Abstract

We present a new way of improving the efficiency of optical coherence tomography by using the polarisation crosstalk of a polarising beam splitter to direct most of the available source optical power to the sample. The use of a quarter wave plate in both the reference and the sample arms allows most of the sample power to be directed to the detector while adjusting the reference arm to ensure noise optimised operation. As a result, the sensitivity of such a system can be improved by 6 dB, or alternatively the acquisition time can be improved by a factor of 4 for shot noise limited performance, compared to a traditional OCT configuration using a 50/50 beam splitter.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
    [CrossRef]
  3. G. Haeusler, and M. W. Lindner, “Coherence radar and spectral radar - New tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
    [CrossRef]
  4. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953–2963 (2003).
    [CrossRef] [PubMed]
  5. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
    [CrossRef] [PubMed]
  6. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
    [CrossRef] [PubMed]
  7. W. V. Sorin, and D. M. Baney, “A Simple Intentisy Noise Reduction Technique for Optical Low-Coherence Reflectometry,” IEEE Photon. Technol. Lett. 4, 1404–1406 (1992).
    [CrossRef]
  8. A. M. Rollins, and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. 24, 1484–1486 (1999).
    [CrossRef]
  9. B. E. Bouma, and G. J. Tearney, “Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography,” Opt. Lett. 24, 531–533 (1999).
    [CrossRef]
  10. B. M. Hoeling, A. D. Fernandez, R. C. Haskell, E. Huang, W. R. Myers, D. C. Petersen, S. E. Ungersma, R. Wang, M. E. Williams, and S. E. Fraser, “An optical coherence microscope for 3-dimnensional imaging in developmental biology,” Opt. Express 6, 136–146 (2000).
    [CrossRef] [PubMed]
  11. G. Tearney, S. A. Boppart, B. E. Bouma, M. Brezinski, E. A. Swanson, and J. G. Fujimoto, “Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope,” US Patent No. 6,134,003 (1996).
  12. C. K. Hitzenberger, “Efficient optical coherence tomography (OCT) system and method for rapid imaging in three dimensions,” US Patent No. 2005/0140984 A1 (2005).
  13. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998).
    [CrossRef]
  14. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805–812 (2002).
    [CrossRef] [PubMed]
  15. E. Collett, Polarized light: fundamentals and applications (Marcel Dekker, New York, 1993).
  16. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004).
    [CrossRef] [PubMed]
  17. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003).
    [CrossRef] [PubMed]
  18. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18, 14685–14704 (2010).
    [CrossRef] [PubMed]
  19. B. Liu, M. Harman, and M. E. Brezinski, “Variables affecting polarization-sensitive optical coherence tomography imaging examined through the modeling of birefringent phantoms,” J. Opt. Soc. Am. A 2, 262–271 (2005).
    [CrossRef]
  20. B. Liu, M. Harman, S. Giattina, D. L. Stanper, C. Demakis, M. Chilek, S. Raby, and M. E. Brezinski, “Characterizing of tissue microstructure with singe-detector polarization-sensitive optical coherence tomography,” Appl. Opt. 45, 4464–4479 (2006).
    [CrossRef] [PubMed]
  21. S. D. Martin, N. A. Patel, S. B. Adams, M. J. Roberts, S. Plummer, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “New technology for assessing microstructural components of tendons and ligaments,” Int. Orthop. 27, 184–189 (2003) (SICOT).

2010 (1)

2006 (2)

2005 (1)

B. Liu, M. Harman, and M. E. Brezinski, “Variables affecting polarization-sensitive optical coherence tomography imaging examined through the modeling of birefringent phantoms,” J. Opt. Soc. Am. A 2, 262–271 (2005).
[CrossRef]

2004 (1)

2003 (4)

2002 (1)

2000 (1)

1999 (2)

1998 (2)

E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998).
[CrossRef]

G. Haeusler, and M. W. Lindner, “Coherence radar and spectral radar - New tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
[CrossRef]

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

1992 (1)

W. V. Sorin, and D. M. Baney, “A Simple Intentisy Noise Reduction Technique for Optical Low-Coherence Reflectometry,” IEEE Photon. Technol. Lett. 4, 1404–1406 (1992).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Adams, S. B.

S. D. Martin, N. A. Patel, S. B. Adams, M. J. Roberts, S. Plummer, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “New technology for assessing microstructural components of tendons and ligaments,” Int. Orthop. 27, 184–189 (2003) (SICOT).

Baney, D. M.

W. V. Sorin, and D. M. Baney, “A Simple Intentisy Noise Reduction Technique for Optical Low-Coherence Reflectometry,” IEEE Photon. Technol. Lett. 4, 1404–1406 (1992).
[CrossRef]

Beaurepaire, E.

Biedermann, B. R.

Blanchot, L.

Boccara, A. C.

Bouma, B. E.

Brezinski, M. E.

B. Liu, M. Harman, S. Giattina, D. L. Stanper, C. Demakis, M. Chilek, S. Raby, and M. E. Brezinski, “Characterizing of tissue microstructure with singe-detector polarization-sensitive optical coherence tomography,” Appl. Opt. 45, 4464–4479 (2006).
[CrossRef] [PubMed]

B. Liu, M. Harman, and M. E. Brezinski, “Variables affecting polarization-sensitive optical coherence tomography imaging examined through the modeling of birefringent phantoms,” J. Opt. Soc. Am. A 2, 262–271 (2005).
[CrossRef]

S. D. Martin, N. A. Patel, S. B. Adams, M. J. Roberts, S. Plummer, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “New technology for assessing microstructural components of tendons and ligaments,” Int. Orthop. 27, 184–189 (2003) (SICOT).

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chilek, M.

Choma, M. A.

de Boer, J. F.

Demakis, C.

Dubois, A.

Duker, J. S.

Eigenwillig, C. M.

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Fercher, A. F.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Fernandez, A. D.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fraser, S. E.

Fujimoto, J. G.

Giattina, S.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Haeusler, G.

G. Haeusler, and M. W. Lindner, “Coherence radar and spectral radar - New tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
[CrossRef]

Harman, M.

B. Liu, M. Harman, S. Giattina, D. L. Stanper, C. Demakis, M. Chilek, S. Raby, and M. E. Brezinski, “Characterizing of tissue microstructure with singe-detector polarization-sensitive optical coherence tomography,” Appl. Opt. 45, 4464–4479 (2006).
[CrossRef] [PubMed]

B. Liu, M. Harman, and M. E. Brezinski, “Variables affecting polarization-sensitive optical coherence tomography imaging examined through the modeling of birefringent phantoms,” J. Opt. Soc. Am. A 2, 262–271 (2005).
[CrossRef]

Haskell, R. C.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Hoeling, B. M.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, E.

Huber, R.

Iftimia, N.

Izatt, J. A.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Klein, T.

Ko, T. H.

Kowalczyk, A.

Lebec, M.

Leitgeb, R.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Lindner, M. W.

G. Haeusler, and M. W. Lindner, “Coherence radar and spectral radar - New tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
[CrossRef]

Liu, B.

B. Liu, M. Harman, S. Giattina, D. L. Stanper, C. Demakis, M. Chilek, S. Raby, and M. E. Brezinski, “Characterizing of tissue microstructure with singe-detector polarization-sensitive optical coherence tomography,” Appl. Opt. 45, 4464–4479 (2006).
[CrossRef] [PubMed]

B. Liu, M. Harman, and M. E. Brezinski, “Variables affecting polarization-sensitive optical coherence tomography imaging examined through the modeling of birefringent phantoms,” J. Opt. Soc. Am. A 2, 262–271 (2005).
[CrossRef]

Martin, S. D.

S. D. Martin, N. A. Patel, S. B. Adams, M. J. Roberts, S. Plummer, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “New technology for assessing microstructural components of tendons and ligaments,” Int. Orthop. 27, 184–189 (2003) (SICOT).

Myers, W. R.

Patel, N. A.

S. D. Martin, N. A. Patel, S. B. Adams, M. J. Roberts, S. Plummer, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “New technology for assessing microstructural components of tendons and ligaments,” Int. Orthop. 27, 184–189 (2003) (SICOT).

Petersen, D. C.

Plummer, S.

S. D. Martin, N. A. Patel, S. B. Adams, M. J. Roberts, S. Plummer, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “New technology for assessing microstructural components of tendons and ligaments,” Int. Orthop. 27, 184–189 (2003) (SICOT).

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Raby, S.

Roberts, M. J.

S. D. Martin, N. A. Patel, S. B. Adams, M. J. Roberts, S. Plummer, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “New technology for assessing microstructural components of tendons and ligaments,” Int. Orthop. 27, 184–189 (2003) (SICOT).

Rollins, A. M.

Saint-Jalmes, H.

Sarunic, M. V.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Sorin, W. V.

W. V. Sorin, and D. M. Baney, “A Simple Intentisy Noise Reduction Technique for Optical Low-Coherence Reflectometry,” IEEE Photon. Technol. Lett. 4, 1404–1406 (1992).
[CrossRef]

Srinivasan, V. J.

Stamper, D. L.

S. D. Martin, N. A. Patel, S. B. Adams, M. J. Roberts, S. Plummer, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “New technology for assessing microstructural components of tendons and ligaments,” Int. Orthop. 27, 184–189 (2003) (SICOT).

Stanper, D. L.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

Ungersma, S. E.

Vabre, L.

Wang, R.

Wieser, W.

Williams, M. E.

Wojtkowski, M.

Yang, C.

Yun, S. H.

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (1)

W. V. Sorin, and D. M. Baney, “A Simple Intentisy Noise Reduction Technique for Optical Low-Coherence Reflectometry,” IEEE Photon. Technol. Lett. 4, 1404–1406 (1992).
[CrossRef]

Int. Orthop. (1)

S. D. Martin, N. A. Patel, S. B. Adams, M. J. Roberts, S. Plummer, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “New technology for assessing microstructural components of tendons and ligaments,” Int. Orthop. 27, 184–189 (2003) (SICOT).

J. Biomed. Opt. (1)

G. Haeusler, and M. W. Lindner, “Coherence radar and spectral radar - New tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
[CrossRef]

J. Opt. Soc. Am. A (1)

B. Liu, M. Harman, and M. E. Brezinski, “Variables affecting polarization-sensitive optical coherence tomography imaging examined through the modeling of birefringent phantoms,” J. Opt. Soc. Am. A 2, 262–271 (2005).
[CrossRef]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Opt. Express (7)

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953–2963 (2003).
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003).
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18, 14685–14704 (2010).
[CrossRef] [PubMed]

B. M. Hoeling, A. D. Fernandez, R. C. Haskell, E. Huang, W. R. Myers, D. C. Petersen, S. E. Ungersma, R. Wang, M. E. Williams, and S. E. Fraser, “An optical coherence microscope for 3-dimnensional imaging in developmental biology,” Opt. Express 6, 136–146 (2000).
[CrossRef] [PubMed]

Opt. Lett. (3)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other (3)

G. Tearney, S. A. Boppart, B. E. Bouma, M. Brezinski, E. A. Swanson, and J. G. Fujimoto, “Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope,” US Patent No. 6,134,003 (1996).

C. K. Hitzenberger, “Efficient optical coherence tomography (OCT) system and method for rapid imaging in three dimensions,” US Patent No. 2005/0140984 A1 (2005).

E. Collett, Polarized light: fundamentals and applications (Marcel Dekker, New York, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Polarising beam splitter (PBS), the p-polarised light is transmitted while the s-polarised is reflected to the reference arm where a mirror and quarter wave plate (QWP) with an angle θ of fast optical axis are placed.

Fig. 2
Fig. 2

Theoretical optical attenuation of the reference signal in dB for both p (solid) and s (dashed) polarisation states as a function of the angle θ between the fast-axis of the QWP and the horizontal, based on Eqs. (10) and (11). Dots represent experimentally measured values for the p-polarisation.

Fig. 3
Fig. 3

(a) Retardation angle as a function of wavelength for the achromatic zero-order QWP (plain line), compared with standard zero-order QWP. (b) Modelled optical power after double pass through the QWP characterised in (a) and the PBS at the interferometer output.

Fig. 4
Fig. 4

(a) OCT1: Standard OCT system based on a Michelson interferometer. (b) OCT2: Efficient OCT system using PBS crosstalk ratio. In these figures, SLD: superluminescent diode, FC: fiber coupler, PC: polarisation controller, P: polariser, A: analyser, BS 3dB: 50/50 beam splitter, PBS: polarising beam splitter, L: lens, M: mirror, GM: galvanometer mirror, S: sample, Disp: dispersion compensation, G: grating, and LSC: line scan camera.

Fig. 5
Fig. 5

Sensitivity versus reference arm reflectivity Rr. The theoretical prediction is based on Eq. (15) while the data points are experimental and correspond for both systems to sensitivity measurements at 5 kHz A-scan rate and a depth of 100 μm.

Fig. 6
Fig. 6

(a) Measured decay of sensitivity with depth for both OCT configurations. In (b), we have subtracted the two data sets shown in (a) to highlight the improved sensitivity of OCT2 over that of OCT1.

Fig. 7
Fig. 7

(a) Theoretical sensitivity of OCT2 predicted from Eq. (15) as a function of the reference arm reflectivity for τ = 50 μs (solid) and 200 μs (dashed). The vertical lines indicate the CCD saturation level for both exposure times and the three different noise regimes are indicated for each sensitivity curve. In (b), we have subtracted the two curves shown in (a) to represent the expected sensitivity reduction due to a four-fold decrease of exposure time and this is compared with experimental data. Other parameters that correspond to the experimental setup are γr = 1 × 10−3, Δγr = 1.034 × 10−1, γs = 0.122, η = 0.37, ρ = 0.11, P0 = 3.2 mW, σCCD = 16e (15e) for τ = 50 μs (200 μs), FWC = 14 ke.

Fig. 8
Fig. 8

(a) Theoretical sensitivity of OCT2 predicted from Eq. (15) as a function of the reference arm reflectivity for simultaneous exposure time and saturation adjustment. Dashed curve: τ = 200 μs, γr = 1 × 10−3, Δγr = 1.034 × 10−1. Solid curve: τ = 50 μs, γr = 1 × 10−3, Δγr = 4 × 1.034 × 10−1. (b) Corresponding theoretical and experimental sensitivity reduction when reducing the exposure time [as defined in Fig. 7(b)]. All the other parameters are identical to those of Fig. 7.

Fig. 9
Fig. 9

Sensitivity reduction after exposure time decrease by a factor of four and reference arm power increase by 6 dB as a function of receiver noise ratio, σrec2/σrec1. The white line shows the case σrec2/σrec1 = 1.07 for our camera settings [Fig. 8 (b)].

Fig. 10
Fig. 10

Cross sectional images of a human nail fold (left) and a kiwifruit (right), using the polarisation cross talk ratio OCT system. Images were recorded at an A-scan rate of 5 kHz and one B-scan contained 877 A-scans and 1,165 A-scans, respectively. The white bars correspond to 1mm.

Tables (1)

Tables Icon

Table 1 Measurements of crosstalk ratios for PBSs from two different distributors in the transmission (p) and the reflection (s) directions. Numbers in bracket represent standard deviation.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

r σ = P σ P σ ,
M σ = 1 2 [ 1 ± 1 0 0 ± 1 1 0 0 0 0 0 0 0 0 0 0 ] .
P σ = 1 1 + r σ M σ S in ,
P σ = r σ P σ = r σ 1 + r σ M σ S in .
P σ = S 0 in ± S 1 in 2 1 1 + r σ S σ ,
P σ = S 0 in ± S 1 in 2 r σ 1 + r σ S σ ,
M WP ( δ ) = [ 1 0 0 0 0 1 0 0 0 0 cos ( δ ) sin ( δ ) 0 0 sin ( δ ) cos ( δ ) ] , M R ( θ ) = [ 1 0 0 0 0 cos ( 2 θ ) sin ( 2 θ ) 0 0 sin ( 2 θ ) cos ( 2 θ ) 0 0 0 0 1 ] .
P p , ref = α L [ 1 1 + r p M p ] [ M R ( θ ) M QWP 2 M R ( θ ) ] ( P S + P p ) = α L 1 + r p [ S 0 in S 1 in 2 ( 1 + r s ) sin 2 ( 2 θ ) + r p S 0 i n + S 1 i n 2 ( 1 + r p ) cos 2 ( 2 θ ) ] S p ,
P s , ref = α L [ r s 1 + r s M s ] [ M R ( θ ) M QWP 2 M R ( θ ) ] ( P S + P p ) = α L r s 1 + r s [ S 0 in S 1 in 2 ( 1 + r s ) cos 2 ( 2 θ ) + r p S 0 i n + S 1 in 2 ( 1 + r p ) sin 2 ( 2 θ ) ] S s .
P p , ref = α L r p ( 1 + r p ) 2 P 0 cos 2 ( 2 θ )
P s , ref = α L r s r p ( 1 + r s ) ( 1 + r p ) P 0 sin 2 ( 2 θ )
P s , sample = α mirror α PBS ( 1 + r p ) ( 1 + r s ) M s M R ( θ ) M WP 2 ( δ ) M R ( θ ) M p S in .
A FDOCT Peak = ρ η τ λ 0 h c P 0 N γ r γ s R r R s Δ γ r
σ ˜ noise 2 = 1 N ( σ shot 2 + σ excess 2 + σ receiver 2 )
S = 1 N ( ρ η τ λ 0 h c P 0 ) 2 Δ γ r γ r γ s R r ρ η τ λ 0 h c P 0 N Δ γ r γ r R r [ 1 + ( 1 + Π 2 ) 2 ρ η λ 0 h c P 0 Δ γ r γ r R r τ coh ] + σ receiver 2 ,

Metrics