Abstract

Microscopic split-ring-resonator (SRR) arrays are fabricated on 100 μm thick polyethylene naphthalate (PEN) films by femtosecond laser micro-lens array (MLA) lithography. The transmission properties of these metamaterials are characterized by THz Time Domain Spectroscopy (THz-TDS). Tunable resonance responses can be achieved by changing SRR structural design parameters. By stacking 2D PEN metamaterial films with different frequency responses together, a broadband THz filter with full width at half maximum (FWHM) of 0.38 THz is constructed. The bandwidth of the resonance response increases up to 4.2 times as compared to the bandwidths of single layer metamaterials. Numerical simulation reveals that SRR layers inside the multi-layer metamaterials are selectively excited towards specific frequencies within the broadband response. Meanwhile, more than one SRR layers respond to the chosen frequencies, resulting in the enhancement of the resonance properties. The multi-layer metamaterials provide a promising way to extend SRR based metamaterial operating region from narrowband to broadband with a tunable feature.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
    [CrossRef]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [CrossRef] [PubMed]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [CrossRef] [PubMed]
  4. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  5. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  6. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  7. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
    [CrossRef]
  8. D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
    [CrossRef]
  9. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
    [CrossRef] [PubMed]
  10. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [CrossRef] [PubMed]
  11. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
    [CrossRef]
  12. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
    [CrossRef] [PubMed]
  13. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
    [CrossRef] [PubMed]
  14. H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
    [CrossRef] [PubMed]
  15. C. M. Bingham, H. Tao, X. L. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, “Planar wallpaper group metamaterials for novel terahertz applications,” Opt. Express 16(23), 18565–18575 (2008).
    [CrossRef]
  16. Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16(13), 9746–9752 (2008).
    [CrossRef] [PubMed]
  17. F. Miyamaru, Y. Saito, M. W. Takeda, B. Hou, L. Liu, W. Wen, and P. Sheng, “Terahertz electric response of fractal metamaterial structures,” Phys. Rev. B 77(4), 045124 (2008).
    [CrossRef]
  18. W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photon. J. 1(2), 99–118 (2009).
    [CrossRef]
  19. M. V. Gorkunov, S. A. Gredeskul, I. V. Shadrivov, and Y. S. Kivshar, “Effect of microscopic disorder on magnetic properties of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 056605 (2006).
    [CrossRef] [PubMed]
  20. N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, Th. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30(11), 1348–1350 (2005).
    [CrossRef] [PubMed]
  21. B. D. F. Casse, H. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90(25), 254106 (2007).
    [CrossRef]
  22. H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
    [CrossRef]
  23. X. G. Peralta, M. C. Wanke, C. L. Arrington, J. D. Williams, I. Brener, A. Strikwerda, R. D. Averitt, W. J. Padilla, E. Smirnova, A. J. Taylor, and J. F. O’Hara, “Large-area metamaterials on thin membranes for multilayer and curved applications at terahertz and higher frequencies,” Appl. Phys. Lett. 94(16), 161113 (2009).
    [CrossRef]
  24. A. K. Azad, H.-T. Chen, X. Lu, J. Gu, N. R. Weisse-Bernstein, E. Akhadov, A. J. Taylor, W. Zhang, and J. F. O’Hara, “Flexible quasi-three-dimensional terahertz electric metamaterials,” Terahertz Sci. Technol. 2, 15–22 (2009).
  25. P. Gay-Balmaz and O. J. F. Martin, “Electromagnetic resonances in individual and coupled split-ring-resonators,” J. Appl. Phys. 92(5), 2929–2936 (2002).
    [CrossRef]
  26. C. S. Lim, M. H. Hong, Z. C. Chen, N. R. Han, B. Luk’yanchuk, and T. C. Chong, “Hybrid metamaterial design and fabrication for terahertz resonance response enhancement,” Opt. Express 18(12), 12421–12429 (2010).
    [CrossRef] [PubMed]
  27. Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast laser induced parallel phase change nanolithography,” Appl. Phys. Lett. 89(4), 041108 (2006).
    [CrossRef]
  28. Z. C. Chen, M. H. Hong, C. S. Lim, N. R. Han, L. P. Shi, and T. C. Chong, “Parallel laser microfabrication of large-area asymmetric split ring resonator metamaterials and its structural tuning for terahertz resonance,” Appl. Phys. Lett. 96(18), 181101 (2010).
    [CrossRef]
  29. R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65(14), 144440 (2002).
    [CrossRef]
  30. A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92(1), 011119 (2008).
    [CrossRef]
  31. F. Miyamaru, M. W. Takeda, and K. Taima, “Characterization of terahertz metamaterials fabricated on flexible plastic films: toward fabrication of bulk metamaterials in terahertz region,” Appl. Phys. Express 2, 042001 (2009).
    [CrossRef]
  32. F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
    [CrossRef]
  33. T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007).
    [CrossRef]

2010 (3)

Z. C. Chen, M. H. Hong, C. S. Lim, N. R. Han, L. P. Shi, and T. C. Chong, “Parallel laser microfabrication of large-area asymmetric split ring resonator metamaterials and its structural tuning for terahertz resonance,” Appl. Phys. Lett. 96(18), 181101 (2010).
[CrossRef]

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
[CrossRef]

C. S. Lim, M. H. Hong, Z. C. Chen, N. R. Han, B. Luk’yanchuk, and T. C. Chong, “Hybrid metamaterial design and fabrication for terahertz resonance response enhancement,” Opt. Express 18(12), 12421–12429 (2010).
[CrossRef] [PubMed]

2009 (6)

F. Miyamaru, M. W. Takeda, and K. Taima, “Characterization of terahertz metamaterials fabricated on flexible plastic films: toward fabrication of bulk metamaterials in terahertz region,” Appl. Phys. Express 2, 042001 (2009).
[CrossRef]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[CrossRef] [PubMed]

W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photon. J. 1(2), 99–118 (2009).
[CrossRef]

X. G. Peralta, M. C. Wanke, C. L. Arrington, J. D. Williams, I. Brener, A. Strikwerda, R. D. Averitt, W. J. Padilla, E. Smirnova, A. J. Taylor, and J. F. O’Hara, “Large-area metamaterials on thin membranes for multilayer and curved applications at terahertz and higher frequencies,” Appl. Phys. Lett. 94(16), 161113 (2009).
[CrossRef]

A. K. Azad, H.-T. Chen, X. Lu, J. Gu, N. R. Weisse-Bernstein, E. Akhadov, A. J. Taylor, W. Zhang, and J. F. O’Hara, “Flexible quasi-three-dimensional terahertz electric metamaterials,” Terahertz Sci. Technol. 2, 15–22 (2009).

2008 (6)

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[CrossRef]

F. Miyamaru, Y. Saito, M. W. Takeda, B. Hou, L. Liu, W. Wen, and P. Sheng, “Terahertz electric response of fractal metamaterial structures,” Phys. Rev. B 77(4), 045124 (2008).
[CrossRef]

A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92(1), 011119 (2008).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16(13), 9746–9752 (2008).
[CrossRef] [PubMed]

C. M. Bingham, H. Tao, X. L. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, “Planar wallpaper group metamaterials for novel terahertz applications,” Opt. Express 16(23), 18565–18575 (2008).
[CrossRef]

2007 (3)

H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[CrossRef] [PubMed]

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007).
[CrossRef]

B. D. F. Casse, H. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90(25), 254106 (2007).
[CrossRef]

2006 (7)

M. V. Gorkunov, S. A. Gredeskul, I. V. Shadrivov, and Y. S. Kivshar, “Effect of microscopic disorder on magnetic properties of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 056605 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast laser induced parallel phase change nanolithography,” Appl. Phys. Lett. 89(4), 041108 (2006).
[CrossRef]

2005 (1)

2002 (2)

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65(14), 144440 (2002).
[CrossRef]

P. Gay-Balmaz and O. J. F. Martin, “Electromagnetic resonances in individual and coupled split-ring-resonators,” J. Appl. Phys. 92(5), 2929–2936 (2002).
[CrossRef]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

2000 (2)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[CrossRef]

Abbott, D.

W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photon. J. 1(2), 99–118 (2009).
[CrossRef]

Akhadov, E.

A. K. Azad, H.-T. Chen, X. Lu, J. Gu, N. R. Weisse-Bernstein, E. Akhadov, A. J. Taylor, W. Zhang, and J. F. O’Hara, “Flexible quasi-three-dimensional terahertz electric metamaterials,” Terahertz Sci. Technol. 2, 15–22 (2009).

Andreev, G. O.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007).
[CrossRef]

Arrington, C. L.

X. G. Peralta, M. C. Wanke, C. L. Arrington, J. D. Williams, I. Brener, A. Strikwerda, R. D. Averitt, W. J. Padilla, E. Smirnova, A. J. Taylor, and J. F. O’Hara, “Large-area metamaterials on thin membranes for multilayer and curved applications at terahertz and higher frequencies,” Appl. Phys. Lett. 94(16), 161113 (2009).
[CrossRef]

Averitt, R. D.

X. G. Peralta, M. C. Wanke, C. L. Arrington, J. D. Williams, I. Brener, A. Strikwerda, R. D. Averitt, W. J. Padilla, E. Smirnova, A. J. Taylor, and J. F. O’Hara, “Large-area metamaterials on thin membranes for multilayer and curved applications at terahertz and higher frequencies,” Appl. Phys. Lett. 94(16), 161113 (2009).
[CrossRef]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

C. M. Bingham, H. Tao, X. L. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, “Planar wallpaper group metamaterials for novel terahertz applications,” Opt. Express 16(23), 18565–18575 (2008).
[CrossRef]

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[CrossRef]

H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

Azad, A. K.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

A. K. Azad, H.-T. Chen, X. Lu, J. Gu, N. R. Weisse-Bernstein, E. Akhadov, A. J. Taylor, W. Zhang, and J. F. O’Hara, “Flexible quasi-three-dimensional terahertz electric metamaterials,” Terahertz Sci. Technol. 2, 15–22 (2009).

A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92(1), 011119 (2008).
[CrossRef]

Bahou, M.

B. D. F. Casse, H. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90(25), 254106 (2007).
[CrossRef]

Basov, D. N.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007).
[CrossRef]

Bingham, C.

Bingham, C. M.

Brener, I.

X. G. Peralta, M. C. Wanke, C. L. Arrington, J. D. Williams, I. Brener, A. Strikwerda, R. D. Averitt, W. J. Padilla, E. Smirnova, A. J. Taylor, and J. F. O’Hara, “Large-area metamaterials on thin membranes for multilayer and curved applications at terahertz and higher frequencies,” Appl. Phys. Lett. 94(16), 161113 (2009).
[CrossRef]

Casse, B. D. F.

B. D. F. Casse, H. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90(25), 254106 (2007).
[CrossRef]

Chen, G. X.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast laser induced parallel phase change nanolithography,” Appl. Phys. Lett. 89(4), 041108 (2006).
[CrossRef]

Chen, H.-T.

A. K. Azad, H.-T. Chen, X. Lu, J. Gu, N. R. Weisse-Bernstein, E. Akhadov, A. J. Taylor, W. Zhang, and J. F. O’Hara, “Flexible quasi-three-dimensional terahertz electric metamaterials,” Terahertz Sci. Technol. 2, 15–22 (2009).

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Chen, Z. C.

Z. C. Chen, M. H. Hong, C. S. Lim, N. R. Han, L. P. Shi, and T. C. Chong, “Parallel laser microfabrication of large-area asymmetric split ring resonator metamaterials and its structural tuning for terahertz resonance,” Appl. Phys. Lett. 96(18), 181101 (2010).
[CrossRef]

C. S. Lim, M. H. Hong, Z. C. Chen, N. R. Han, B. Luk’yanchuk, and T. C. Chong, “Hybrid metamaterial design and fabrication for terahertz resonance response enhancement,” Opt. Express 18(12), 12421–12429 (2010).
[CrossRef] [PubMed]

Cho, S. Y.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007).
[CrossRef]

Chong, T. C.

Z. C. Chen, M. H. Hong, C. S. Lim, N. R. Han, L. P. Shi, and T. C. Chong, “Parallel laser microfabrication of large-area asymmetric split ring resonator metamaterials and its structural tuning for terahertz resonance,” Appl. Phys. Lett. 96(18), 181101 (2010).
[CrossRef]

C. S. Lim, M. H. Hong, Z. C. Chen, N. R. Han, B. Luk’yanchuk, and T. C. Chong, “Hybrid metamaterial design and fabrication for terahertz resonance response enhancement,” Opt. Express 18(12), 12421–12429 (2010).
[CrossRef] [PubMed]

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast laser induced parallel phase change nanolithography,” Appl. Phys. Lett. 89(4), 041108 (2006).
[CrossRef]

Cich, M. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

Cummer, S. A.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16(13), 9746–9752 (2008).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Driscoll, T.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007).
[CrossRef]

Economou, E. N.

Fan, K.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[CrossRef] [PubMed]

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[CrossRef]

Gay-Balmaz, P.

P. Gay-Balmaz and O. J. F. Martin, “Electromagnetic resonances in individual and coupled split-ring-resonators,” J. Appl. Phys. 92(5), 2929–2936 (2002).
[CrossRef]

Gorkunov, M. V.

M. V. Gorkunov, S. A. Gredeskul, I. V. Shadrivov, and Y. S. Kivshar, “Effect of microscopic disorder on magnetic properties of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 056605 (2006).
[CrossRef] [PubMed]

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Gredeskul, S. A.

M. V. Gorkunov, S. A. Gredeskul, I. V. Shadrivov, and Y. S. Kivshar, “Effect of microscopic disorder on magnetic properties of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 056605 (2006).
[CrossRef] [PubMed]

Gu, J.

A. K. Azad, H.-T. Chen, X. Lu, J. Gu, N. R. Weisse-Bernstein, E. Akhadov, A. J. Taylor, W. Zhang, and J. F. O’Hara, “Flexible quasi-three-dimensional terahertz electric metamaterials,” Terahertz Sci. Technol. 2, 15–22 (2009).

Gundogdu, T. F.

Han, N. R.

Z. C. Chen, M. H. Hong, C. S. Lim, N. R. Han, L. P. Shi, and T. C. Chong, “Parallel laser microfabrication of large-area asymmetric split ring resonator metamaterials and its structural tuning for terahertz resonance,” Appl. Phys. Lett. 96(18), 181101 (2010).
[CrossRef]

C. S. Lim, M. H. Hong, Z. C. Chen, N. R. Han, B. Luk’yanchuk, and T. C. Chong, “Hybrid metamaterial design and fabrication for terahertz resonance response enhancement,” Opt. Express 18(12), 12421–12429 (2010).
[CrossRef] [PubMed]

Hand, T. H.

Hangyo, M.

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
[CrossRef]

Highstrete, C.

H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

Hong, M. H.

Z. C. Chen, M. H. Hong, C. S. Lim, N. R. Han, L. P. Shi, and T. C. Chong, “Parallel laser microfabrication of large-area asymmetric split ring resonator metamaterials and its structural tuning for terahertz resonance,” Appl. Phys. Lett. 96(18), 181101 (2010).
[CrossRef]

C. S. Lim, M. H. Hong, Z. C. Chen, N. R. Han, B. Luk’yanchuk, and T. C. Chong, “Hybrid metamaterial design and fabrication for terahertz resonance response enhancement,” Opt. Express 18(12), 12421–12429 (2010).
[CrossRef] [PubMed]

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast laser induced parallel phase change nanolithography,” Appl. Phys. Lett. 89(4), 041108 (2006).
[CrossRef]

Hou, B.

F. Miyamaru, Y. Saito, M. W. Takeda, B. Hou, L. Liu, W. Wen, and P. Sheng, “Terahertz electric response of fractal metamaterial structures,” Phys. Rev. B 77(4), 045124 (2008).
[CrossRef]

Inglis, S.

B. D. F. Casse, H. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90(25), 254106 (2007).
[CrossRef]

Jian, L. K.

B. D. F. Casse, H. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90(25), 254106 (2007).
[CrossRef]

Jokerst, N. M.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16(13), 9746–9752 (2008).
[CrossRef] [PubMed]

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kafesaki, M.

Katsarakis, N.

Kivshar, Y. S.

M. V. Gorkunov, S. A. Gredeskul, I. V. Shadrivov, and Y. S. Kivshar, “Effect of microscopic disorder on magnetic properties of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 056605 (2006).
[CrossRef] [PubMed]

Konstantinidis, G.

Koschny, Th.

Kostopoulos, A.

Kuboda, S.

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
[CrossRef]

Landy, N. I.

Lee, J. W.

B. D. F. Casse, H. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90(25), 254106 (2007).
[CrossRef]

Lee, M.

H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

Lim, C. S.

C. S. Lim, M. H. Hong, Z. C. Chen, N. R. Han, B. Luk’yanchuk, and T. C. Chong, “Hybrid metamaterial design and fabrication for terahertz resonance response enhancement,” Opt. Express 18(12), 12421–12429 (2010).
[CrossRef] [PubMed]

Z. C. Chen, M. H. Hong, C. S. Lim, N. R. Han, L. P. Shi, and T. C. Chong, “Parallel laser microfabrication of large-area asymmetric split ring resonator metamaterials and its structural tuning for terahertz resonance,” Appl. Phys. Lett. 96(18), 181101 (2010).
[CrossRef]

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast laser induced parallel phase change nanolithography,” Appl. Phys. Lett. 89(4), 041108 (2006).
[CrossRef]

Lin, Y.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast laser induced parallel phase change nanolithography,” Appl. Phys. Lett. 89(4), 041108 (2006).
[CrossRef]

Liu, L.

F. Miyamaru, Y. Saito, M. W. Takeda, B. Hou, L. Liu, W. Wen, and P. Sheng, “Terahertz electric response of fractal metamaterial structures,” Phys. Rev. B 77(4), 045124 (2008).
[CrossRef]

Liu, X. L.

Lu, X.

A. K. Azad, H.-T. Chen, X. Lu, J. Gu, N. R. Weisse-Bernstein, E. Akhadov, A. J. Taylor, W. Zhang, and J. F. O’Hara, “Flexible quasi-three-dimensional terahertz electric metamaterials,” Terahertz Sci. Technol. 2, 15–22 (2009).

Luk’yanchuk, B.

Marqués, R.

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65(14), 144440 (2002).
[CrossRef]

Martin, O. J. F.

P. Gay-Balmaz and O. J. F. Martin, “Electromagnetic resonances in individual and coupled split-ring-resonators,” J. Appl. Phys. 92(5), 2929–2936 (2002).
[CrossRef]

Medina, F.

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65(14), 144440 (2002).
[CrossRef]

Miyamaru, F.

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
[CrossRef]

F. Miyamaru, M. W. Takeda, and K. Taima, “Characterization of terahertz metamaterials fabricated on flexible plastic films: toward fabrication of bulk metamaterials in terahertz region,” Appl. Phys. Express 2, 042001 (2009).
[CrossRef]

F. Miyamaru, Y. Saito, M. W. Takeda, B. Hou, L. Liu, W. Wen, and P. Sheng, “Terahertz electric response of fractal metamaterial structures,” Phys. Rev. B 77(4), 045124 (2008).
[CrossRef]

Mock, J. J.

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Moser, H. O.

B. D. F. Casse, H. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90(25), 254106 (2007).
[CrossRef]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

O’Hara, J. F.

X. G. Peralta, M. C. Wanke, C. L. Arrington, J. D. Williams, I. Brener, A. Strikwerda, R. D. Averitt, W. J. Padilla, E. Smirnova, A. J. Taylor, and J. F. O’Hara, “Large-area metamaterials on thin membranes for multilayer and curved applications at terahertz and higher frequencies,” Appl. Phys. Lett. 94(16), 161113 (2009).
[CrossRef]

A. K. Azad, H.-T. Chen, X. Lu, J. Gu, N. R. Weisse-Bernstein, E. Akhadov, A. J. Taylor, W. Zhang, and J. F. O’Hara, “Flexible quasi-three-dimensional terahertz electric metamaterials,” Terahertz Sci. Technol. 2, 15–22 (2009).

A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92(1), 011119 (2008).
[CrossRef]

H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[CrossRef] [PubMed]

Padilla, W. J.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[CrossRef] [PubMed]

X. G. Peralta, M. C. Wanke, C. L. Arrington, J. D. Williams, I. Brener, A. Strikwerda, R. D. Averitt, W. J. Padilla, E. Smirnova, A. J. Taylor, and J. F. O’Hara, “Large-area metamaterials on thin membranes for multilayer and curved applications at terahertz and higher frequencies,” Appl. Phys. Lett. 94(16), 161113 (2009).
[CrossRef]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

C. M. Bingham, H. Tao, X. L. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, “Planar wallpaper group metamaterials for novel terahertz applications,” Opt. Express 16(23), 18565–18575 (2008).
[CrossRef]

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[CrossRef]

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16(13), 9746–9752 (2008).
[CrossRef] [PubMed]

H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Palit, S.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16(13), 9746–9752 (2008).
[CrossRef] [PubMed]

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007).
[CrossRef]

Penciu, R. S.

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

Peralta, X. G.

X. G. Peralta, M. C. Wanke, C. L. Arrington, J. D. Williams, I. Brener, A. Strikwerda, R. D. Averitt, W. J. Padilla, E. Smirnova, A. J. Taylor, and J. F. O’Hara, “Large-area metamaterials on thin membranes for multilayer and curved applications at terahertz and higher frequencies,” Appl. Phys. Lett. 94(16), 161113 (2009).
[CrossRef]

Rafii-El-Idrissi, R.

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65(14), 144440 (2002).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

Saito, Y.

F. Miyamaru, Y. Saito, M. W. Takeda, B. Hou, L. Liu, W. Wen, and P. Sheng, “Terahertz electric response of fractal metamaterial structures,” Phys. Rev. B 77(4), 045124 (2008).
[CrossRef]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Shadrivov, I. V.

M. V. Gorkunov, S. A. Gredeskul, I. V. Shadrivov, and Y. S. Kivshar, “Effect of microscopic disorder on magnetic properties of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 056605 (2006).
[CrossRef] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Sheng, P.

F. Miyamaru, Y. Saito, M. W. Takeda, B. Hou, L. Liu, W. Wen, and P. Sheng, “Terahertz electric response of fractal metamaterial structures,” Phys. Rev. B 77(4), 045124 (2008).
[CrossRef]

Shi, L. P.

Z. C. Chen, M. H. Hong, C. S. Lim, N. R. Han, L. P. Shi, and T. C. Chong, “Parallel laser microfabrication of large-area asymmetric split ring resonator metamaterials and its structural tuning for terahertz resonance,” Appl. Phys. Lett. 96(18), 181101 (2010).
[CrossRef]

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast laser induced parallel phase change nanolithography,” Appl. Phys. Lett. 89(4), 041108 (2006).
[CrossRef]

Smirnova, E.

X. G. Peralta, M. C. Wanke, C. L. Arrington, J. D. Williams, I. Brener, A. Strikwerda, R. D. Averitt, W. J. Padilla, E. Smirnova, A. J. Taylor, and J. F. O’Hara, “Large-area metamaterials on thin membranes for multilayer and curved applications at terahertz and higher frequencies,” Appl. Phys. Lett. 94(16), 161113 (2009).
[CrossRef]

A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92(1), 011119 (2008).
[CrossRef]

Smith, D. R.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16(13), 9746–9752 (2008).
[CrossRef] [PubMed]

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Soukoulis, C. M.

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

Strikwerda, A.

X. G. Peralta, M. C. Wanke, C. L. Arrington, J. D. Williams, I. Brener, A. Strikwerda, R. D. Averitt, W. J. Padilla, E. Smirnova, A. J. Taylor, and J. F. O’Hara, “Large-area metamaterials on thin membranes for multilayer and curved applications at terahertz and higher frequencies,” Appl. Phys. Lett. 94(16), 161113 (2009).
[CrossRef]

Strikwerda, A. C.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[CrossRef] [PubMed]

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[CrossRef]

Taima, K.

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
[CrossRef]

F. Miyamaru, M. W. Takeda, and K. Taima, “Characterization of terahertz metamaterials fabricated on flexible plastic films: toward fabrication of bulk metamaterials in terahertz region,” Appl. Phys. Express 2, 042001 (2009).
[CrossRef]

Takano, K.

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
[CrossRef]

Takeda, M. W.

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
[CrossRef]

F. Miyamaru, M. W. Takeda, and K. Taima, “Characterization of terahertz metamaterials fabricated on flexible plastic films: toward fabrication of bulk metamaterials in terahertz region,” Appl. Phys. Express 2, 042001 (2009).
[CrossRef]

F. Miyamaru, Y. Saito, M. W. Takeda, B. Hou, L. Liu, W. Wen, and P. Sheng, “Terahertz electric response of fractal metamaterial structures,” Phys. Rev. B 77(4), 045124 (2008).
[CrossRef]

Tan, L. S.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast laser induced parallel phase change nanolithography,” Appl. Phys. Lett. 89(4), 041108 (2006).
[CrossRef]

Tao, H.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[CrossRef] [PubMed]

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[CrossRef]

C. M. Bingham, H. Tao, X. L. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, “Planar wallpaper group metamaterials for novel terahertz applications,” Opt. Express 16(23), 18565–18575 (2008).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

Taylor, A. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

X. G. Peralta, M. C. Wanke, C. L. Arrington, J. D. Williams, I. Brener, A. Strikwerda, R. D. Averitt, W. J. Padilla, E. Smirnova, A. J. Taylor, and J. F. O’Hara, “Large-area metamaterials on thin membranes for multilayer and curved applications at terahertz and higher frequencies,” Appl. Phys. Lett. 94(16), 161113 (2009).
[CrossRef]

A. K. Azad, H.-T. Chen, X. Lu, J. Gu, N. R. Weisse-Bernstein, E. Akhadov, A. J. Taylor, W. Zhang, and J. F. O’Hara, “Flexible quasi-three-dimensional terahertz electric metamaterials,” Terahertz Sci. Technol. 2, 15–22 (2009).

A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92(1), 011119 (2008).
[CrossRef]

H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

Tyler, T.

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[CrossRef]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Wang, Z. B.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast laser induced parallel phase change nanolithography,” Appl. Phys. Lett. 89(4), 041108 (2006).
[CrossRef]

Wanke, M. C.

X. G. Peralta, M. C. Wanke, C. L. Arrington, J. D. Williams, I. Brener, A. Strikwerda, R. D. Averitt, W. J. Padilla, E. Smirnova, A. J. Taylor, and J. F. O’Hara, “Large-area metamaterials on thin membranes for multilayer and curved applications at terahertz and higher frequencies,” Appl. Phys. Lett. 94(16), 161113 (2009).
[CrossRef]

Weisse-Bernstein, N. R.

A. K. Azad, H.-T. Chen, X. Lu, J. Gu, N. R. Weisse-Bernstein, E. Akhadov, A. J. Taylor, W. Zhang, and J. F. O’Hara, “Flexible quasi-three-dimensional terahertz electric metamaterials,” Terahertz Sci. Technol. 2, 15–22 (2009).

Wen, W.

F. Miyamaru, Y. Saito, M. W. Takeda, B. Hou, L. Liu, W. Wen, and P. Sheng, “Terahertz electric response of fractal metamaterial structures,” Phys. Rev. B 77(4), 045124 (2008).
[CrossRef]

Williams, J. D.

X. G. Peralta, M. C. Wanke, C. L. Arrington, J. D. Williams, I. Brener, A. Strikwerda, R. D. Averitt, W. J. Padilla, E. Smirnova, A. J. Taylor, and J. F. O’Hara, “Large-area metamaterials on thin membranes for multilayer and curved applications at terahertz and higher frequencies,” Appl. Phys. Lett. 94(16), 161113 (2009).
[CrossRef]

Withayachumnankul, W.

W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photon. J. 1(2), 99–118 (2009).
[CrossRef]

Yuan, Y.

Zhang, W.

A. K. Azad, H.-T. Chen, X. Lu, J. Gu, N. R. Weisse-Bernstein, E. Akhadov, A. J. Taylor, W. Zhang, and J. F. O’Hara, “Flexible quasi-three-dimensional terahertz electric metamaterials,” Terahertz Sci. Technol. 2, 15–22 (2009).

Zhang, X.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[CrossRef] [PubMed]

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[CrossRef]

C. M. Bingham, H. Tao, X. L. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, “Planar wallpaper group metamaterials for novel terahertz applications,” Opt. Express 16(23), 18565–18575 (2008).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Appl. Phys. Express (1)

F. Miyamaru, M. W. Takeda, and K. Taima, “Characterization of terahertz metamaterials fabricated on flexible plastic films: toward fabrication of bulk metamaterials in terahertz region,” Appl. Phys. Express 2, 042001 (2009).
[CrossRef]

Appl. Phys. Lett. (8)

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
[CrossRef]

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007).
[CrossRef]

X. G. Peralta, M. C. Wanke, C. L. Arrington, J. D. Williams, I. Brener, A. Strikwerda, R. D. Averitt, W. J. Padilla, E. Smirnova, A. J. Taylor, and J. F. O’Hara, “Large-area metamaterials on thin membranes for multilayer and curved applications at terahertz and higher frequencies,” Appl. Phys. Lett. 94(16), 161113 (2009).
[CrossRef]

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast laser induced parallel phase change nanolithography,” Appl. Phys. Lett. 89(4), 041108 (2006).
[CrossRef]

Z. C. Chen, M. H. Hong, C. S. Lim, N. R. Han, L. P. Shi, and T. C. Chong, “Parallel laser microfabrication of large-area asymmetric split ring resonator metamaterials and its structural tuning for terahertz resonance,” Appl. Phys. Lett. 96(18), 181101 (2010).
[CrossRef]

A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92(1), 011119 (2008).
[CrossRef]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[CrossRef]

B. D. F. Casse, H. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90(25), 254106 (2007).
[CrossRef]

IEEE Photon. J. (1)

W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photon. J. 1(2), 99–118 (2009).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

J. Appl. Phys. (1)

P. Gay-Balmaz and O. J. F. Martin, “Electromagnetic resonances in individual and coupled split-ring-resonators,” J. Appl. Phys. 92(5), 2929–2936 (2002).
[CrossRef]

J. Phys. D Appl. Phys. (1)

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D Appl. Phys. 41(23), 232004 (2008).
[CrossRef]

Nat. Photonics (1)

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

Nature (1)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. B (2)

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65(14), 144440 (2002).
[CrossRef]

F. Miyamaru, Y. Saito, M. W. Takeda, B. Hou, L. Liu, W. Wen, and P. Sheng, “Terahertz electric response of fractal metamaterial structures,” Phys. Rev. B 77(4), 045124 (2008).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

M. V. Gorkunov, S. A. Gredeskul, I. V. Shadrivov, and Y. S. Kivshar, “Effect of microscopic disorder on magnetic properties of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5), 056605 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett. (4)

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Science (3)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[CrossRef]

Terahertz Sci. Technol. (1)

A. K. Azad, H.-T. Chen, X. Lu, J. Gu, N. R. Weisse-Bernstein, E. Akhadov, A. J. Taylor, W. Zhang, and J. F. O’Hara, “Flexible quasi-three-dimensional terahertz electric metamaterials,” Terahertz Sci. Technol. 2, 15–22 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Structural parameters of the SRR unit cell, and (b)–(f) microscope images for SRR1 to SRR5 fabricated by femtosecond laser MLA lithography. Side length a changes from 40 to 80 μm for (b) to (f), while other parameters are kept as constants.

Fig. 2
Fig. 2

(a) Transmission spectra of individual samples with different structural design parameters. The resonance frequency changes from 0.49, 0.54, 0.59, 0.66 to 0.74 THz as side length a changes from 80 to 40 μm, and (b) transmission spectra for the 2-layer metamaterials and the corresponding individual single layer metamaterials. The resonance dips for the 2-layer metamaterials match with those from individual single layer metamaterials. The resonance strengths are further enhanced for the 2-layer metamaterials.

Fig. 3
Fig. 3

(a) Multi-layer metamaterials stacking illustration, (b) photograph of the flexible PEN film, indicating its potential for implanting non-planar THz devices, and (c) photograph of the multi-layer metamaterials.

Fig. 4
Fig. 4

(a) Transmission spectra of the overall multi-layer metamaterials and the corresponding single layer metamaterials. A broadband filter with a bandwidth of 0.38 THz is constructed. The resonance dips from the overall transmission spectrum match with those from individual samples, and (b) simulated spectrum of the multi-layer metamaterials. The resonance dips are at 0.41, 0.45, 0.50, 0.56 and 0.62 THz with an overall frequency red-shift compared to the experimental spectrum.

Fig. 5
Fig. 5

(a)–(e) Cross sectional E-field intensity distribution at the gaps of the multi-layer metamaterials under selected frequencies. The frequencies are chosen to coincide with the five resonance dips from the overall transmission spectrum. The localized E-field intensity enhancement at the gaps indicates a strong resonance response towards the selected frequency. The magnitude of the localized E-field enhancement is up to 10 times larger than the magnitude of the incident E-field.

Tables (1)

Tables Icon

Table 1 SRR Unit Cell Design Parameters and their Resonance Properties

Metrics