), 53–61 (1999).
[CrossRef]

Lin, C.

G. Lin, H. Kuo, C. Lin, and M. Feng, “Ultralow Leakage In0.53Ga0.47As p-i-n photodetector grown on linearly graded metamorphic InxGa1-xP buffered GaAs substrate,” IEEE J. Quantum Electron. 41(6), 749–752 (2005).
[CrossRef]

Lin, G.

G. Lin, H. Kuo, C. Lin, and M. Feng, “Ultralow Leakage In0.53Ga0.47As p-i-n photodetector grown on linearly graded metamorphic InxGa1-xP buffered GaAs substrate,” IEEE J. Quantum Electron. 41(6), 749–752 (2005).
[CrossRef]

Loke, W. K.

W. K. Loke, S. F. Yoon, K. H. Tan, S. Wicaksono, and W. J. Fan, “Improvement of GaInNAs p-i-n photodetector responsivity by antimony incorporation,” J. Appl. Phys. 101(3), 033122 (2007).
[CrossRef]

Mosca, R.

D. Pal, E. Gombia, R. Mosca, A. Bosacchi, and S. Franchi, “Deep levels in virtually unstrained InGaAs layers deposited on GaAs,” J. Appl. Phys. 84(5), 2965–2967 (1998).
[CrossRef]

Pal, D.

D. Pal, E. Gombia, R. Mosca, A. Bosacchi, and S. Franchi, “Deep levels in virtually unstrained InGaAs layers deposited on GaAs,” J. Appl. Phys. 84(5), 2965–2967 (1998).
[CrossRef]

Patton, M.

S. Sinharoy, M. Patton, T. Valko, and V. Weizer, “Progress in the development of metamorphic multi-junction III–V space solar cells,” Prog. Photovolt. Res. Appl. 10(6), 427–432 (2002).
[CrossRef]

Rao, Z.

D. Jackrel, H. Yuen, S. Bank, M. Wistey, J. Fu, X. Yu, Z. Rao, and J. S. Harris, “Thick lattice-matched GaInNAs films in photodetector applications,” Proc. SPIE 5726, 27–34 (2005).
[CrossRef]

Sinharoy, S.

S. Sinharoy, M. Patton, T. Valko, and V. Weizer, “Progress in the development of metamorphic multi-junction III–V space solar cells,” Prog. Photovolt. Res. Appl. 10(6), 427–432 (2002).
[CrossRef]

Tan, K. H.

W. K. Loke, S. F. Yoon, K. H. Tan, S. Wicaksono, and W. J. Fan, “Improvement of GaInNAs p-i-n photodetector responsivity by antimony incorporation,” J. Appl. Phys. 101(3), 033122 (2007).
[CrossRef]

Taraschi, G.

E. A. Fitzgerald, A. Y. Kim, M. T. Currie, T. A. Langdo, G. Taraschi, and M. T. Bulsara, “Dislocation dynamics in relaxed graded composition semiconductors,” Mat. Sci. Eng. B-Solid 67(1-2), 53–61 (1999).
[CrossRef]

Valko, T.

S. Sinharoy, M. Patton, T. Valko, and V. Weizer, “Progress in the development of metamorphic multi-junction III–V space solar cells,” Prog. Photovolt. Res. Appl. 10(6), 427–432 (2002).
[CrossRef]

Wang, C. A.

Wanlass, M. W.

S. P. Ahrenkiel, M. W. Wanlass, J. J. Carapella, R. K. Ahrenkiel, S. W. Johnston, and L. M. Gedvilas, “Optimization of buffer layers for lattice-mismatched epitaxy of GaxIn1−xAs/InAsyP1−y double-heterostructures on InP,” Sol. Energy Mater. Sol. Cells 91(10), 908–918 (2007).
[CrossRef]

Weizer, V.

S. Sinharoy, M. Patton, T. Valko, and V. Weizer, “Progress in the development of metamorphic multi-junction III–V space solar cells,” Prog. Photovolt. Res. Appl. 10(6), 427–432 (2002).
[CrossRef]

Wicaksono, S.

W. K. Loke, S. F. Yoon, K. H. Tan, S. Wicaksono, and W. J. Fan, “Improvement of GaInNAs p-i-n photodetector responsivity by antimony incorporation,” J. Appl. Phys. 101(3), 033122 (2007).
[CrossRef]

Wistey, M.

D. Jackrel, H. Yuen, S. Bank, M. Wistey, J. Fu, X. Yu, Z. Rao, and J. S. Harris, “Thick lattice-matched GaInNAs films in photodetector applications,” Proc. SPIE 5726, 27–34 (2005).
[CrossRef]

Yoon, S. F.

W. K. Loke, S. F. Yoon, K. H. Tan, S. Wicaksono, and W. J. Fan, “Improvement of GaInNAs p-i-n photodetector responsivity by antimony incorporation,” J. Appl. Phys. 101(3), 033122 (2007).
[CrossRef]

Yu, X.

D. Jackrel, H. Yuen, S. Bank, M. Wistey, J. Fu, X. Yu, Z. Rao, and J. S. Harris, “Thick lattice-matched GaInNAs films in photodetector applications,” Proc. SPIE 5726, 27–34 (2005).
[CrossRef]

Yuen, H.

D. Jackrel, H. Yuen, S. Bank, M. Wistey, J. Fu, X. Yu, Z. Rao, and J. S. Harris, “Thick lattice-matched GaInNAs films in photodetector applications,” Proc. SPIE 5726, 27–34 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. Lin, H. Kuo, C. Lin, and M. Feng, “Ultralow Leakage In0.53Ga0.47As p-i-n photodetector grown on linearly graded metamorphic InxGa1-xP buffered GaAs substrate,” IEEE J. Quantum Electron. 41(6), 749–752 (2005).
[CrossRef]

J. Appl. Phys. (2)

D. Pal, E. Gombia, R. Mosca, A. Bosacchi, and S. Franchi, “Deep levels in virtually unstrained InGaAs layers deposited on GaAs,” J. Appl. Phys. 84(5), 2965–2967 (1998).
[CrossRef]

W. K. Loke, S. F. Yoon, K. H. Tan, S. Wicaksono, and W. J. Fan, “Improvement of GaInNAs p-i-n photodetector responsivity by antimony incorporation,” J. Appl. Phys. 101(3), 033122 (2007).
[CrossRef]

Mat. Sci. Eng. B-Solid (1)

E. A. Fitzgerald, A. Y. Kim, M. T. Currie, T. A. Langdo, G. Taraschi, and M. T. Bulsara, “Dislocation dynamics in relaxed graded composition semiconductors,” Mat. Sci. Eng. B-Solid 67(1-2), 53–61 (1999).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

D. Jackrel, H. Yuen, S. Bank, M. Wistey, J. Fu, X. Yu, Z. Rao, and J. S. Harris, “Thick lattice-matched GaInNAs films in photodetector applications,” Proc. SPIE 5726, 27–34 (2005).
[CrossRef]

Prog. Photovolt. Res. Appl. (1)

S. Sinharoy, M. Patton, T. Valko, and V. Weizer, “Progress in the development of metamorphic multi-junction III–V space solar cells,” Prog. Photovolt. Res. Appl. 10(6), 427–432 (2002).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

S. P. Ahrenkiel, M. W. Wanlass, J. J. Carapella, R. K. Ahrenkiel, S. W. Johnston, and L. M. Gedvilas, “Optimization of buffer layers for lattice-mismatched epitaxy of GaxIn1−xAs/InAsyP1−y double-heterostructures on InP,” Sol. Energy Mater. Sol. Cells 91(10), 908–918 (2007).
[CrossRef]

Other (5)

S. Donati, Photodetectors: Devices, Circuits and Applications (Prentice Hall, 2000), pp. 109–214.

D. B. Jackrel, “InGaAs and GaInNAs(Sb) 1064 nm photodetectors and solar cells on GaAs substrates,” Doctoral dissertation (Dept. of Materials Science and Engineering, Stanford University, 2005), pp. 127–150.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, 2007), Chap.13.

Hamamatsu Photonics, “InGaAs p-i-n photodiode G8941 series data sheet,” http://sales.hamamatsu.com/assets/pdf/parts_G/G8941_series.pdf .

Pacific Silicon sensor, “1064 nm enhanced silicon quadrant photodiode (Series Q) data sheet,” http://www.pacific-sensor.com/pages/sp_sq.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Cross-sectional view (not to scale) of a fabricated p-i-n In0.20Ga0.80As photodetector. Note that polyimide is used for passivating the etched mesa sidewall and does not cover the active area of the device.

Fig. 2
Fig. 2

High resolution reciprocal space map from the glancing-incidence asymmetric (224) reflection of the In0.20Ga0.80As p-i-n detectors structure, displaying high relaxation and low mosaic spread for all the peaks.

Fig. 3
Fig. 3

(a). Cross-sectional transmission electron micrographs showing the InGaAs buffer layers along with the very high quality In0.20Ga0.80As device layer. (b) Plan-view TEM showing the threading dislocations terminating at the surface and the contrast lines due to phase segregation. The images were obtained using g200 vector and [001] zone axis.

Fig. 4
Fig. 4

Room-temperature (300 K) current density versus bias voltage measurement displaying very low reverse dark current.

Fig. 5
Fig. 5

Spectral responsivity as a function of reverse bias voltage showing high responsivity at both 1030 nm and 1064 nm wavelengths.

Fig. 6
Fig. 6

Capacitance versus bias measurement measured at 300 K, displaying very small decrease in capacitance as a function of reverse bias voltage. The complete depletion of the i-layer is confirmed by the carrier concentration (N) versus depletion width (W) plot.

Metrics