Abstract

We demonstrate a compact, narrow-linewidth, high-power, micro-integrated semiconductor-based master oscillator power amplifier laser module which is implemented on a footprint of 50 x 10 mm2. A micro-isolator between the oscillator and the amplifier suppresses optical feedback. The oscillator is a distributed Bragg reflector laser optimized for narrow-linewidth operation and the amplifier consists of a ridge waveguide entry and a tapered amplifier section. The module features stable single-mode operation with a FWHM linewidth of only 100 kHz and an intrinsic linewidth as small as 3.6 kHz for an output power beyond 1 W.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron . 18, 259–264 (1982).
    [CrossRef]
  2. B. Tromborg, H. Olesen, and X. Pan, “Theory of linewidth for multielectrode laser diodes with spatially distributed noise sources,” IEEE J. Quantum Electron. 27, 178–192 (1991).
    [CrossRef]
  3. X. Pan, B. Tromborg, and H. Olesen, “Linewidth re-broadening in DFB lasers due to weak side modes,” IEEE Photonics Technol. Lett. 3, 112–114 (1991).
    [CrossRef]
  4. G. Agrawal and R. Roy, “Effect of injection-current fluctuations on the spectral linewidth of semiconductor lasers,” Phys. Rev. A 37, 2495–2501 (1988).
    [CrossRef] [PubMed]
  5. W. Burkett, B. Lü, and M. Xiao, “Influence of Injection-Current Noise on the spectral characteristics of semiconductor lasers,” IEEE J. Quantum Electron. 33, 2111–2118 (1997).
    [CrossRef]
  6. K. Takaki, T. Kise, K. Marayama, N. Yamanaka, M. Funabashi, and A. Kasukawa, “Reduced linewidth re-broadening by suppressing longitudinal spatial hole burning in high-power 1.55-μm continuous-wave distributed-feedback (cw-DFB) laser diodes,” IEEE J. Quantum Electron. 39, 1060–1065 (2003).
    [CrossRef]
  7. M. Ziegler, J. Tomm, U. Zeimer, and T. Elsaesser, “Imaging catastrophic optical mirror damage in high-power diode lasers,” J. Electron. Mat. 39, 709–714 (2010).
    [CrossRef]
  8. D. Jedrzejczyk, O. Brox, F. Bugge, J. Fricke, A. Ginolas, K. Paschke, H. Wenzel, and G. Erbert, “High-power distributed-feedback tapered master-oscillator power amplifiers emitting at 1064 nm,” Proc. SPIE 7583, 758317 (2010).
    [CrossRef]
  9. J. Verdiell, J. Osinsky, D. Welch, and D. Scifres, “Semiconductor MOPA with monolithically integrated 5 GHz electroabsorption modulator,” Electron. Lett. 31, 1187–1189 (1995).
    [CrossRef]
  10. K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quant. Electron. 1, 480–489 (1995).
    [CrossRef]
  11. A. Champagne, J. Camel, R. Maciejko, K. Kasunic, D. Adams, and B. Tromborg, “Linewidth broadening in a distributed feedback laser integrated with a semiconductor optical amplifier,” IEEE J. Quantum Electron. 381493–1502 (2002).
    [CrossRef]
  12. A. Wilson, J. Sharpe, C. McKenzie, P. Manson, and D. Warrington, “Narrow-linewidth master-oscillator power amplifier based on a semiconductor tapered amplifier,” Appl. Opt. 37, 4871–4875 (1998).
    [CrossRef]
  13. S. Schwertfeger, J. Wiedmann, B. Sumpf, A. Klehr, F. Dittmar, A. Knauer, G. Erbert, and G. Tränkle, “7.4 W continuous-wave output power of master oscillator power amplifier system at 1083 nm,” Electron. Lett. 42, 346–347 (2006).
    [CrossRef]
  14. L. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9, 485–493 (1991).
    [CrossRef]
  15. G. Stéphan, T. Tam, S. Blin, P. Besnard, and M. Têtu, “Influence of Injection-Current Noise on the spectral characteristics of semiconductor lasers,” IEEE J. Quantum Electron. 33, 2111–2118 (1997).
    [CrossRef]
  16. K. Kikuchi, “Impact of 1/f-type FM noise on coherent optical communications,” Electron. Lett. 23, 885–887 (1987).
    [CrossRef]
  17. S. Spießberger, M. Schiemangk, A. Wicht, H. Wenzel, O. Brox, and G. Erbert, “Narrow linewidth DFB lasers emitting near a wavelength of 1064 nm,” J. Lightwave Technol. 28, 2611–2616 (2010).
    [CrossRef]
  18. S. Spießberger, M. Schiemangk, A. Wicht, H. Wenzel, G. Erbert, and G. Tränkle, “DBR laser diodes emitting near 1064 nm with a narrow intrinsic linewidth of 2 kHz,” submitted to Appl. Phys. B.

2010

M. Ziegler, J. Tomm, U. Zeimer, and T. Elsaesser, “Imaging catastrophic optical mirror damage in high-power diode lasers,” J. Electron. Mat. 39, 709–714 (2010).
[CrossRef]

D. Jedrzejczyk, O. Brox, F. Bugge, J. Fricke, A. Ginolas, K. Paschke, H. Wenzel, and G. Erbert, “High-power distributed-feedback tapered master-oscillator power amplifiers emitting at 1064 nm,” Proc. SPIE 7583, 758317 (2010).
[CrossRef]

S. Spießberger, M. Schiemangk, A. Wicht, H. Wenzel, O. Brox, and G. Erbert, “Narrow linewidth DFB lasers emitting near a wavelength of 1064 nm,” J. Lightwave Technol. 28, 2611–2616 (2010).
[CrossRef]

2006

S. Schwertfeger, J. Wiedmann, B. Sumpf, A. Klehr, F. Dittmar, A. Knauer, G. Erbert, and G. Tränkle, “7.4 W continuous-wave output power of master oscillator power amplifier system at 1083 nm,” Electron. Lett. 42, 346–347 (2006).
[CrossRef]

2003

K. Takaki, T. Kise, K. Marayama, N. Yamanaka, M. Funabashi, and A. Kasukawa, “Reduced linewidth re-broadening by suppressing longitudinal spatial hole burning in high-power 1.55-μm continuous-wave distributed-feedback (cw-DFB) laser diodes,” IEEE J. Quantum Electron. 39, 1060–1065 (2003).
[CrossRef]

2002

A. Champagne, J. Camel, R. Maciejko, K. Kasunic, D. Adams, and B. Tromborg, “Linewidth broadening in a distributed feedback laser integrated with a semiconductor optical amplifier,” IEEE J. Quantum Electron. 381493–1502 (2002).
[CrossRef]

1998

1997

G. Stéphan, T. Tam, S. Blin, P. Besnard, and M. Têtu, “Influence of Injection-Current Noise on the spectral characteristics of semiconductor lasers,” IEEE J. Quantum Electron. 33, 2111–2118 (1997).
[CrossRef]

W. Burkett, B. Lü, and M. Xiao, “Influence of Injection-Current Noise on the spectral characteristics of semiconductor lasers,” IEEE J. Quantum Electron. 33, 2111–2118 (1997).
[CrossRef]

1995

J. Verdiell, J. Osinsky, D. Welch, and D. Scifres, “Semiconductor MOPA with monolithically integrated 5 GHz electroabsorption modulator,” Electron. Lett. 31, 1187–1189 (1995).
[CrossRef]

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quant. Electron. 1, 480–489 (1995).
[CrossRef]

1991

B. Tromborg, H. Olesen, and X. Pan, “Theory of linewidth for multielectrode laser diodes with spatially distributed noise sources,” IEEE J. Quantum Electron. 27, 178–192 (1991).
[CrossRef]

X. Pan, B. Tromborg, and H. Olesen, “Linewidth re-broadening in DFB lasers due to weak side modes,” IEEE Photonics Technol. Lett. 3, 112–114 (1991).
[CrossRef]

L. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9, 485–493 (1991).
[CrossRef]

1988

G. Agrawal and R. Roy, “Effect of injection-current fluctuations on the spectral linewidth of semiconductor lasers,” Phys. Rev. A 37, 2495–2501 (1988).
[CrossRef] [PubMed]

1987

K. Kikuchi, “Impact of 1/f-type FM noise on coherent optical communications,” Electron. Lett. 23, 885–887 (1987).
[CrossRef]

1982

C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron . 18, 259–264 (1982).
[CrossRef]

Adams, D.

A. Champagne, J. Camel, R. Maciejko, K. Kasunic, D. Adams, and B. Tromborg, “Linewidth broadening in a distributed feedback laser integrated with a semiconductor optical amplifier,” IEEE J. Quantum Electron. 381493–1502 (2002).
[CrossRef]

Agrawal, G.

G. Agrawal and R. Roy, “Effect of injection-current fluctuations on the spectral linewidth of semiconductor lasers,” Phys. Rev. A 37, 2495–2501 (1988).
[CrossRef] [PubMed]

Besnard, P.

G. Stéphan, T. Tam, S. Blin, P. Besnard, and M. Têtu, “Influence of Injection-Current Noise on the spectral characteristics of semiconductor lasers,” IEEE J. Quantum Electron. 33, 2111–2118 (1997).
[CrossRef]

Blin, S.

G. Stéphan, T. Tam, S. Blin, P. Besnard, and M. Têtu, “Influence of Injection-Current Noise on the spectral characteristics of semiconductor lasers,” IEEE J. Quantum Electron. 33, 2111–2118 (1997).
[CrossRef]

Brox, O.

D. Jedrzejczyk, O. Brox, F. Bugge, J. Fricke, A. Ginolas, K. Paschke, H. Wenzel, and G. Erbert, “High-power distributed-feedback tapered master-oscillator power amplifiers emitting at 1064 nm,” Proc. SPIE 7583, 758317 (2010).
[CrossRef]

S. Spießberger, M. Schiemangk, A. Wicht, H. Wenzel, O. Brox, and G. Erbert, “Narrow linewidth DFB lasers emitting near a wavelength of 1064 nm,” J. Lightwave Technol. 28, 2611–2616 (2010).
[CrossRef]

Bugge, F.

D. Jedrzejczyk, O. Brox, F. Bugge, J. Fricke, A. Ginolas, K. Paschke, H. Wenzel, and G. Erbert, “High-power distributed-feedback tapered master-oscillator power amplifiers emitting at 1064 nm,” Proc. SPIE 7583, 758317 (2010).
[CrossRef]

Burkett, W.

W. Burkett, B. Lü, and M. Xiao, “Influence of Injection-Current Noise on the spectral characteristics of semiconductor lasers,” IEEE J. Quantum Electron. 33, 2111–2118 (1997).
[CrossRef]

Camel, J.

A. Champagne, J. Camel, R. Maciejko, K. Kasunic, D. Adams, and B. Tromborg, “Linewidth broadening in a distributed feedback laser integrated with a semiconductor optical amplifier,” IEEE J. Quantum Electron. 381493–1502 (2002).
[CrossRef]

Champagne, A.

A. Champagne, J. Camel, R. Maciejko, K. Kasunic, D. Adams, and B. Tromborg, “Linewidth broadening in a distributed feedback laser integrated with a semiconductor optical amplifier,” IEEE J. Quantum Electron. 381493–1502 (2002).
[CrossRef]

Dittmar, F.

S. Schwertfeger, J. Wiedmann, B. Sumpf, A. Klehr, F. Dittmar, A. Knauer, G. Erbert, and G. Tränkle, “7.4 W continuous-wave output power of master oscillator power amplifier system at 1083 nm,” Electron. Lett. 42, 346–347 (2006).
[CrossRef]

Elsaesser, T.

M. Ziegler, J. Tomm, U. Zeimer, and T. Elsaesser, “Imaging catastrophic optical mirror damage in high-power diode lasers,” J. Electron. Mat. 39, 709–714 (2010).
[CrossRef]

Erbert, G.

S. Spießberger, M. Schiemangk, A. Wicht, H. Wenzel, O. Brox, and G. Erbert, “Narrow linewidth DFB lasers emitting near a wavelength of 1064 nm,” J. Lightwave Technol. 28, 2611–2616 (2010).
[CrossRef]

D. Jedrzejczyk, O. Brox, F. Bugge, J. Fricke, A. Ginolas, K. Paschke, H. Wenzel, and G. Erbert, “High-power distributed-feedback tapered master-oscillator power amplifiers emitting at 1064 nm,” Proc. SPIE 7583, 758317 (2010).
[CrossRef]

S. Schwertfeger, J. Wiedmann, B. Sumpf, A. Klehr, F. Dittmar, A. Knauer, G. Erbert, and G. Tränkle, “7.4 W continuous-wave output power of master oscillator power amplifier system at 1083 nm,” Electron. Lett. 42, 346–347 (2006).
[CrossRef]

Fricke, J.

D. Jedrzejczyk, O. Brox, F. Bugge, J. Fricke, A. Ginolas, K. Paschke, H. Wenzel, and G. Erbert, “High-power distributed-feedback tapered master-oscillator power amplifiers emitting at 1064 nm,” Proc. SPIE 7583, 758317 (2010).
[CrossRef]

Funabashi, M.

K. Takaki, T. Kise, K. Marayama, N. Yamanaka, M. Funabashi, and A. Kasukawa, “Reduced linewidth re-broadening by suppressing longitudinal spatial hole burning in high-power 1.55-μm continuous-wave distributed-feedback (cw-DFB) laser diodes,” IEEE J. Quantum Electron. 39, 1060–1065 (2003).
[CrossRef]

Ginolas, A.

D. Jedrzejczyk, O. Brox, F. Bugge, J. Fricke, A. Ginolas, K. Paschke, H. Wenzel, and G. Erbert, “High-power distributed-feedback tapered master-oscillator power amplifiers emitting at 1064 nm,” Proc. SPIE 7583, 758317 (2010).
[CrossRef]

Henry, C.

C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron . 18, 259–264 (1982).
[CrossRef]

Jedrzejczyk, D.

D. Jedrzejczyk, O. Brox, F. Bugge, J. Fricke, A. Ginolas, K. Paschke, H. Wenzel, and G. Erbert, “High-power distributed-feedback tapered master-oscillator power amplifiers emitting at 1064 nm,” Proc. SPIE 7583, 758317 (2010).
[CrossRef]

Kasukawa, A.

K. Takaki, T. Kise, K. Marayama, N. Yamanaka, M. Funabashi, and A. Kasukawa, “Reduced linewidth re-broadening by suppressing longitudinal spatial hole burning in high-power 1.55-μm continuous-wave distributed-feedback (cw-DFB) laser diodes,” IEEE J. Quantum Electron. 39, 1060–1065 (2003).
[CrossRef]

Kasunic, K.

A. Champagne, J. Camel, R. Maciejko, K. Kasunic, D. Adams, and B. Tromborg, “Linewidth broadening in a distributed feedback laser integrated with a semiconductor optical amplifier,” IEEE J. Quantum Electron. 381493–1502 (2002).
[CrossRef]

Kikuchi, K.

K. Kikuchi, “Impact of 1/f-type FM noise on coherent optical communications,” Electron. Lett. 23, 885–887 (1987).
[CrossRef]

Kise, T.

K. Takaki, T. Kise, K. Marayama, N. Yamanaka, M. Funabashi, and A. Kasukawa, “Reduced linewidth re-broadening by suppressing longitudinal spatial hole burning in high-power 1.55-μm continuous-wave distributed-feedback (cw-DFB) laser diodes,” IEEE J. Quantum Electron. 39, 1060–1065 (2003).
[CrossRef]

Klehr, A.

S. Schwertfeger, J. Wiedmann, B. Sumpf, A. Klehr, F. Dittmar, A. Knauer, G. Erbert, and G. Tränkle, “7.4 W continuous-wave output power of master oscillator power amplifier system at 1083 nm,” Electron. Lett. 42, 346–347 (2006).
[CrossRef]

Knauer, A.

S. Schwertfeger, J. Wiedmann, B. Sumpf, A. Klehr, F. Dittmar, A. Knauer, G. Erbert, and G. Tränkle, “7.4 W continuous-wave output power of master oscillator power amplifier system at 1083 nm,” Electron. Lett. 42, 346–347 (2006).
[CrossRef]

Lü, B.

W. Burkett, B. Lü, and M. Xiao, “Influence of Injection-Current Noise on the spectral characteristics of semiconductor lasers,” IEEE J. Quantum Electron. 33, 2111–2118 (1997).
[CrossRef]

Maciejko, R.

A. Champagne, J. Camel, R. Maciejko, K. Kasunic, D. Adams, and B. Tromborg, “Linewidth broadening in a distributed feedback laser integrated with a semiconductor optical amplifier,” IEEE J. Quantum Electron. 381493–1502 (2002).
[CrossRef]

Manson, P.

Marayama, K.

K. Takaki, T. Kise, K. Marayama, N. Yamanaka, M. Funabashi, and A. Kasukawa, “Reduced linewidth re-broadening by suppressing longitudinal spatial hole burning in high-power 1.55-μm continuous-wave distributed-feedback (cw-DFB) laser diodes,” IEEE J. Quantum Electron. 39, 1060–1065 (2003).
[CrossRef]

McKenzie, C.

Mercer, L.

L. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9, 485–493 (1991).
[CrossRef]

Olesen, H.

B. Tromborg, H. Olesen, and X. Pan, “Theory of linewidth for multielectrode laser diodes with spatially distributed noise sources,” IEEE J. Quantum Electron. 27, 178–192 (1991).
[CrossRef]

X. Pan, B. Tromborg, and H. Olesen, “Linewidth re-broadening in DFB lasers due to weak side modes,” IEEE Photonics Technol. Lett. 3, 112–114 (1991).
[CrossRef]

Osinsky, J.

J. Verdiell, J. Osinsky, D. Welch, and D. Scifres, “Semiconductor MOPA with monolithically integrated 5 GHz electroabsorption modulator,” Electron. Lett. 31, 1187–1189 (1995).
[CrossRef]

Pan, X.

B. Tromborg, H. Olesen, and X. Pan, “Theory of linewidth for multielectrode laser diodes with spatially distributed noise sources,” IEEE J. Quantum Electron. 27, 178–192 (1991).
[CrossRef]

X. Pan, B. Tromborg, and H. Olesen, “Linewidth re-broadening in DFB lasers due to weak side modes,” IEEE Photonics Technol. Lett. 3, 112–114 (1991).
[CrossRef]

Paschke, K.

D. Jedrzejczyk, O. Brox, F. Bugge, J. Fricke, A. Ginolas, K. Paschke, H. Wenzel, and G. Erbert, “High-power distributed-feedback tapered master-oscillator power amplifiers emitting at 1064 nm,” Proc. SPIE 7583, 758317 (2010).
[CrossRef]

Petermann, K.

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quant. Electron. 1, 480–489 (1995).
[CrossRef]

Roy, R.

G. Agrawal and R. Roy, “Effect of injection-current fluctuations on the spectral linewidth of semiconductor lasers,” Phys. Rev. A 37, 2495–2501 (1988).
[CrossRef] [PubMed]

Schiemangk, M.

Schwertfeger, S.

S. Schwertfeger, J. Wiedmann, B. Sumpf, A. Klehr, F. Dittmar, A. Knauer, G. Erbert, and G. Tränkle, “7.4 W continuous-wave output power of master oscillator power amplifier system at 1083 nm,” Electron. Lett. 42, 346–347 (2006).
[CrossRef]

Scifres, D.

J. Verdiell, J. Osinsky, D. Welch, and D. Scifres, “Semiconductor MOPA with monolithically integrated 5 GHz electroabsorption modulator,” Electron. Lett. 31, 1187–1189 (1995).
[CrossRef]

Sharpe, J.

Spießberger, S.

Stéphan, G.

G. Stéphan, T. Tam, S. Blin, P. Besnard, and M. Têtu, “Influence of Injection-Current Noise on the spectral characteristics of semiconductor lasers,” IEEE J. Quantum Electron. 33, 2111–2118 (1997).
[CrossRef]

Sumpf, B.

S. Schwertfeger, J. Wiedmann, B. Sumpf, A. Klehr, F. Dittmar, A. Knauer, G. Erbert, and G. Tränkle, “7.4 W continuous-wave output power of master oscillator power amplifier system at 1083 nm,” Electron. Lett. 42, 346–347 (2006).
[CrossRef]

Takaki, K.

K. Takaki, T. Kise, K. Marayama, N. Yamanaka, M. Funabashi, and A. Kasukawa, “Reduced linewidth re-broadening by suppressing longitudinal spatial hole burning in high-power 1.55-μm continuous-wave distributed-feedback (cw-DFB) laser diodes,” IEEE J. Quantum Electron. 39, 1060–1065 (2003).
[CrossRef]

Tam, T.

G. Stéphan, T. Tam, S. Blin, P. Besnard, and M. Têtu, “Influence of Injection-Current Noise on the spectral characteristics of semiconductor lasers,” IEEE J. Quantum Electron. 33, 2111–2118 (1997).
[CrossRef]

Têtu, M.

G. Stéphan, T. Tam, S. Blin, P. Besnard, and M. Têtu, “Influence of Injection-Current Noise on the spectral characteristics of semiconductor lasers,” IEEE J. Quantum Electron. 33, 2111–2118 (1997).
[CrossRef]

Tomm, J.

M. Ziegler, J. Tomm, U. Zeimer, and T. Elsaesser, “Imaging catastrophic optical mirror damage in high-power diode lasers,” J. Electron. Mat. 39, 709–714 (2010).
[CrossRef]

Tränkle, G.

S. Schwertfeger, J. Wiedmann, B. Sumpf, A. Klehr, F. Dittmar, A. Knauer, G. Erbert, and G. Tränkle, “7.4 W continuous-wave output power of master oscillator power amplifier system at 1083 nm,” Electron. Lett. 42, 346–347 (2006).
[CrossRef]

Tromborg, B.

A. Champagne, J. Camel, R. Maciejko, K. Kasunic, D. Adams, and B. Tromborg, “Linewidth broadening in a distributed feedback laser integrated with a semiconductor optical amplifier,” IEEE J. Quantum Electron. 381493–1502 (2002).
[CrossRef]

B. Tromborg, H. Olesen, and X. Pan, “Theory of linewidth for multielectrode laser diodes with spatially distributed noise sources,” IEEE J. Quantum Electron. 27, 178–192 (1991).
[CrossRef]

X. Pan, B. Tromborg, and H. Olesen, “Linewidth re-broadening in DFB lasers due to weak side modes,” IEEE Photonics Technol. Lett. 3, 112–114 (1991).
[CrossRef]

Verdiell, J.

J. Verdiell, J. Osinsky, D. Welch, and D. Scifres, “Semiconductor MOPA with monolithically integrated 5 GHz electroabsorption modulator,” Electron. Lett. 31, 1187–1189 (1995).
[CrossRef]

Warrington, D.

Welch, D.

J. Verdiell, J. Osinsky, D. Welch, and D. Scifres, “Semiconductor MOPA with monolithically integrated 5 GHz electroabsorption modulator,” Electron. Lett. 31, 1187–1189 (1995).
[CrossRef]

Wenzel, H.

D. Jedrzejczyk, O. Brox, F. Bugge, J. Fricke, A. Ginolas, K. Paschke, H. Wenzel, and G. Erbert, “High-power distributed-feedback tapered master-oscillator power amplifiers emitting at 1064 nm,” Proc. SPIE 7583, 758317 (2010).
[CrossRef]

S. Spießberger, M. Schiemangk, A. Wicht, H. Wenzel, O. Brox, and G. Erbert, “Narrow linewidth DFB lasers emitting near a wavelength of 1064 nm,” J. Lightwave Technol. 28, 2611–2616 (2010).
[CrossRef]

Wicht, A.

Wiedmann, J.

S. Schwertfeger, J. Wiedmann, B. Sumpf, A. Klehr, F. Dittmar, A. Knauer, G. Erbert, and G. Tränkle, “7.4 W continuous-wave output power of master oscillator power amplifier system at 1083 nm,” Electron. Lett. 42, 346–347 (2006).
[CrossRef]

Wilson, A.

Xiao, M.

W. Burkett, B. Lü, and M. Xiao, “Influence of Injection-Current Noise on the spectral characteristics of semiconductor lasers,” IEEE J. Quantum Electron. 33, 2111–2118 (1997).
[CrossRef]

Yamanaka, N.

K. Takaki, T. Kise, K. Marayama, N. Yamanaka, M. Funabashi, and A. Kasukawa, “Reduced linewidth re-broadening by suppressing longitudinal spatial hole burning in high-power 1.55-μm continuous-wave distributed-feedback (cw-DFB) laser diodes,” IEEE J. Quantum Electron. 39, 1060–1065 (2003).
[CrossRef]

Zeimer, U.

M. Ziegler, J. Tomm, U. Zeimer, and T. Elsaesser, “Imaging catastrophic optical mirror damage in high-power diode lasers,” J. Electron. Mat. 39, 709–714 (2010).
[CrossRef]

Ziegler, M.

M. Ziegler, J. Tomm, U. Zeimer, and T. Elsaesser, “Imaging catastrophic optical mirror damage in high-power diode lasers,” J. Electron. Mat. 39, 709–714 (2010).
[CrossRef]

Appl. Opt.

Electron. Lett.

J. Verdiell, J. Osinsky, D. Welch, and D. Scifres, “Semiconductor MOPA with monolithically integrated 5 GHz electroabsorption modulator,” Electron. Lett. 31, 1187–1189 (1995).
[CrossRef]

S. Schwertfeger, J. Wiedmann, B. Sumpf, A. Klehr, F. Dittmar, A. Knauer, G. Erbert, and G. Tränkle, “7.4 W continuous-wave output power of master oscillator power amplifier system at 1083 nm,” Electron. Lett. 42, 346–347 (2006).
[CrossRef]

K. Kikuchi, “Impact of 1/f-type FM noise on coherent optical communications,” Electron. Lett. 23, 885–887 (1987).
[CrossRef]

IEEE J. Quantum Electron

C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron . 18, 259–264 (1982).
[CrossRef]

IEEE J. Quantum Electron.

B. Tromborg, H. Olesen, and X. Pan, “Theory of linewidth for multielectrode laser diodes with spatially distributed noise sources,” IEEE J. Quantum Electron. 27, 178–192 (1991).
[CrossRef]

W. Burkett, B. Lü, and M. Xiao, “Influence of Injection-Current Noise on the spectral characteristics of semiconductor lasers,” IEEE J. Quantum Electron. 33, 2111–2118 (1997).
[CrossRef]

K. Takaki, T. Kise, K. Marayama, N. Yamanaka, M. Funabashi, and A. Kasukawa, “Reduced linewidth re-broadening by suppressing longitudinal spatial hole burning in high-power 1.55-μm continuous-wave distributed-feedback (cw-DFB) laser diodes,” IEEE J. Quantum Electron. 39, 1060–1065 (2003).
[CrossRef]

A. Champagne, J. Camel, R. Maciejko, K. Kasunic, D. Adams, and B. Tromborg, “Linewidth broadening in a distributed feedback laser integrated with a semiconductor optical amplifier,” IEEE J. Quantum Electron. 381493–1502 (2002).
[CrossRef]

G. Stéphan, T. Tam, S. Blin, P. Besnard, and M. Têtu, “Influence of Injection-Current Noise on the spectral characteristics of semiconductor lasers,” IEEE J. Quantum Electron. 33, 2111–2118 (1997).
[CrossRef]

IEEE J. Sel. Top. Quant. Electron.

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quant. Electron. 1, 480–489 (1995).
[CrossRef]

IEEE Photonics Technol. Lett.

X. Pan, B. Tromborg, and H. Olesen, “Linewidth re-broadening in DFB lasers due to weak side modes,” IEEE Photonics Technol. Lett. 3, 112–114 (1991).
[CrossRef]

J. Electron. Mat.

M. Ziegler, J. Tomm, U. Zeimer, and T. Elsaesser, “Imaging catastrophic optical mirror damage in high-power diode lasers,” J. Electron. Mat. 39, 709–714 (2010).
[CrossRef]

J. Lightwave Technol.

Phys. Rev. A

G. Agrawal and R. Roy, “Effect of injection-current fluctuations on the spectral linewidth of semiconductor lasers,” Phys. Rev. A 37, 2495–2501 (1988).
[CrossRef] [PubMed]

Proc. SPIE

D. Jedrzejczyk, O. Brox, F. Bugge, J. Fricke, A. Ginolas, K. Paschke, H. Wenzel, and G. Erbert, “High-power distributed-feedback tapered master-oscillator power amplifiers emitting at 1064 nm,” Proc. SPIE 7583, 758317 (2010).
[CrossRef]

Other

S. Spießberger, M. Schiemangk, A. Wicht, H. Wenzel, G. Erbert, and G. Tränkle, “DBR laser diodes emitting near 1064 nm with a narrow intrinsic linewidth of 2 kHz,” submitted to Appl. Phys. B.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Micro-optical bench where all semiconductor components and the optics of the MOPA module are fitted to. The MOPA consists of a DBR laser as oscillator and a power amplifier which comprises of a ridge waveguide entry and a tapered amplifier section. A pair of aspheric cylindrical lenses is used to collimate the output of the MO and one more to focus into the entry section of the PA. A micro-isolator between the MO and the PA suppresses optical feedback. Three aspheric cylindrical lenses are used to obtain a round, collimated beam. (b) Packaged micro-integrated MOPA module with connectors and copper heat sink. The inset shows the oscillator and the micro lenses used for collimation in more detail.

Fig. 2
Fig. 2

Dependence of the optical output power of the MOPA module on the injection current into the tapered amplifier section of the amplifier for various oscillator currents. The current through the preamplifier section is 200 mA.

Fig. 3
Fig. 3

Optical spectrum vs. injection current of the oscillator IMO for injection currents of IPre = 200 mA and ITA = 2000 mA. The inset shows a single optical spectrum of the oscillator itself at an injection current of 200 mA in comparison with that of the MOPA. The spectra are normalized to the total peak of all emission spectra. In the inset, both spectra are individually normalized to the peak values.

Fig. 4
Fig. 4

(a) RF beat note spectra of a heterodyne linewidth measurement for various injection currents through the oscillator (ITA = 2 A). (b) Frequency noise power spectral density (PSD) of a heterodyne linewidth measurement for various injection currents through the oscillator (ITA = 2 A). (c) FWHM and intrinsic spectral linewidth vs. the optical output power of the oscillator (ITA = 2 A). (d) FWHM and intrinsic spectral linewidth vs. the injection current through the tapered amplifier section (IMO = 200 mA).

Metrics