Abstract

A novel cost-effective radio-over-fiber (ROF)/fiber-to-the-X (FTTX)/CATV hybrid three-band transport system based on direct modulation of a distributed feedback laser diode (DFB LD) with multi-wavelength output characteristic is proposed and experimentally demonstrated. Radio-frequency (RF) (1.25Gbps/6GHz) signal with direct modulation, as well as baseband (BB) (622 Mbps) and CATV (channels 2-78) signals with external remodulation are successfully transmitted simultaneously. Low bit error rate (BER) and clear eye diagram were achieved for ROF and FTTX applications; as well as good performances of carrier-to-noise ratio (CNR), composite second-order (CSO) and composite triple beat (CTB) were obtained for CATV signals over an 80-km single-mode fiber (SMF) transport.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Chang, H. H. Lu, H. S. Su, C. L. Shih, and K. J. Chen, “A broadband ASE light source-based full-duplex FTTX/ROF transport system,” Opt. Express 17(24), 22246–22253 (2009).
    [CrossRef] [PubMed]
  2. R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH nettworks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
    [CrossRef]
  3. H. H. Lu, H. C. Peng, W. S. Tsai, C. C. Lin, S. J. Tzeng, and Y. Z. Lin, “Bidirectional hybrid CATV/radio-over-fiber WDM transport system,” Opt. Lett. 35(3), 279–281 (2010).
    [CrossRef] [PubMed]
  4. A. Murakoshi, K. Tsukamoto, and S. Komaki, “High-performance RF signals transmission in SCM/WDMA radio-on-fiber bus link using optical FM method in presence of optical beat interference,” IEEE Trans. Microw. Theory Tech. 54(2), 967–972 (2006).
    [CrossRef]
  5. T. F. Fent, S. Shaari, and B. Y. Majlis, “Distributed CATV inputs in FTTH-PON system,” IEEE International Conf. on Semiconductor Electron. (ICSE). 58–61 (2006).
  6. S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Wavelength conversion of spectrum-sliced broadband amplified spontaneous emission light by hybrid four-wave mixing in highly nonlinear, dispersion-shifted fibers,” Opt. Express 14(7), 2873–2879 (2006).
    [CrossRef] [PubMed]
  7. K. H. Han, E. S. Son, K. W. Lim, H. Y. Choi, S. P. Jung, and Y. C. Chung, “Bi-directional WDM passive optical network using spectrum-sliced light-emitting diodes,” Opt. Fiber Commun. 1, 23–27 (2004) (OFC).
  8. M. Yoshino, N. Miki, N. Yoshimoto, and K. Kumozaki, ““Multiwavelength optical source for OCDM using sinusoidally modulated laser diode,” IEEE/OSA J,” J. Lightwave Technol. 27(20), 4524–4529 (2009).
    [CrossRef]
  9. H. Olesen and G. Jacobsen, “A theoretical and experimental analysis of modulated laser fields and power spectra,” IEEE J. Quantum Electron. 18(12), 2069–2080 (1982).
    [CrossRef]
  10. W. I. Lin, H. H. Lu, H. C. Peng, and C. H. Huang, “Direct-detection full-duplex radio-over-fiber transport systems,” Opt. Lett. 34(21), 3319–3321 (2009).
    [CrossRef] [PubMed]
  11. G. H. Smith and D. Novak, “Broad-band millimeter-wave (38 GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects,” IEEE Photon. Technol. Lett. 10(1), 141–143 (1998).
    [CrossRef]
  12. M. R. Phillips, T. E. Darcie, D. Marcuse, G. E. Bodeep, and N. J. Frigo, “Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals,” IEEE Photon. Technol. Lett. 3(5), 481–483 (1991).
    [CrossRef]
  13. W. I. Way, Broadband Hybrid Fiber/Coax Access System Technologies, San Diego: CA: Academic, ch. 2, 33–37 (1999).

2010

2009

2008

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH nettworks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

2006

A. Murakoshi, K. Tsukamoto, and S. Komaki, “High-performance RF signals transmission in SCM/WDMA radio-on-fiber bus link using optical FM method in presence of optical beat interference,” IEEE Trans. Microw. Theory Tech. 54(2), 967–972 (2006).
[CrossRef]

S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Wavelength conversion of spectrum-sliced broadband amplified spontaneous emission light by hybrid four-wave mixing in highly nonlinear, dispersion-shifted fibers,” Opt. Express 14(7), 2873–2879 (2006).
[CrossRef] [PubMed]

2004

K. H. Han, E. S. Son, K. W. Lim, H. Y. Choi, S. P. Jung, and Y. C. Chung, “Bi-directional WDM passive optical network using spectrum-sliced light-emitting diodes,” Opt. Fiber Commun. 1, 23–27 (2004) (OFC).

1998

G. H. Smith and D. Novak, “Broad-band millimeter-wave (38 GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects,” IEEE Photon. Technol. Lett. 10(1), 141–143 (1998).
[CrossRef]

1991

M. R. Phillips, T. E. Darcie, D. Marcuse, G. E. Bodeep, and N. J. Frigo, “Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals,” IEEE Photon. Technol. Lett. 3(5), 481–483 (1991).
[CrossRef]

1982

H. Olesen and G. Jacobsen, “A theoretical and experimental analysis of modulated laser fields and power spectra,” IEEE J. Quantum Electron. 18(12), 2069–2080 (1982).
[CrossRef]

Alves, T.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH nettworks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

Beltran, M.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH nettworks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

Bodeep, G. E.

M. R. Phillips, T. E. Darcie, D. Marcuse, G. E. Bodeep, and N. J. Frigo, “Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals,” IEEE Photon. Technol. Lett. 3(5), 481–483 (1991).
[CrossRef]

Cartaxo, A.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH nettworks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

Chang, C. H.

Chen, K. J.

Choi, H. Y.

K. H. Han, E. S. Son, K. W. Lim, H. Y. Choi, S. P. Jung, and Y. C. Chung, “Bi-directional WDM passive optical network using spectrum-sliced light-emitting diodes,” Opt. Fiber Commun. 1, 23–27 (2004) (OFC).

Chung, Y. C.

K. H. Han, E. S. Son, K. W. Lim, H. Y. Choi, S. P. Jung, and Y. C. Chung, “Bi-directional WDM passive optical network using spectrum-sliced light-emitting diodes,” Opt. Fiber Commun. 1, 23–27 (2004) (OFC).

Darcie, T. E.

M. R. Phillips, T. E. Darcie, D. Marcuse, G. E. Bodeep, and N. J. Frigo, “Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals,” IEEE Photon. Technol. Lett. 3(5), 481–483 (1991).
[CrossRef]

Frigo, N. J.

M. R. Phillips, T. E. Darcie, D. Marcuse, G. E. Bodeep, and N. J. Frigo, “Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals,” IEEE Photon. Technol. Lett. 3(5), 481–483 (1991).
[CrossRef]

Gao, S.

Han, K. H.

K. H. Han, E. S. Son, K. W. Lim, H. Y. Choi, S. P. Jung, and Y. C. Chung, “Bi-directional WDM passive optical network using spectrum-sliced light-emitting diodes,” Opt. Fiber Commun. 1, 23–27 (2004) (OFC).

Huang, C. H.

Jacobsen, G.

H. Olesen and G. Jacobsen, “A theoretical and experimental analysis of modulated laser fields and power spectra,” IEEE J. Quantum Electron. 18(12), 2069–2080 (1982).
[CrossRef]

Jin, G.

Jung, S. P.

K. H. Han, E. S. Son, K. W. Lim, H. Y. Choi, S. P. Jung, and Y. C. Chung, “Bi-directional WDM passive optical network using spectrum-sliced light-emitting diodes,” Opt. Fiber Commun. 1, 23–27 (2004) (OFC).

Komaki, S.

A. Murakoshi, K. Tsukamoto, and S. Komaki, “High-performance RF signals transmission in SCM/WDMA radio-on-fiber bus link using optical FM method in presence of optical beat interference,” IEEE Trans. Microw. Theory Tech. 54(2), 967–972 (2006).
[CrossRef]

Kumozaki, K.

Lim, K. W.

K. H. Han, E. S. Son, K. W. Lim, H. Y. Choi, S. P. Jung, and Y. C. Chung, “Bi-directional WDM passive optical network using spectrum-sliced light-emitting diodes,” Opt. Fiber Commun. 1, 23–27 (2004) (OFC).

Lin, C. C.

Lin, W. I.

Lin, Y. Z.

Llorente, R.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH nettworks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

Lu, H. H.

Marcuse, D.

M. R. Phillips, T. E. Darcie, D. Marcuse, G. E. Bodeep, and N. J. Frigo, “Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals,” IEEE Photon. Technol. Lett. 3(5), 481–483 (1991).
[CrossRef]

Marti, J.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH nettworks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

Miki, N.

Morant, M.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH nettworks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

Murakoshi, A.

A. Murakoshi, K. Tsukamoto, and S. Komaki, “High-performance RF signals transmission in SCM/WDMA radio-on-fiber bus link using optical FM method in presence of optical beat interference,” IEEE Trans. Microw. Theory Tech. 54(2), 967–972 (2006).
[CrossRef]

Novak, D.

G. H. Smith and D. Novak, “Broad-band millimeter-wave (38 GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects,” IEEE Photon. Technol. Lett. 10(1), 141–143 (1998).
[CrossRef]

Olesen, H.

H. Olesen and G. Jacobsen, “A theoretical and experimental analysis of modulated laser fields and power spectra,” IEEE J. Quantum Electron. 18(12), 2069–2080 (1982).
[CrossRef]

Peng, H. C.

Perez, J.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH nettworks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

Phillips, M. R.

M. R. Phillips, T. E. Darcie, D. Marcuse, G. E. Bodeep, and N. J. Frigo, “Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals,” IEEE Photon. Technol. Lett. 3(5), 481–483 (1991).
[CrossRef]

Shih, C. L.

Smith, G. H.

G. H. Smith and D. Novak, “Broad-band millimeter-wave (38 GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects,” IEEE Photon. Technol. Lett. 10(1), 141–143 (1998).
[CrossRef]

Son, E. S.

K. H. Han, E. S. Son, K. W. Lim, H. Y. Choi, S. P. Jung, and Y. C. Chung, “Bi-directional WDM passive optical network using spectrum-sliced light-emitting diodes,” Opt. Fiber Commun. 1, 23–27 (2004) (OFC).

Su, H. S.

Tian, Y.

Tsai, W. S.

Tsukamoto, K.

A. Murakoshi, K. Tsukamoto, and S. Komaki, “High-performance RF signals transmission in SCM/WDMA radio-on-fiber bus link using optical FM method in presence of optical beat interference,” IEEE Trans. Microw. Theory Tech. 54(2), 967–972 (2006).
[CrossRef]

Tzeng, S. J.

Xiao, X.

Yang, C.

Yoshimoto, N.

Yoshino, M.

You, Z.

IEEE J. Quantum Electron.

H. Olesen and G. Jacobsen, “A theoretical and experimental analysis of modulated laser fields and power spectra,” IEEE J. Quantum Electron. 18(12), 2069–2080 (1982).
[CrossRef]

IEEE Photon. Technol. Lett.

G. H. Smith and D. Novak, “Broad-band millimeter-wave (38 GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects,” IEEE Photon. Technol. Lett. 10(1), 141–143 (1998).
[CrossRef]

M. R. Phillips, T. E. Darcie, D. Marcuse, G. E. Bodeep, and N. J. Frigo, “Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals,” IEEE Photon. Technol. Lett. 3(5), 481–483 (1991).
[CrossRef]

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH nettworks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

A. Murakoshi, K. Tsukamoto, and S. Komaki, “High-performance RF signals transmission in SCM/WDMA radio-on-fiber bus link using optical FM method in presence of optical beat interference,” IEEE Trans. Microw. Theory Tech. 54(2), 967–972 (2006).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Fiber Commun.

K. H. Han, E. S. Son, K. W. Lim, H. Y. Choi, S. P. Jung, and Y. C. Chung, “Bi-directional WDM passive optical network using spectrum-sliced light-emitting diodes,” Opt. Fiber Commun. 1, 23–27 (2004) (OFC).

Opt. Lett.

Other

T. F. Fent, S. Shaari, and B. Y. Majlis, “Distributed CATV inputs in FTTH-PON system,” IEEE International Conf. on Semiconductor Electron. (ICSE). 58–61 (2006).

W. I. Way, Broadband Hybrid Fiber/Coax Access System Technologies, San Diego: CA: Academic, ch. 2, 33–37 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The schematic architecture of our proposed novel ROF/FTTX/CATV hybrid three-band transport systems.

Fig. 2
Fig. 2

The optical spectral of the different signals at some interesting points in the optical path.

Fig. 3
Fig. 3

The optical spectrum for a directly modulated DFB LD at various OMI (a) 3.8% (b) 5.7% (c) 9% .

Fig. 4
Fig. 4

The measured SMSR values under different OMI for mode 0.

Fig. 5
Fig. 5

The measured BER curves for the ROF (1.25Gbps/6GHz) and the FTTX (622 Mbps) applications as a function of the received optical power level.

Fig. 6
Fig. 6

The eye diagrams of the transmitted (a) RF and (b) BB (after 1 GHz LPF) signals at the receiving site.

Fig. 7
Fig. 7

The measured CNR, CSO and CTB values under NTSC channel number.

Tables (1)

Tables Icon

Table 1 Measured BER/CNR/CSO/CTB Values at Different Fiber Lengths

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

S ( f ) = Σ | J n ( Δ f f m ) M 4 { J n + 1 ( Δ f f m ) e j φ + J n 1 ( Δ f f m ) e j φ } | 2 δ ( f ( f 0 + n f m ) ) ,
P f cos 2 { π L D λ c 2 f c 2 c [ 1 2 π tan 1 ( α ) ] } ,
D = 1 L τ ω ω λ c ,
D = 2 π c λ c 2 β ¨ .
Δ τ = D L Δ λ c ,
2 H D = 10 log [ m D λ c 2 L f 4 c 16 ( Δ τ ) 2 + 4 λ c 4 L 2 π 2 f 6 c 2 ] ,
3 H D = 10 log [ 9 m 2 D 2 λ c 4 L 2 f 2 4 c ( 4 ( Δ τ ) 2 + 4 π 2 f ) ] ,
C S O = 2 H D + 10 log N C S O + 6 ,
C T B = 3 H D + 10 log N C T B + 6 ,

Metrics