Abstract

We report on the design and implementation of a gradient-index microendoscope suitable for accessing tissues deep within the body using confocal fluorescence imaging. The 350-μm diameter microendoscope has a length of 27 mm, which enables it to be inserted through a 22-gauge hypodermic needle. A prototype imaging system is demonstrated to obtain images of tissue samples at depths of ~15 mm with a lateral resolution of ~700 nm. To the best of our knowledge, this is the highest resolution and imaging depth reported for a confocal probe of these dimensions. We employ a scanning arrangement using a lensed fiber that can conveniently control the input beam parameters without causing off-axis aberrations typically present in the optical relay lenses used in galvanometer-mirror scanning systems.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Pawley, Handbook of biological confocal microscopy (Springer, New York, 2006).
  2. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  3. V. S. Erickson, M. L. Pearson, P. A. Ganz, J. Adams, and K. L. Kahn, “Arm edema in breast cancer patients,” J. Natl. Cancer Inst. 93(2), 96–111 (2001).
    [CrossRef] [PubMed]
  4. Y. Shapira, M. Katz, M. Ali, M. Kaplan, E. Brazowski, Z. Halpern, and E. Elinav, “Utilization of murine laparoscopy for continuous in-vivo assessment of the liver in multiple disease models,” PLoS ONE 4(3), e4776 (2009).
    [CrossRef] [PubMed]
  5. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
    [CrossRef] [PubMed]
  6. P. Kim, M. Puoris’haag, D. Côté, C. P. Lin, and S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” J. Biomed. Opt. 13(1), 010501 (2008).
    [CrossRef] [PubMed]
  7. A. F. Gmitro and D. Aziz, “Confocal microscopy through a fiber-optic imaging bundle,” Opt. Lett. 18(8), 565–567 (1993).
    [CrossRef] [PubMed]
  8. L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Confocal fluorescence endomicroscopy of the human airways,” Proc. Am. Thorac. Soc. 6(5), 444–449 (2009).
    [CrossRef] [PubMed]
  9. J. T. C. Liu, M. J. Mandella, N. O. Loewke, H. Haeberle, H. Ra, W. Piyawattanametha, O. Solgaard, G. S. Kino, and C. H. Contag, “Micromirror-scanned dual-axis confocal microscope utilizing a gradient-index relay lens for image guidance during brain surgery,” J. Biomed. Opt. 15(2), 026029 (2010).
    [CrossRef] [PubMed]
  10. F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
    [CrossRef] [PubMed]
  11. E. J. Seibel and Q. Y. J. Smithwick, “Unique features of optical scanning, single fiber endoscopy,” Lasers Surg. Med. 30(3), 177–183 (2002).
    [CrossRef] [PubMed]
  12. A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
    [CrossRef] [PubMed]
  13. J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
    [CrossRef]
  14. R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
    [CrossRef] [PubMed]
  15. J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett. 28(11), 902–904 (2003).
    [CrossRef] [PubMed]
  16. J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004).
    [CrossRef] [PubMed]
  17. M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol. 91(4), 1908–1912 (2004).
    [CrossRef]
  18. B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30(17), 2272–2274 (2005).
    [CrossRef] [PubMed]
  19. X. Li and W. Yu, “Deep tissue microscopic imaging of the kidney with a gradient-index lens system,” Opt. Commun. 281(7), 1833–1840 (2008).
    [CrossRef] [PubMed]
  20. W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. J. Barretto, J. C. Jung, H. Ra, O. Solgaard, and M. J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt. Lett. 34(15), 2309–2311 (2009).
    [CrossRef] [PubMed]
  21. B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
    [CrossRef] [PubMed]
  22. M. E. Llewellyn, R. P. J. Barretto, S. L. Delp, and M. J. Schnitzer, “Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans,” Nature 454(7205), 784–788 (2008).
    [PubMed]
  23. J. M. Geary, Introduction to lens design with practical Zemax examples (Willmann-Bell, Inc., Richmond, 2007).
  24. W. L. Emkey and C. A. Jack, “Analysis and evaluation of graded-index fiber-lenses,” J. Lightwave Technol. 5(9), 1156–1164 (1987).
    [CrossRef]
  25. A. C. Ribes, S. Damaskinos, and A. E. Dixon, “Inexpensive, high-quality optical relay for use in confocal scanning beam imaging,” Scanning 22(5), 282–287 (2000).
    [CrossRef] [PubMed]
  26. X. Gan, M. Gu, and C. J. R. Sheppard, “Fluorescent image formation in the fibre-optical confocal scanning microscope,” J. Mod. Opt. 39(4), 825–834 (1992).
    [CrossRef]
  27. R. W. Wijnaendts-van-Resandt, H. J. B. Marsmann, R. Kaplan, J. Davoust, E. H. K. Stelzer, and R. Stricker, “Optical fluorescence microscopy in three dimensions: microtomoscopy,” J. Microsc. 138, 29–34 (1985).
    [CrossRef]
  28. H. K. Herring, R. G. Cassens, and E. J. Briskey, “Further studies on bovine muscle tenderness as influenced by carcass position, sarcomere length, and fiber diameter,” J. Food Sci. 30(6), 1049–1054 (1965).
    [CrossRef]
  29. M. Müller, Introduction to confocal fluorescence microscopy (SPIE- The International Society for Optical Engineering, Bellingham, 2006).

2010

J. T. C. Liu, M. J. Mandella, N. O. Loewke, H. Haeberle, H. Ra, W. Piyawattanametha, O. Solgaard, G. S. Kino, and C. H. Contag, “Micromirror-scanned dual-axis confocal microscope utilizing a gradient-index relay lens for image guidance during brain surgery,” J. Biomed. Opt. 15(2), 026029 (2010).
[CrossRef] [PubMed]

2009

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Confocal fluorescence endomicroscopy of the human airways,” Proc. Am. Thorac. Soc. 6(5), 444–449 (2009).
[CrossRef] [PubMed]

R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[CrossRef] [PubMed]

Y. Shapira, M. Katz, M. Ali, M. Kaplan, E. Brazowski, Z. Halpern, and E. Elinav, “Utilization of murine laparoscopy for continuous in-vivo assessment of the liver in multiple disease models,” PLoS ONE 4(3), e4776 (2009).
[CrossRef] [PubMed]

W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. J. Barretto, J. C. Jung, H. Ra, O. Solgaard, and M. J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt. Lett. 34(15), 2309–2311 (2009).
[CrossRef] [PubMed]

2008

P. Kim, M. Puoris’haag, D. Côté, C. P. Lin, and S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” J. Biomed. Opt. 13(1), 010501 (2008).
[CrossRef] [PubMed]

X. Li and W. Yu, “Deep tissue microscopic imaging of the kidney with a gradient-index lens system,” Opt. Commun. 281(7), 1833–1840 (2008).
[CrossRef] [PubMed]

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[CrossRef] [PubMed]

M. E. Llewellyn, R. P. J. Barretto, S. L. Delp, and M. J. Schnitzer, “Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans,” Nature 454(7205), 784–788 (2008).
[PubMed]

2005

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[CrossRef] [PubMed]

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30(17), 2272–2274 (2005).
[CrossRef] [PubMed]

2004

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004).
[CrossRef] [PubMed]

M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol. 91(4), 1908–1912 (2004).
[CrossRef]

2003

2002

E. J. Seibel and Q. Y. J. Smithwick, “Unique features of optical scanning, single fiber endoscopy,” Lasers Surg. Med. 30(3), 177–183 (2002).
[CrossRef] [PubMed]

2001

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[CrossRef] [PubMed]

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[CrossRef]

V. S. Erickson, M. L. Pearson, P. A. Ganz, J. Adams, and K. L. Kahn, “Arm edema in breast cancer patients,” J. Natl. Cancer Inst. 93(2), 96–111 (2001).
[CrossRef] [PubMed]

2000

A. C. Ribes, S. Damaskinos, and A. E. Dixon, “Inexpensive, high-quality optical relay for use in confocal scanning beam imaging,” Scanning 22(5), 282–287 (2000).
[CrossRef] [PubMed]

1993

1992

X. Gan, M. Gu, and C. J. R. Sheppard, “Fluorescent image formation in the fibre-optical confocal scanning microscope,” J. Mod. Opt. 39(4), 825–834 (1992).
[CrossRef]

1990

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

1987

W. L. Emkey and C. A. Jack, “Analysis and evaluation of graded-index fiber-lenses,” J. Lightwave Technol. 5(9), 1156–1164 (1987).
[CrossRef]

1985

R. W. Wijnaendts-van-Resandt, H. J. B. Marsmann, R. Kaplan, J. Davoust, E. H. K. Stelzer, and R. Stricker, “Optical fluorescence microscopy in three dimensions: microtomoscopy,” J. Microsc. 138, 29–34 (1985).
[CrossRef]

1965

H. K. Herring, R. G. Cassens, and E. J. Briskey, “Further studies on bovine muscle tenderness as influenced by carcass position, sarcomere length, and fiber diameter,” J. Food Sci. 30(6), 1049–1054 (1965).
[CrossRef]

Adams, J.

V. S. Erickson, M. L. Pearson, P. A. Ganz, J. Adams, and K. L. Kahn, “Arm edema in breast cancer patients,” J. Natl. Cancer Inst. 93(2), 96–111 (2001).
[CrossRef] [PubMed]

Aksay, E.

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004).
[CrossRef] [PubMed]

Ali, M.

Y. Shapira, M. Katz, M. Ali, M. Kaplan, E. Brazowski, Z. Halpern, and E. Elinav, “Utilization of murine laparoscopy for continuous in-vivo assessment of the liver in multiple disease models,” PLoS ONE 4(3), e4776 (2009).
[CrossRef] [PubMed]

Anderson, E. P.

Aziz, D.

Barretto, R. P. J.

R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[CrossRef] [PubMed]

W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. J. Barretto, J. C. Jung, H. Ra, O. Solgaard, and M. J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt. Lett. 34(15), 2309–2311 (2009).
[CrossRef] [PubMed]

M. E. Llewellyn, R. P. J. Barretto, S. L. Delp, and M. J. Schnitzer, “Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans,” Nature 454(7205), 784–788 (2008).
[PubMed]

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[CrossRef] [PubMed]

Bourg-Heckly, G.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Confocal fluorescence endomicroscopy of the human airways,” Proc. Am. Thorac. Soc. 6(5), 444–449 (2009).
[CrossRef] [PubMed]

Brazowski, E.

Y. Shapira, M. Katz, M. Ali, M. Kaplan, E. Brazowski, Z. Halpern, and E. Elinav, “Utilization of murine laparoscopy for continuous in-vivo assessment of the liver in multiple disease models,” PLoS ONE 4(3), e4776 (2009).
[CrossRef] [PubMed]

Briskey, E. J.

H. K. Herring, R. G. Cassens, and E. J. Briskey, “Further studies on bovine muscle tenderness as influenced by carcass position, sarcomere length, and fiber diameter,” J. Food Sci. 30(6), 1049–1054 (1965).
[CrossRef]

Buess, G.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[CrossRef]

Burns, L. D.

W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. J. Barretto, J. C. Jung, H. Ra, O. Solgaard, and M. J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt. Lett. 34(15), 2309–2311 (2009).
[CrossRef] [PubMed]

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[CrossRef] [PubMed]

Cassens, R. G.

H. K. Herring, R. G. Cassens, and E. J. Briskey, “Further studies on bovine muscle tenderness as influenced by carcass position, sarcomere length, and fiber diameter,” J. Food Sci. 30(6), 1049–1054 (1965).
[CrossRef]

Cheung, E. L. M.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Cocker, E. D.

W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. J. Barretto, J. C. Jung, H. Ra, O. Solgaard, and M. J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt. Lett. 34(15), 2309–2311 (2009).
[CrossRef] [PubMed]

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[CrossRef] [PubMed]

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30(17), 2272–2274 (2005).
[CrossRef] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Contag, C. H.

J. T. C. Liu, M. J. Mandella, N. O. Loewke, H. Haeberle, H. Ra, W. Piyawattanametha, O. Solgaard, G. S. Kino, and C. H. Contag, “Micromirror-scanned dual-axis confocal microscope utilizing a gradient-index relay lens for image guidance during brain surgery,” J. Biomed. Opt. 15(2), 026029 (2010).
[CrossRef] [PubMed]

Côté, D.

P. Kim, M. Puoris’haag, D. Côté, C. P. Lin, and S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” J. Biomed. Opt. 13(1), 010501 (2008).
[CrossRef] [PubMed]

Damaskinos, S.

A. C. Ribes, S. Damaskinos, and A. E. Dixon, “Inexpensive, high-quality optical relay for use in confocal scanning beam imaging,” Scanning 22(5), 282–287 (2000).
[CrossRef] [PubMed]

Davoust, J.

R. W. Wijnaendts-van-Resandt, H. J. B. Marsmann, R. Kaplan, J. Davoust, E. H. K. Stelzer, and R. Stricker, “Optical fluorescence microscopy in three dimensions: microtomoscopy,” J. Microsc. 138, 29–34 (1985).
[CrossRef]

Delaney, P. M.

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[CrossRef] [PubMed]

Delp, S. L.

M. E. Llewellyn, R. P. J. Barretto, S. L. Delp, and M. J. Schnitzer, “Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans,” Nature 454(7205), 784–788 (2008).
[PubMed]

Denk, W.

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Dixon, A. E.

A. C. Ribes, S. Damaskinos, and A. E. Dixon, “Inexpensive, high-quality optical relay for use in confocal scanning beam imaging,” Scanning 22(5), 282–287 (2000).
[CrossRef] [PubMed]

Dombeck, D. A.

M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol. 91(4), 1908–1912 (2004).
[CrossRef]

Dominique, S.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Confocal fluorescence endomicroscopy of the human airways,” Proc. Am. Thorac. Soc. 6(5), 444–449 (2009).
[CrossRef] [PubMed]

Elinav, E.

Y. Shapira, M. Katz, M. Ali, M. Kaplan, E. Brazowski, Z. Halpern, and E. Elinav, “Utilization of murine laparoscopy for continuous in-vivo assessment of the liver in multiple disease models,” PLoS ONE 4(3), e4776 (2009).
[CrossRef] [PubMed]

Emkey, W. L.

W. L. Emkey and C. A. Jack, “Analysis and evaluation of graded-index fiber-lenses,” J. Lightwave Technol. 5(9), 1156–1164 (1987).
[CrossRef]

Erickson, V. S.

V. S. Erickson, M. L. Pearson, P. A. Ganz, J. Adams, and K. L. Kahn, “Arm edema in breast cancer patients,” J. Natl. Cancer Inst. 93(2), 96–111 (2001).
[CrossRef] [PubMed]

Fee, M. S.

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[CrossRef] [PubMed]

Flusberg, B. A.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[CrossRef] [PubMed]

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30(17), 2272–2274 (2005).
[CrossRef] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Gan, X.

X. Gan, M. Gu, and C. J. R. Sheppard, “Fluorescent image formation in the fibre-optical confocal scanning microscope,” J. Mod. Opt. 39(4), 825–834 (1992).
[CrossRef]

Ganz, P. A.

V. S. Erickson, M. L. Pearson, P. A. Ganz, J. Adams, and K. L. Kahn, “Arm edema in breast cancer patients,” J. Natl. Cancer Inst. 93(2), 96–111 (2001).
[CrossRef] [PubMed]

Gmitro, A. F.

Gu, M.

X. Gan, M. Gu, and C. J. R. Sheppard, “Fluorescent image formation in the fibre-optical confocal scanning microscope,” J. Mod. Opt. 39(4), 825–834 (1992).
[CrossRef]

Haeberle, H.

J. T. C. Liu, M. J. Mandella, N. O. Loewke, H. Haeberle, H. Ra, W. Piyawattanametha, O. Solgaard, G. S. Kino, and C. H. Contag, “Micromirror-scanned dual-axis confocal microscope utilizing a gradient-index relay lens for image guidance during brain surgery,” J. Biomed. Opt. 15(2), 026029 (2010).
[CrossRef] [PubMed]

Halpern, Z.

Y. Shapira, M. Katz, M. Ali, M. Kaplan, E. Brazowski, Z. Halpern, and E. Elinav, “Utilization of murine laparoscopy for continuous in-vivo assessment of the liver in multiple disease models,” PLoS ONE 4(3), e4776 (2009).
[CrossRef] [PubMed]

Helmchen, F.

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[CrossRef] [PubMed]

Herring, H. K.

H. K. Herring, R. G. Cassens, and E. J. Briskey, “Further studies on bovine muscle tenderness as influenced by carcass position, sarcomere length, and fiber diameter,” J. Food Sci. 30(6), 1049–1054 (1965).
[CrossRef]

Jack, C. A.

W. L. Emkey and C. A. Jack, “Analysis and evaluation of graded-index fiber-lenses,” J. Lightwave Technol. 5(9), 1156–1164 (1987).
[CrossRef]

Jung, J. C.

W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. J. Barretto, J. C. Jung, H. Ra, O. Solgaard, and M. J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt. Lett. 34(15), 2309–2311 (2009).
[CrossRef] [PubMed]

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[CrossRef] [PubMed]

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30(17), 2272–2274 (2005).
[CrossRef] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004).
[CrossRef] [PubMed]

J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett. 28(11), 902–904 (2003).
[CrossRef] [PubMed]

Kahn, K. L.

V. S. Erickson, M. L. Pearson, P. A. Ganz, J. Adams, and K. L. Kahn, “Arm edema in breast cancer patients,” J. Natl. Cancer Inst. 93(2), 96–111 (2001).
[CrossRef] [PubMed]

Kaplan, M.

Y. Shapira, M. Katz, M. Ali, M. Kaplan, E. Brazowski, Z. Halpern, and E. Elinav, “Utilization of murine laparoscopy for continuous in-vivo assessment of the liver in multiple disease models,” PLoS ONE 4(3), e4776 (2009).
[CrossRef] [PubMed]

Kaplan, R.

R. W. Wijnaendts-van-Resandt, H. J. B. Marsmann, R. Kaplan, J. Davoust, E. H. K. Stelzer, and R. Stricker, “Optical fluorescence microscopy in three dimensions: microtomoscopy,” J. Microsc. 138, 29–34 (1985).
[CrossRef]

Kasischke, K. A.

M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol. 91(4), 1908–1912 (2004).
[CrossRef]

Katz, M.

Y. Shapira, M. Katz, M. Ali, M. Kaplan, E. Brazowski, Z. Halpern, and E. Elinav, “Utilization of murine laparoscopy for continuous in-vivo assessment of the liver in multiple disease models,” PLoS ONE 4(3), e4776 (2009).
[CrossRef] [PubMed]

Kiesslich, R.

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[CrossRef] [PubMed]

Kim, P.

P. Kim, M. Puoris’haag, D. Côté, C. P. Lin, and S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” J. Biomed. Opt. 13(1), 010501 (2008).
[CrossRef] [PubMed]

Kino, G. S.

J. T. C. Liu, M. J. Mandella, N. O. Loewke, H. Haeberle, H. Ra, W. Piyawattanametha, O. Solgaard, G. S. Kino, and C. H. Contag, “Micromirror-scanned dual-axis confocal microscope utilizing a gradient-index relay lens for image guidance during brain surgery,” J. Biomed. Opt. 15(2), 026029 (2010).
[CrossRef] [PubMed]

Knittel, J.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[CrossRef]

Ko, T. H.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[CrossRef] [PubMed]

Lachkar, S.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Confocal fluorescence endomicroscopy of the human airways,” Proc. Am. Thorac. Soc. 6(5), 444–449 (2009).
[CrossRef] [PubMed]

Levene, M. J.

M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol. 91(4), 1908–1912 (2004).
[CrossRef]

Li, X.

X. Li and W. Yu, “Deep tissue microscopic imaging of the kidney with a gradient-index lens system,” Opt. Commun. 281(7), 1833–1840 (2008).
[CrossRef] [PubMed]

Lin, C. P.

P. Kim, M. Puoris’haag, D. Côté, C. P. Lin, and S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” J. Biomed. Opt. 13(1), 010501 (2008).
[CrossRef] [PubMed]

Liu, J. T. C.

J. T. C. Liu, M. J. Mandella, N. O. Loewke, H. Haeberle, H. Ra, W. Piyawattanametha, O. Solgaard, G. S. Kino, and C. H. Contag, “Micromirror-scanned dual-axis confocal microscope utilizing a gradient-index relay lens for image guidance during brain surgery,” J. Biomed. Opt. 15(2), 026029 (2010).
[CrossRef] [PubMed]

Llewellyn, M. E.

M. E. Llewellyn, R. P. J. Barretto, S. L. Delp, and M. J. Schnitzer, “Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans,” Nature 454(7205), 784–788 (2008).
[PubMed]

Loewke, N. O.

J. T. C. Liu, M. J. Mandella, N. O. Loewke, H. Haeberle, H. Ra, W. Piyawattanametha, O. Solgaard, G. S. Kino, and C. H. Contag, “Micromirror-scanned dual-axis confocal microscope utilizing a gradient-index relay lens for image guidance during brain surgery,” J. Biomed. Opt. 15(2), 026029 (2010).
[CrossRef] [PubMed]

Mandella, M. J.

J. T. C. Liu, M. J. Mandella, N. O. Loewke, H. Haeberle, H. Ra, W. Piyawattanametha, O. Solgaard, G. S. Kino, and C. H. Contag, “Micromirror-scanned dual-axis confocal microscope utilizing a gradient-index relay lens for image guidance during brain surgery,” J. Biomed. Opt. 15(2), 026029 (2010).
[CrossRef] [PubMed]

Marsmann, H. J. B.

R. W. Wijnaendts-van-Resandt, H. J. B. Marsmann, R. Kaplan, J. Davoust, E. H. K. Stelzer, and R. Stricker, “Optical fluorescence microscopy in three dimensions: microtomoscopy,” J. Microsc. 138, 29–34 (1985).
[CrossRef]

McLaren, W. J.

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[CrossRef] [PubMed]

Mehta, A. D.

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004).
[CrossRef] [PubMed]

Messerschmidt, B.

R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[CrossRef] [PubMed]

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[CrossRef]

Molloy, R. P.

M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol. 91(4), 1908–1912 (2004).
[CrossRef]

Moreno-Swirc, S.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Confocal fluorescence endomicroscopy of the human airways,” Proc. Am. Thorac. Soc. 6(5), 444–449 (2009).
[CrossRef] [PubMed]

Mukamel, E. A.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[CrossRef] [PubMed]

Neurath, M. F.

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[CrossRef] [PubMed]

Nimmerjahn, A.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[CrossRef] [PubMed]

Pearson, M. L.

V. S. Erickson, M. L. Pearson, P. A. Ganz, J. Adams, and K. L. Kahn, “Arm edema in breast cancer patients,” J. Natl. Cancer Inst. 93(2), 96–111 (2001).
[CrossRef] [PubMed]

Piyawattanametha, W.

J. T. C. Liu, M. J. Mandella, N. O. Loewke, H. Haeberle, H. Ra, W. Piyawattanametha, O. Solgaard, G. S. Kino, and C. H. Contag, “Micromirror-scanned dual-axis confocal microscope utilizing a gradient-index relay lens for image guidance during brain surgery,” J. Biomed. Opt. 15(2), 026029 (2010).
[CrossRef] [PubMed]

W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. J. Barretto, J. C. Jung, H. Ra, O. Solgaard, and M. J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt. Lett. 34(15), 2309–2311 (2009).
[CrossRef] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Polglase, A. L.

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[CrossRef] [PubMed]

Possner, T.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[CrossRef]

Puoris’haag, M.

P. Kim, M. Puoris’haag, D. Côté, C. P. Lin, and S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” J. Biomed. Opt. 13(1), 010501 (2008).
[CrossRef] [PubMed]

Ra, H.

J. T. C. Liu, M. J. Mandella, N. O. Loewke, H. Haeberle, H. Ra, W. Piyawattanametha, O. Solgaard, G. S. Kino, and C. H. Contag, “Micromirror-scanned dual-axis confocal microscope utilizing a gradient-index relay lens for image guidance during brain surgery,” J. Biomed. Opt. 15(2), 026029 (2010).
[CrossRef] [PubMed]

W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. J. Barretto, J. C. Jung, H. Ra, O. Solgaard, and M. J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt. Lett. 34(15), 2309–2311 (2009).
[CrossRef] [PubMed]

Ribes, A. C.

A. C. Ribes, S. Damaskinos, and A. E. Dixon, “Inexpensive, high-quality optical relay for use in confocal scanning beam imaging,” Scanning 22(5), 282–287 (2000).
[CrossRef] [PubMed]

Salaün, M.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Confocal fluorescence endomicroscopy of the human airways,” Proc. Am. Thorac. Soc. 6(5), 444–449 (2009).
[CrossRef] [PubMed]

Schnieder, L.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[CrossRef]

Schnitzer, M. J.

R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[CrossRef] [PubMed]

W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. J. Barretto, J. C. Jung, H. Ra, O. Solgaard, and M. J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt. Lett. 34(15), 2309–2311 (2009).
[CrossRef] [PubMed]

M. E. Llewellyn, R. P. J. Barretto, S. L. Delp, and M. J. Schnitzer, “Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans,” Nature 454(7205), 784–788 (2008).
[PubMed]

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[CrossRef] [PubMed]

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30(17), 2272–2274 (2005).
[CrossRef] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004).
[CrossRef] [PubMed]

J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett. 28(11), 902–904 (2003).
[CrossRef] [PubMed]

Seibel, E. J.

E. J. Seibel and Q. Y. J. Smithwick, “Unique features of optical scanning, single fiber endoscopy,” Lasers Surg. Med. 30(3), 177–183 (2002).
[CrossRef] [PubMed]

Shapira, Y.

Y. Shapira, M. Katz, M. Ali, M. Kaplan, E. Brazowski, Z. Halpern, and E. Elinav, “Utilization of murine laparoscopy for continuous in-vivo assessment of the liver in multiple disease models,” PLoS ONE 4(3), e4776 (2009).
[CrossRef] [PubMed]

Sheppard, C. J. R.

X. Gan, M. Gu, and C. J. R. Sheppard, “Fluorescent image formation in the fibre-optical confocal scanning microscope,” J. Mod. Opt. 39(4), 825–834 (1992).
[CrossRef]

Skinner, S. A.

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[CrossRef] [PubMed]

Smithwick, Q. Y. J.

E. J. Seibel and Q. Y. J. Smithwick, “Unique features of optical scanning, single fiber endoscopy,” Lasers Surg. Med. 30(3), 177–183 (2002).
[CrossRef] [PubMed]

Solgaard, O.

J. T. C. Liu, M. J. Mandella, N. O. Loewke, H. Haeberle, H. Ra, W. Piyawattanametha, O. Solgaard, G. S. Kino, and C. H. Contag, “Micromirror-scanned dual-axis confocal microscope utilizing a gradient-index relay lens for image guidance during brain surgery,” J. Biomed. Opt. 15(2), 026029 (2010).
[CrossRef] [PubMed]

W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. J. Barretto, J. C. Jung, H. Ra, O. Solgaard, and M. J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt. Lett. 34(15), 2309–2311 (2009).
[CrossRef] [PubMed]

Stelzer, E. H. K.

R. W. Wijnaendts-van-Resandt, H. J. B. Marsmann, R. Kaplan, J. Davoust, E. H. K. Stelzer, and R. Stricker, “Optical fluorescence microscopy in three dimensions: microtomoscopy,” J. Microsc. 138, 29–34 (1985).
[CrossRef]

Stepnoski, R.

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004).
[CrossRef] [PubMed]

Stricker, R.

R. W. Wijnaendts-van-Resandt, H. J. B. Marsmann, R. Kaplan, J. Davoust, E. H. K. Stelzer, and R. Stricker, “Optical fluorescence microscopy in three dimensions: microtomoscopy,” J. Microsc. 138, 29–34 (1985).
[CrossRef]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Tank, D. W.

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[CrossRef] [PubMed]

Thiberville, L.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Confocal fluorescence endomicroscopy of the human airways,” Proc. Am. Thorac. Soc. 6(5), 444–449 (2009).
[CrossRef] [PubMed]

Vever-Bizet, C.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Confocal fluorescence endomicroscopy of the human airways,” Proc. Am. Thorac. Soc. 6(5), 444–449 (2009).
[CrossRef] [PubMed]

Webb, W. W.

M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol. 91(4), 1908–1912 (2004).
[CrossRef]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Wijnaendts-van-Resandt, R. W.

R. W. Wijnaendts-van-Resandt, H. J. B. Marsmann, R. Kaplan, J. Davoust, E. H. K. Stelzer, and R. Stricker, “Optical fluorescence microscopy in three dimensions: microtomoscopy,” J. Microsc. 138, 29–34 (1985).
[CrossRef]

Yu, W.

X. Li and W. Yu, “Deep tissue microscopic imaging of the kidney with a gradient-index lens system,” Opt. Commun. 281(7), 1833–1840 (2008).
[CrossRef] [PubMed]

Yun, S. H.

P. Kim, M. Puoris’haag, D. Côté, C. P. Lin, and S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” J. Biomed. Opt. 13(1), 010501 (2008).
[CrossRef] [PubMed]

Gastrointest. Endosc.

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt.

J. T. C. Liu, M. J. Mandella, N. O. Loewke, H. Haeberle, H. Ra, W. Piyawattanametha, O. Solgaard, G. S. Kino, and C. H. Contag, “Micromirror-scanned dual-axis confocal microscope utilizing a gradient-index relay lens for image guidance during brain surgery,” J. Biomed. Opt. 15(2), 026029 (2010).
[CrossRef] [PubMed]

P. Kim, M. Puoris’haag, D. Côté, C. P. Lin, and S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” J. Biomed. Opt. 13(1), 010501 (2008).
[CrossRef] [PubMed]

J. Food Sci.

H. K. Herring, R. G. Cassens, and E. J. Briskey, “Further studies on bovine muscle tenderness as influenced by carcass position, sarcomere length, and fiber diameter,” J. Food Sci. 30(6), 1049–1054 (1965).
[CrossRef]

J. Lightwave Technol.

W. L. Emkey and C. A. Jack, “Analysis and evaluation of graded-index fiber-lenses,” J. Lightwave Technol. 5(9), 1156–1164 (1987).
[CrossRef]

J. Microsc.

R. W. Wijnaendts-van-Resandt, H. J. B. Marsmann, R. Kaplan, J. Davoust, E. H. K. Stelzer, and R. Stricker, “Optical fluorescence microscopy in three dimensions: microtomoscopy,” J. Microsc. 138, 29–34 (1985).
[CrossRef]

J. Mod. Opt.

X. Gan, M. Gu, and C. J. R. Sheppard, “Fluorescent image formation in the fibre-optical confocal scanning microscope,” J. Mod. Opt. 39(4), 825–834 (1992).
[CrossRef]

J. Natl. Cancer Inst.

V. S. Erickson, M. L. Pearson, P. A. Ganz, J. Adams, and K. L. Kahn, “Arm edema in breast cancer patients,” J. Natl. Cancer Inst. 93(2), 96–111 (2001).
[CrossRef] [PubMed]

J. Neurophysiol.

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004).
[CrossRef] [PubMed]

M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol. 91(4), 1908–1912 (2004).
[CrossRef]

Lasers Surg. Med.

E. J. Seibel and Q. Y. J. Smithwick, “Unique features of optical scanning, single fiber endoscopy,” Lasers Surg. Med. 30(3), 177–183 (2002).
[CrossRef] [PubMed]

Nat. Methods

R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[CrossRef] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[CrossRef] [PubMed]

Nature

M. E. Llewellyn, R. P. J. Barretto, S. L. Delp, and M. J. Schnitzer, “Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans,” Nature 454(7205), 784–788 (2008).
[PubMed]

Neuron

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[CrossRef] [PubMed]

Opt. Commun.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[CrossRef]

X. Li and W. Yu, “Deep tissue microscopic imaging of the kidney with a gradient-index lens system,” Opt. Commun. 281(7), 1833–1840 (2008).
[CrossRef] [PubMed]

Opt. Lett.

PLoS ONE

Y. Shapira, M. Katz, M. Ali, M. Kaplan, E. Brazowski, Z. Halpern, and E. Elinav, “Utilization of murine laparoscopy for continuous in-vivo assessment of the liver in multiple disease models,” PLoS ONE 4(3), e4776 (2009).
[CrossRef] [PubMed]

Proc. Am. Thorac. Soc.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Confocal fluorescence endomicroscopy of the human airways,” Proc. Am. Thorac. Soc. 6(5), 444–449 (2009).
[CrossRef] [PubMed]

Scanning

A. C. Ribes, S. Damaskinos, and A. E. Dixon, “Inexpensive, high-quality optical relay for use in confocal scanning beam imaging,” Scanning 22(5), 282–287 (2000).
[CrossRef] [PubMed]

Science

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Other

J. Pawley, Handbook of biological confocal microscopy (Springer, New York, 2006).

J. M. Geary, Introduction to lens design with practical Zemax examples (Willmann-Bell, Inc., Richmond, 2007).

M. Müller, Introduction to confocal fluorescence microscopy (SPIE- The International Society for Optical Engineering, Bellingham, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Optical design of the GRIN microendoscope. Rays with different colors correspond to different field points. The schematic is stretched in the vertical direction for clarity. The working distance is ~60 µm in air, which cannot be resolved on the scale shown. (b) Spot diagrams and the Airy rings corresponding to the on-axis and off-axis image points represented, respectively, by the blue and red rays in (a).

Fig. 2
Fig. 2

(a) Experimental setup used for the confocal fluorescence imaging experiments using the GRIN microendoscope and the lensed fiber scanning arrangement. BS: dichroic beamsplitter; PMT: photomultiplier tube. (b) The GRIN microendoscope inside a 22-gauge flat-end needle. (c) The microendoscope in situ inside a thick tissue, placed through a guiding needle. The arrows in 2(b) and 2(c) point to the lensed fiber end used for scanning.

Fig. 3
Fig. 3

(a) Beam profile at the waist of the lensed fiber output beam. (b) Beam radius (1/e2, from Gaussian fit) as a function of distance from the lensed fiber end.

Fig. 4
Fig. 4

Excitation beam profiles (λ=488 nm) measured at the focal plane of the GRIN microendoscope along the x and y directions (as per Fig. 3 (a)) for: (a) on-axis image point; and (b) off-axis image point (~30 μm from center).

Fig. 5
Fig. 5

(a) Image of 500 nm fluorescent beads obtained using the confocal probe. (b) Intensity distribution measured across a single fluorescent bead with a FWHM of 0.87 µm. (c) Axial resolution.

Fig. 6
Fig. 6

(a) Confocal fluorescent image obtained at a depth of ~15 mm inside a bovine muscle tissue sample. (b) The intensity variation along the line shown in (a).

Fig. 7
Fig. 7

Images of bovine muscle tissue obtained at a depth of approximately 15 mm. The images correspond to planes located 10 µm apart.

Metrics