Abstract

Optical confinement in ZnO crystal was observed by O+ implantation with different MeV energies and doses. Planar optical waveguides were formed in the as-implanted ZnO samples. The optical properties of the planar waveguide were investigated by the prism-coupling and the end-face coupling methods at the wavelength of 633 nm. The crystal lattice damage in the guiding region caused by the O+ ions implantation was analyzed by the Rutherford backscattering/Channeling technique, results show that even high dose at 2 × 1015 ions/cm2 can hardly produce defect in near surface of ZnO. A theoretical model is developed to explain the principle of waveguide formation in ZnO crystal and the refractive index profile in the implanted waveguide was reconstructed accordingly. The experimental result and analysis are significant for application of ZnO crystal, especially for the design of ZnO light emitter devices.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Klingshirn, “ZnO: From basics towards applications,” Phys. Status Solidi, B Basic Res. 244(9), 3027–3073 (2007).
    [CrossRef]
  2. C. Liu, F. Yun, and H. Morkoç, “Ferromagnetism of ZnO and GaN: a review,” J. Mater. Sci. Mater. Electron. 16(9), 555–597 (2005).
    [CrossRef]
  3. D. C. Look, D. C. Reynolds, J. W. Hemsky, R. L. Jones, and J. R. Sizelove, “Production and annealing of electron irradiation damage in ZnO,” Appl. Phys. Lett. 75(6), 811–813 (1999).
    [CrossRef]
  4. D. Fluck, P. Günter, R. Irmscher, and Ch. Buchal, “Optical strip waveguides in KNbO3 formed by He ion implantation,” Appl. Phys. Lett. 59(25), 3213–3215 (1991).
    [CrossRef]
  5. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, 1994).
  6. S. O. Kucheyev, C. Jagadish, J. S. Williams, P. N. K. Deenapanray, M. Yano, K. Koike, S. Sasa, M. Inoue, and K. Ogata, “Implant isolation of ZnO,” J. Appl. Phys. 93(5), 2972–2976 (2003).
    [CrossRef]
  7. M. DiDomenico and S. H. Wemple, “Oxygen-octahedra ferroelectics. I. Theory of electro-optical and nonlinear optical effects,” J. Appl. Phys. 40(2), 720–734 (1969).
    [CrossRef]
  8. S. H. Wemple and M. DiDomenico., “Theory the elasto-optic effect in nonmetallic crystals,” Phys. Rev. B 1(1), 193–202 (1970).
    [CrossRef]
  9. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
    [CrossRef]
  10. M. J. Weber, Handbook of Optical Materials (Academic, CRC Press, 2003)
  11. M. C. Gupta and J. Ballato, The Handbook of Photonics (Academic, CRC Press, 2006), Chap. 6.
  12. Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
    [CrossRef]
  13. J. J. Yin, F. Lu, X. B. Ming, Y. J. Ma, and M. B. Huang, “Theoretical modeling of refractive index in ion implanted LiNbO3 waveguides,” J. Appl. Phys. 108(3), 033105 (2010).
    [CrossRef]
  14. H. Åhlfeldt, J. Webjörn, P. A. Thomas, and S. J. Teat, “Strutural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3,” J. Appl. Phys. 77(9), 4467–4476 (1995).
    [CrossRef]
  15. J. F. Ziegler, “SRIM-2003,” Nucl. Instrum. Methods Phys. Res. B 219–220, 1027–1036 (2004).
    [CrossRef]

2010 (1)

J. J. Yin, F. Lu, X. B. Ming, Y. J. Ma, and M. B. Huang, “Theoretical modeling of refractive index in ion implanted LiNbO3 waveguides,” J. Appl. Phys. 108(3), 033105 (2010).
[CrossRef]

2007 (2)

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[CrossRef]

C. Klingshirn, “ZnO: From basics towards applications,” Phys. Status Solidi, B Basic Res. 244(9), 3027–3073 (2007).
[CrossRef]

2005 (2)

C. Liu, F. Yun, and H. Morkoç, “Ferromagnetism of ZnO and GaN: a review,” J. Mater. Sci. Mater. Electron. 16(9), 555–597 (2005).
[CrossRef]

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

2004 (1)

J. F. Ziegler, “SRIM-2003,” Nucl. Instrum. Methods Phys. Res. B 219–220, 1027–1036 (2004).
[CrossRef]

2003 (1)

S. O. Kucheyev, C. Jagadish, J. S. Williams, P. N. K. Deenapanray, M. Yano, K. Koike, S. Sasa, M. Inoue, and K. Ogata, “Implant isolation of ZnO,” J. Appl. Phys. 93(5), 2972–2976 (2003).
[CrossRef]

1999 (1)

D. C. Look, D. C. Reynolds, J. W. Hemsky, R. L. Jones, and J. R. Sizelove, “Production and annealing of electron irradiation damage in ZnO,” Appl. Phys. Lett. 75(6), 811–813 (1999).
[CrossRef]

1995 (1)

H. Åhlfeldt, J. Webjörn, P. A. Thomas, and S. J. Teat, “Strutural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3,” J. Appl. Phys. 77(9), 4467–4476 (1995).
[CrossRef]

1991 (1)

D. Fluck, P. Günter, R. Irmscher, and Ch. Buchal, “Optical strip waveguides in KNbO3 formed by He ion implantation,” Appl. Phys. Lett. 59(25), 3213–3215 (1991).
[CrossRef]

1970 (1)

S. H. Wemple and M. DiDomenico., “Theory the elasto-optic effect in nonmetallic crystals,” Phys. Rev. B 1(1), 193–202 (1970).
[CrossRef]

1969 (1)

M. DiDomenico and S. H. Wemple, “Oxygen-octahedra ferroelectics. I. Theory of electro-optical and nonlinear optical effects,” J. Appl. Phys. 40(2), 720–734 (1969).
[CrossRef]

Åhlfeldt, H.

H. Åhlfeldt, J. Webjörn, P. A. Thomas, and S. J. Teat, “Strutural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3,” J. Appl. Phys. 77(9), 4467–4476 (1995).
[CrossRef]

Alivov, Ya. I.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Avrutin, V.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Buchal, Ch.

D. Fluck, P. Günter, R. Irmscher, and Ch. Buchal, “Optical strip waveguides in KNbO3 formed by He ion implantation,” Appl. Phys. Lett. 59(25), 3213–3215 (1991).
[CrossRef]

Chen, F.

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[CrossRef]

Cho, S.-J.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Deenapanray, P. N. K.

S. O. Kucheyev, C. Jagadish, J. S. Williams, P. N. K. Deenapanray, M. Yano, K. Koike, S. Sasa, M. Inoue, and K. Ogata, “Implant isolation of ZnO,” J. Appl. Phys. 93(5), 2972–2976 (2003).
[CrossRef]

DiDomenico, M.

S. H. Wemple and M. DiDomenico., “Theory the elasto-optic effect in nonmetallic crystals,” Phys. Rev. B 1(1), 193–202 (1970).
[CrossRef]

M. DiDomenico and S. H. Wemple, “Oxygen-octahedra ferroelectics. I. Theory of electro-optical and nonlinear optical effects,” J. Appl. Phys. 40(2), 720–734 (1969).
[CrossRef]

Dogan, S.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Fluck, D.

D. Fluck, P. Günter, R. Irmscher, and Ch. Buchal, “Optical strip waveguides in KNbO3 formed by He ion implantation,” Appl. Phys. Lett. 59(25), 3213–3215 (1991).
[CrossRef]

Günter, P.

D. Fluck, P. Günter, R. Irmscher, and Ch. Buchal, “Optical strip waveguides in KNbO3 formed by He ion implantation,” Appl. Phys. Lett. 59(25), 3213–3215 (1991).
[CrossRef]

Hemsky, J. W.

D. C. Look, D. C. Reynolds, J. W. Hemsky, R. L. Jones, and J. R. Sizelove, “Production and annealing of electron irradiation damage in ZnO,” Appl. Phys. Lett. 75(6), 811–813 (1999).
[CrossRef]

Huang, M. B.

J. J. Yin, F. Lu, X. B. Ming, Y. J. Ma, and M. B. Huang, “Theoretical modeling of refractive index in ion implanted LiNbO3 waveguides,” J. Appl. Phys. 108(3), 033105 (2010).
[CrossRef]

Inoue, M.

S. O. Kucheyev, C. Jagadish, J. S. Williams, P. N. K. Deenapanray, M. Yano, K. Koike, S. Sasa, M. Inoue, and K. Ogata, “Implant isolation of ZnO,” J. Appl. Phys. 93(5), 2972–2976 (2003).
[CrossRef]

Irmscher, R.

D. Fluck, P. Günter, R. Irmscher, and Ch. Buchal, “Optical strip waveguides in KNbO3 formed by He ion implantation,” Appl. Phys. Lett. 59(25), 3213–3215 (1991).
[CrossRef]

Jagadish, C.

S. O. Kucheyev, C. Jagadish, J. S. Williams, P. N. K. Deenapanray, M. Yano, K. Koike, S. Sasa, M. Inoue, and K. Ogata, “Implant isolation of ZnO,” J. Appl. Phys. 93(5), 2972–2976 (2003).
[CrossRef]

Jia, C. L.

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[CrossRef]

Jiang, Y.

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[CrossRef]

Jiao, Y.

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[CrossRef]

Jones, R. L.

D. C. Look, D. C. Reynolds, J. W. Hemsky, R. L. Jones, and J. R. Sizelove, “Production and annealing of electron irradiation damage in ZnO,” Appl. Phys. Lett. 75(6), 811–813 (1999).
[CrossRef]

Klingshirn, C.

C. Klingshirn, “ZnO: From basics towards applications,” Phys. Status Solidi, B Basic Res. 244(9), 3027–3073 (2007).
[CrossRef]

Koike, K.

S. O. Kucheyev, C. Jagadish, J. S. Williams, P. N. K. Deenapanray, M. Yano, K. Koike, S. Sasa, M. Inoue, and K. Ogata, “Implant isolation of ZnO,” J. Appl. Phys. 93(5), 2972–2976 (2003).
[CrossRef]

Kucheyev, S. O.

S. O. Kucheyev, C. Jagadish, J. S. Williams, P. N. K. Deenapanray, M. Yano, K. Koike, S. Sasa, M. Inoue, and K. Ogata, “Implant isolation of ZnO,” J. Appl. Phys. 93(5), 2972–2976 (2003).
[CrossRef]

Liu, C.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

C. Liu, F. Yun, and H. Morkoç, “Ferromagnetism of ZnO and GaN: a review,” J. Mater. Sci. Mater. Electron. 16(9), 555–597 (2005).
[CrossRef]

Look, D. C.

D. C. Look, D. C. Reynolds, J. W. Hemsky, R. L. Jones, and J. R. Sizelove, “Production and annealing of electron irradiation damage in ZnO,” Appl. Phys. Lett. 75(6), 811–813 (1999).
[CrossRef]

Lu, F.

J. J. Yin, F. Lu, X. B. Ming, Y. J. Ma, and M. B. Huang, “Theoretical modeling of refractive index in ion implanted LiNbO3 waveguides,” J. Appl. Phys. 108(3), 033105 (2010).
[CrossRef]

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[CrossRef]

Ma, Y. J.

J. J. Yin, F. Lu, X. B. Ming, Y. J. Ma, and M. B. Huang, “Theoretical modeling of refractive index in ion implanted LiNbO3 waveguides,” J. Appl. Phys. 108(3), 033105 (2010).
[CrossRef]

Ming, X. B.

J. J. Yin, F. Lu, X. B. Ming, Y. J. Ma, and M. B. Huang, “Theoretical modeling of refractive index in ion implanted LiNbO3 waveguides,” J. Appl. Phys. 108(3), 033105 (2010).
[CrossRef]

Morkoç, H.

C. Liu, F. Yun, and H. Morkoç, “Ferromagnetism of ZnO and GaN: a review,” J. Mater. Sci. Mater. Electron. 16(9), 555–597 (2005).
[CrossRef]

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Ogata, K.

S. O. Kucheyev, C. Jagadish, J. S. Williams, P. N. K. Deenapanray, M. Yano, K. Koike, S. Sasa, M. Inoue, and K. Ogata, “Implant isolation of ZnO,” J. Appl. Phys. 93(5), 2972–2976 (2003).
[CrossRef]

Özgür, Ü.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Reshchikov, M. A.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Reynolds, D. C.

D. C. Look, D. C. Reynolds, J. W. Hemsky, R. L. Jones, and J. R. Sizelove, “Production and annealing of electron irradiation damage in ZnO,” Appl. Phys. Lett. 75(6), 811–813 (1999).
[CrossRef]

Sasa, S.

S. O. Kucheyev, C. Jagadish, J. S. Williams, P. N. K. Deenapanray, M. Yano, K. Koike, S. Sasa, M. Inoue, and K. Ogata, “Implant isolation of ZnO,” J. Appl. Phys. 93(5), 2972–2976 (2003).
[CrossRef]

Sizelove, J. R.

D. C. Look, D. C. Reynolds, J. W. Hemsky, R. L. Jones, and J. R. Sizelove, “Production and annealing of electron irradiation damage in ZnO,” Appl. Phys. Lett. 75(6), 811–813 (1999).
[CrossRef]

Teat, S. J.

H. Åhlfeldt, J. Webjörn, P. A. Thomas, and S. J. Teat, “Strutural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3,” J. Appl. Phys. 77(9), 4467–4476 (1995).
[CrossRef]

Teke, A.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Thomas, P. A.

H. Åhlfeldt, J. Webjörn, P. A. Thomas, and S. J. Teat, “Strutural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3,” J. Appl. Phys. 77(9), 4467–4476 (1995).
[CrossRef]

Wang, K. M.

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[CrossRef]

Wang, L.

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[CrossRef]

Wang, X. L.

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[CrossRef]

Webjörn, J.

H. Åhlfeldt, J. Webjörn, P. A. Thomas, and S. J. Teat, “Strutural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3,” J. Appl. Phys. 77(9), 4467–4476 (1995).
[CrossRef]

Wemple, S. H.

S. H. Wemple and M. DiDomenico., “Theory the elasto-optic effect in nonmetallic crystals,” Phys. Rev. B 1(1), 193–202 (1970).
[CrossRef]

M. DiDomenico and S. H. Wemple, “Oxygen-octahedra ferroelectics. I. Theory of electro-optical and nonlinear optical effects,” J. Appl. Phys. 40(2), 720–734 (1969).
[CrossRef]

Williams, J. S.

S. O. Kucheyev, C. Jagadish, J. S. Williams, P. N. K. Deenapanray, M. Yano, K. Koike, S. Sasa, M. Inoue, and K. Ogata, “Implant isolation of ZnO,” J. Appl. Phys. 93(5), 2972–2976 (2003).
[CrossRef]

Yano, M.

S. O. Kucheyev, C. Jagadish, J. S. Williams, P. N. K. Deenapanray, M. Yano, K. Koike, S. Sasa, M. Inoue, and K. Ogata, “Implant isolation of ZnO,” J. Appl. Phys. 93(5), 2972–2976 (2003).
[CrossRef]

Yin, J. J.

J. J. Yin, F. Lu, X. B. Ming, Y. J. Ma, and M. B. Huang, “Theoretical modeling of refractive index in ion implanted LiNbO3 waveguides,” J. Appl. Phys. 108(3), 033105 (2010).
[CrossRef]

Yun, F.

C. Liu, F. Yun, and H. Morkoç, “Ferromagnetism of ZnO and GaN: a review,” J. Mater. Sci. Mater. Electron. 16(9), 555–597 (2005).
[CrossRef]

Ziegler, J. F.

J. F. Ziegler, “SRIM-2003,” Nucl. Instrum. Methods Phys. Res. B 219–220, 1027–1036 (2004).
[CrossRef]

Appl. Phys. Lett. (2)

D. C. Look, D. C. Reynolds, J. W. Hemsky, R. L. Jones, and J. R. Sizelove, “Production and annealing of electron irradiation damage in ZnO,” Appl. Phys. Lett. 75(6), 811–813 (1999).
[CrossRef]

D. Fluck, P. Günter, R. Irmscher, and Ch. Buchal, “Optical strip waveguides in KNbO3 formed by He ion implantation,” Appl. Phys. Lett. 59(25), 3213–3215 (1991).
[CrossRef]

J. Appl. Phys. (5)

S. O. Kucheyev, C. Jagadish, J. S. Williams, P. N. K. Deenapanray, M. Yano, K. Koike, S. Sasa, M. Inoue, and K. Ogata, “Implant isolation of ZnO,” J. Appl. Phys. 93(5), 2972–2976 (2003).
[CrossRef]

M. DiDomenico and S. H. Wemple, “Oxygen-octahedra ferroelectics. I. Theory of electro-optical and nonlinear optical effects,” J. Appl. Phys. 40(2), 720–734 (1969).
[CrossRef]

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

J. J. Yin, F. Lu, X. B. Ming, Y. J. Ma, and M. B. Huang, “Theoretical modeling of refractive index in ion implanted LiNbO3 waveguides,” J. Appl. Phys. 108(3), 033105 (2010).
[CrossRef]

H. Åhlfeldt, J. Webjörn, P. A. Thomas, and S. J. Teat, “Strutural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3,” J. Appl. Phys. 77(9), 4467–4476 (1995).
[CrossRef]

J. Mater. Sci. Mater. Electron. (1)

C. Liu, F. Yun, and H. Morkoç, “Ferromagnetism of ZnO and GaN: a review,” J. Mater. Sci. Mater. Electron. 16(9), 555–597 (2005).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

J. F. Ziegler, “SRIM-2003,” Nucl. Instrum. Methods Phys. Res. B 219–220, 1027–1036 (2004).
[CrossRef]

Phys. Rev. B (2)

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[CrossRef]

S. H. Wemple and M. DiDomenico., “Theory the elasto-optic effect in nonmetallic crystals,” Phys. Rev. B 1(1), 193–202 (1970).
[CrossRef]

Phys. Status Solidi, B Basic Res. (1)

C. Klingshirn, “ZnO: From basics towards applications,” Phys. Status Solidi, B Basic Res. 244(9), 3027–3073 (2007).
[CrossRef]

Other (3)

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, 1994).

M. J. Weber, Handbook of Optical Materials (Academic, CRC Press, 2003)

M. C. Gupta and J. Ballato, The Handbook of Photonics (Academic, CRC Press, 2006), Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

RBS/Channeling spectra of MeV O+ ions implanted into the ZnO crystal. The random and channel spectra of the virgin ZnO crystal are also presented.

Fig. 2
Fig. 2

Relative intensity of TE polarized light reflected from the prism versus the effective refractive index of the incident light in the ZnO waveguide formed by O+ implantation.

Fig. 3
Fig. 3

The schematic of the planar waveguide fabricaed by O+ ion implantation.

Fig. 4
Fig. 4

The near field optical intensity profiles of the ZnO planar waveguides formed by O+ implantation (a)-(b) The 2D and 3D distributions for sample 1#; (c)-(d) The 2D and 3D distributions for sample 3#.

Fig. 5
Fig. 5

Refractive indices of ne and no versus the lattice damage in the ZnO crystal. The dashed lines represent the refractive indices of the virgin crystal.

Fig. 6
Fig. 6

Extraordinary (a) and ordinary (b) refractive index variable profiles as a function of the lattice damage ratio in z-cut ZnO crystal.

Fig. 7
Fig. 7

(a)-(b)Calculated refractive-index profiles of sample 3# ZnO waveguides. (c) Calculated electric field distribution of TE modes (electric field strength of TE modes versus depth below surface) of sample 3# waveguide.

Tables (1)

Tables Icon

Table 1 Experiment Parameters for Samples Suffered O+ Irradiation

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

1 n i j 2 1 n i j , 0 2 = g i j P s 2 + k , l p i j k l S k l ( i , j , k = 1 , 2 , 3 )
r i j k = 2 g i j k l P l ε 0 ( ε κ κ 1 ) = 2 R i j k l P l ε 0 ( ε l l 1 )
S k l V k V = V V k ,   P s , k 2 = ( 1 k ) P s 2 ,   g i j , k = ( 1 k ) g i j  and  p i j l , k = ( 1 k ) p i j l
( n 2 1 ) / ( n 2 + 2 ) = α / V M
1 n i j 2 = 1 [ n i j , 0 n ( M ) i j ] 2 + ( 1 k ) 2 g i j P s 2 + ( 1 k ) k p i j l V V
n i j = n i j , 0 1 2 n i j , 0 3 ( 1 k ) 2 g i j 3 P s 2 1 2 n i j , 0 3 ( 1 k ) k p i j l V V n ( M ) i j = n i j , 0 n ( P s ) i j n ( S ) i j n ( M ) i j = n i j , 0 n i j

Metrics