Abstract

A unidirectional, passively Q-switched, 2.05-μm Ho:YLF ring laser providing single-frequency, sub-mJ-energy, 100-200-ns-long laser pulses at a kHz rate is reported. The wavelength selection and “coarse” spectral narrowing is performed by utilizing a volume Bragg grating as a resonant, narrowband output coupler operated at a small angle away from normal incidence. Pulsed operation of the Ho:YLF oscillator and further spectral narrowing down to a single longitudinal mode is achieved via passive Q-switching using a Cr2+-doped saturable absorber.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2945 (1969).
  2. I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of Gaussian beam diffraction on volume Bragg gratings in PTR glass,” Proc. SPIE 5742, 183–194 (2005).
    [CrossRef]
  3. L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quant. Electron. 32(6), 885–895 (1996).
    [CrossRef]
  4. R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quant. Electron. 33(4), 609–619 (1997).
    [CrossRef]
  5. A. V. Podlipensky, V. G. Shcherbitsky, N. V. Kuleshov, V. P. Mikhailov, V. I. Levchenko, and V. N. Yakimovich, “Cr2+:ZnSe and Co2+:ZnSe saturable-absorber Q switches for 1.54- μm Er:glass lasers,” Opt. Lett. 24(14), 960–962 (1999).
    [CrossRef]
  6. T. Y. Tsai and M. Birnbaum, “Q-switched 2- μm lasers by use of a Cr2+:ZnSe saturable absorber,” Appl. Opt. 40(36), 6633–6637 (2001).
    [CrossRef]
  7. A. Di Lieto, P. Minguzzi, A. Toncelli, M. Tonelli, and H. P. Jenssen, “A diode-laser-pumped tunable Ho:YLF laser in the 2 μm region,” Appl. Phys. B 58(1), 69–71 (1994).
    [CrossRef]
  8. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999).
    [CrossRef]
  9. A. Dergachev, P. F. Moulton, V. Smirnov, and L. Glebov, “High power CW Tm:YLF laser with a holographic output coupler,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CThZ3. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2004-CThZ3
  10. B. Jacobsson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Narrowband bulk Bragg grating optical parametric oscillator,” Opt. Lett. 30(17), 2281–2283 (2005).
    [CrossRef] [PubMed]
  11. B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Single-longitudinal-mode Nd-laser with a Bragg-grating Fabry-Perot cavity,” Opt. Express 14(20), 9284–9292 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-9284 .
    [CrossRef] [PubMed]
  12. I. S. Moskalev, V. V. Fedorov, V. P. Gapontsev, D. V. Gapontsev, N. S. Platonov, and S. B. Mirov, “Highly efficient, narrow-linewidth, and single-frequency actively and passively Q-switched fiber-bulk hybrid Er:YAG lasers operating at 1645 nm,” Opt. Express 16(24), 19427–19433 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-19427 .
    [CrossRef] [PubMed]
  13. W. R. Sooy, “The natural selection of modes in a passive q-switched laser,” Appl. Phys. Lett. 7(2), 36–37 (1965).
    [CrossRef]
  14. Y. Isyanova and D. Welford, “Temporal criterion for single-frequency operation of passively Q-switched lasers,” Opt. Lett. 24(15), 1035–1037 (1999).
    [CrossRef]
  15. D. C. Jones and D. A. Rockwell, “Single-frequency, 500-ns laser pulses generated by a passively Q-switched Nd laser,” Appl. Opt. 32(9), 1547–1550 (1993).
    [CrossRef] [PubMed]
  16. J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume Bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
    [CrossRef]
  17. B. Jacobsson, J. E. Hellström, V. Pasiskevicius, and F. Laurell, “Widely tunable Yb:KYW laser with a volume Bragg grating,” Opt. Express 15(3), 1003–1010 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-3-1003 .
    [CrossRef] [PubMed]
  18. B. Jacobsson, C. Canalias, V. Pasiskevicius, and F. Laurell, “Narrowband and tunable ring optical parametric oscillator with a volume Bragg grating,” Opt. Lett. 32(22), 3278–3280 (2007).
    [CrossRef] [PubMed]
  19. A. Dergachev, “Ring resonator with holographic reflector,” Patent pending.
  20. A. E. Siegman, Lasers (University Science Books, 1986).
  21. D. J. Bradley, C. J. Mitchell, and M. S. Petty, “Direct measurement of the spectral width of a transform-limited ruby laser giant pulse,” Opt. Commun. 1(5), 245–247 (1969).
    [CrossRef]

2008 (2)

2007 (2)

2006 (1)

2005 (2)

B. Jacobsson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Narrowband bulk Bragg grating optical parametric oscillator,” Opt. Lett. 30(17), 2281–2283 (2005).
[CrossRef] [PubMed]

I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of Gaussian beam diffraction on volume Bragg gratings in PTR glass,” Proc. SPIE 5742, 183–194 (2005).
[CrossRef]

2001 (1)

1999 (3)

1997 (1)

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quant. Electron. 33(4), 609–619 (1997).
[CrossRef]

1996 (1)

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quant. Electron. 32(6), 885–895 (1996).
[CrossRef]

1994 (1)

A. Di Lieto, P. Minguzzi, A. Toncelli, M. Tonelli, and H. P. Jenssen, “A diode-laser-pumped tunable Ho:YLF laser in the 2 μm region,” Appl. Phys. B 58(1), 69–71 (1994).
[CrossRef]

1993 (1)

1969 (2)

D. J. Bradley, C. J. Mitchell, and M. S. Petty, “Direct measurement of the spectral width of a transform-limited ruby laser giant pulse,” Opt. Commun. 1(5), 245–247 (1969).
[CrossRef]

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2945 (1969).

1965 (1)

W. R. Sooy, “The natural selection of modes in a passive q-switched laser,” Appl. Phys. Lett. 7(2), 36–37 (1965).
[CrossRef]

Birnbaum, M.

Bradley, D. J.

D. J. Bradley, C. J. Mitchell, and M. S. Petty, “Direct measurement of the spectral width of a transform-limited ruby laser giant pulse,” Opt. Commun. 1(5), 245–247 (1969).
[CrossRef]

Burger, A.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quant. Electron. 33(4), 609–619 (1997).
[CrossRef]

Canalias, C.

Chen, K. T.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quant. Electron. 33(4), 609–619 (1997).
[CrossRef]

Ciapurin, I. V.

I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of Gaussian beam diffraction on volume Bragg gratings in PTR glass,” Proc. SPIE 5742, 183–194 (2005).
[CrossRef]

DeLoach, L. D.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quant. Electron. 33(4), 609–619 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quant. Electron. 32(6), 885–895 (1996).
[CrossRef]

Di Lieto, A.

A. Di Lieto, P. Minguzzi, A. Toncelli, M. Tonelli, and H. P. Jenssen, “A diode-laser-pumped tunable Ho:YLF laser in the 2 μm region,” Appl. Phys. B 58(1), 69–71 (1994).
[CrossRef]

Efimov, O. M.

Fedorov, V. V.

Gapontsev, D. V.

Gapontsev, V. P.

Glebov, L. B.

I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of Gaussian beam diffraction on volume Bragg gratings in PTR glass,” Proc. SPIE 5742, 183–194 (2005).
[CrossRef]

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999).
[CrossRef]

Glebova, L. N.

Hellström, J. E.

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume Bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
[CrossRef]

B. Jacobsson, J. E. Hellström, V. Pasiskevicius, and F. Laurell, “Widely tunable Yb:KYW laser with a volume Bragg grating,” Opt. Express 15(3), 1003–1010 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-3-1003 .
[CrossRef] [PubMed]

Isyanova, Y.

Jacobsson, B.

Jenssen, H. P.

A. Di Lieto, P. Minguzzi, A. Toncelli, M. Tonelli, and H. P. Jenssen, “A diode-laser-pumped tunable Ho:YLF laser in the 2 μm region,” Appl. Phys. B 58(1), 69–71 (1994).
[CrossRef]

Jones, D. C.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2945 (1969).

Krupke, W. F.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quant. Electron. 33(4), 609–619 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quant. Electron. 32(6), 885–895 (1996).
[CrossRef]

Kuleshov, N. V.

Laurell, F.

Levchenko, V. I.

Mikhailov, V. P.

Minguzzi, P.

A. Di Lieto, P. Minguzzi, A. Toncelli, M. Tonelli, and H. P. Jenssen, “A diode-laser-pumped tunable Ho:YLF laser in the 2 μm region,” Appl. Phys. B 58(1), 69–71 (1994).
[CrossRef]

Mirov, S. B.

Mitchell, C. J.

D. J. Bradley, C. J. Mitchell, and M. S. Petty, “Direct measurement of the spectral width of a transform-limited ruby laser giant pulse,” Opt. Commun. 1(5), 245–247 (1969).
[CrossRef]

Moskalev, I. S.

Page, R. H.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quant. Electron. 33(4), 609–619 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quant. Electron. 32(6), 885–895 (1996).
[CrossRef]

Pasiskevicius, V.

Patel, F. D.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quant. Electron. 33(4), 609–619 (1997).
[CrossRef]

Payne, S. A.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quant. Electron. 33(4), 609–619 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quant. Electron. 32(6), 885–895 (1996).
[CrossRef]

Petty, M. S.

D. J. Bradley, C. J. Mitchell, and M. S. Petty, “Direct measurement of the spectral width of a transform-limited ruby laser giant pulse,” Opt. Commun. 1(5), 245–247 (1969).
[CrossRef]

Platonov, N. S.

Podlipensky, A. V.

Richardson, K. C.

Rockwell, D. A.

Schaffers, K. I.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quant. Electron. 33(4), 609–619 (1997).
[CrossRef]

Shcherbitsky, V. G.

Smirnov, V. I.

I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of Gaussian beam diffraction on volume Bragg gratings in PTR glass,” Proc. SPIE 5742, 183–194 (2005).
[CrossRef]

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999).
[CrossRef]

Sooy, W. R.

W. R. Sooy, “The natural selection of modes in a passive q-switched laser,” Appl. Phys. Lett. 7(2), 36–37 (1965).
[CrossRef]

Tassano, J. B.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quant. Electron. 33(4), 609–619 (1997).
[CrossRef]

Tiihonen, M.

Toncelli, A.

A. Di Lieto, P. Minguzzi, A. Toncelli, M. Tonelli, and H. P. Jenssen, “A diode-laser-pumped tunable Ho:YLF laser in the 2 μm region,” Appl. Phys. B 58(1), 69–71 (1994).
[CrossRef]

Tonelli, M.

A. Di Lieto, P. Minguzzi, A. Toncelli, M. Tonelli, and H. P. Jenssen, “A diode-laser-pumped tunable Ho:YLF laser in the 2 μm region,” Appl. Phys. B 58(1), 69–71 (1994).
[CrossRef]

Tsai, T. Y.

Welford, D.

Wilke, G. D.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quant. Electron. 33(4), 609–619 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quant. Electron. 32(6), 885–895 (1996).
[CrossRef]

Yakimovich, V. N.

Appl. Opt. (3)

Appl. Phys. B (1)

A. Di Lieto, P. Minguzzi, A. Toncelli, M. Tonelli, and H. P. Jenssen, “A diode-laser-pumped tunable Ho:YLF laser in the 2 μm region,” Appl. Phys. B 58(1), 69–71 (1994).
[CrossRef]

Appl. Phys. Lett. (1)

W. R. Sooy, “The natural selection of modes in a passive q-switched laser,” Appl. Phys. Lett. 7(2), 36–37 (1965).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2945 (1969).

IEEE J. Quant. Electron. (2)

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quant. Electron. 32(6), 885–895 (1996).
[CrossRef]

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quant. Electron. 33(4), 609–619 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume Bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
[CrossRef]

Opt. Commun. (1)

D. J. Bradley, C. J. Mitchell, and M. S. Petty, “Direct measurement of the spectral width of a transform-limited ruby laser giant pulse,” Opt. Commun. 1(5), 245–247 (1969).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Proc. SPIE (1)

I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of Gaussian beam diffraction on volume Bragg gratings in PTR glass,” Proc. SPIE 5742, 183–194 (2005).
[CrossRef]

Other (3)

A. Dergachev, P. F. Moulton, V. Smirnov, and L. Glebov, “High power CW Tm:YLF laser with a holographic output coupler,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CThZ3. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2004-CThZ3

A. Dergachev, “Ring resonator with holographic reflector,” Patent pending.

A. E. Siegman, Lasers (University Science Books, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Operation of thick holographic gratings in laser resonators: a) Normal incidence – provides maximum angular acceptance and is utilized in standing-wave resonators, b) Large angle of incidence in the range of 5 to 85 deg – more than 10x reduction in angular acceptance vs. normal incidence, c) Small angle of incidence 0.5-2 deg – only 2-5 times reduction in angular acceptance vs. normal incidence (this work).

Fig. 2
Fig. 2

Schematic layout of the ring Ho:YLF oscillator (HOC –holographic output coupler, SA - saturable absorber, DM – dichroic mirror, HR – high reflector, Rot - Faraday rotator).

Fig. 3
Fig. 3

Calculated reflectivity at normal incidence vs wavelength detuning for a VBG element with resonance wavelength of 2051 nm, ~7-mm thickness and 150-ppm index modulation. The full-width at half-maximum (FWHM) for the reflectivity peak is ~0.3 nm. The half-width at first zero (FWHZ) is ~0.23 nm.

Fig. 4
Fig. 4

Calculated diffraction efficiency vs. internal angle of incidence for VBG elements at the same resonance wavelength (2051 nm) and the same reflectivity maximum (R~85%) but different Bragg angle (0, or 1, or 2, or 4 deg). 0 deg corresponds to normal incidence. Both (“+” and “-“) diffraction orders are shown for angles of incidence other than 0 deg. At normal incidence both orders merge into one peak providing the largest angular acceptance.

Fig. 5
Fig. 5

Measured profile for the free-propagating beam from the Ho:YLF ring laser at maximum pump power. The beam full width and fit to Gaussian are 4.5 mm and 0.95 for horizontal direction and 4.0 mm and 0.96 for vertical direction, respectively.

Fig. 6
Fig. 6

Pulse energy (circles) and repetition rate (squares) vs. pump power for a ring Ho:YLF oscillator with VBG output coupler and ~95%-transmissive Cr2+:ZnSe saturable absorber.

Fig. 7
Fig. 7

Zoomed-in oscilloscope traces (yellow) and FFT curves (brown) for (a) a single-frequency pulse, and (b) a multi-frequency pulse from the Ho:YLF oscillator. For FFT curves full-window width corresponds to the frequency span of 2.5 GHz.

Fig. 8
Fig. 8

High-resolution view (20-ns-wide window) of a multi-frequency laser pulse trace in Fig. 7b. The data point interval is 50 ps.

Metrics