Abstract

We have made continual, multiple-day measurements of the polarization dependent loss of multiple C-band channels in an installed 1800 km terrestrial link. The PDLs of individual channels varied on the time-scale of hours, while the temporal variations of the PDLs of adjacent channels often tracked. The probability densities of the field measurements of PDL were not Maxwellian and instead were truncated, consistent with the limited number of elements in the link having appreciable PDL. A new model for the statistics of PDL in systems with few PDL elements is proposed, where a lower bound of the distribution exists if there is a dominant PDL element. The probability distributions from measurement and theory show good agreement.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Sun, K.-T. Wu, and K. Roberts, “Real-time measurements of a 40 Gb/s coherent system,” Opt. Express 16(2), 873–879 (2008).
    [CrossRef] [PubMed]
  2. L. E. Nelson, S. L. Woodward, S. Foo, X. Zhou, M. D. Feuer, D. Hanson, D. McGhan, H. Sun, M. Moyer, M. O. Sullivan, and P. D. Magill, “Performance of a 46-Gbps dual-polarization QPSK transceiver with real-time coherent equalization over high PMD fiber,” J. Lightwave Technol. 27(3), 158–167 (2009).
    [CrossRef]
  3. T. Duthel, C. R. S. Fludger, J. Geyer, and C. Schulien, “Impact of polarisation dependent loss on coherent PolMux-NRZ-DQPSK,” in Proc. OFC-NFOEC 2008, Feb. 24–28, 2008, San Diego, CA, paper OThU5.
  4. O. Vassilieva, T. Hoshida, X. Wang, J. Rasmussen, H. Miyata, and T. Naito, “Impact of polarization dependent loss and cross-phase modulation on polarization-multiplexed DQPSK signals,” in Proc. OFC-NFOEC 2008, Feb. 24–28, 2008, San Diego, CA, paper OThU6.
  5. C. Xie, “Polarization-dependent loss induced penalties in PDM-QPSK coherent optical communication systems,” in Proc. OFC-NFOEC 2010, March 21–25, 2010, San Diego, CA, paper OWE6.
  6. M. Shtaif, “Performance degradation in coherent polarization multiplexed systems as a result of polarization dependent loss,” Opt. Express 16(18), 13918–13932 (2008).
    [CrossRef] [PubMed]
  7. J. Jiang, D. Richards, C. Allen, S. Oliva, and R. Hui, “Non-intrusive polarization dependent loss monitoring in fiber-optic transmission systems,” Opt. Commun. 281(18), 4631–4633 (2008).
    [CrossRef]
  8. J. Jiang, D. Richards, S. Oliva, P. Green, and R. Hui, “PMD and PDL monitoring of traffic-carrying transatlantic fibre-optic system,” Electron. Lett. 45(2), 123–124 (2009).
    [CrossRef]
  9. L. E. Nelson, M. Birk, P. Magill, A. Schex, and L. Rapp, “Measurements of the polarization dependent loss of multiple WDM channels in an installed, long-haul terrestrial link,” in IEEE Photonics Society Summer Topical2010, 19–21 July 2010, Playa del Carmen, Mexico, paper MA3.4.
  10. A. Mecozzi and M. Shtaif, “The statistics of polarization-dependent loss in optical communication systems,” IEEE Photon. Technol. Lett. 14(3), 313–315 (2002).
    [CrossRef]
  11. C. Hentschel and D. Derickson, in Fiber Optic Test and Measurement, (Prentice Hall, 1998), p. 355.
  12. N. Bergano, in Optical Fiber Telecommunications IVB (Academic Press, 2002), p. 183.
  13. M. Brodsky, M. Boroditsky, P. Magill, N. J. Frigo, and M. Tur, “Persistence of spectral variations in DGD statistics,” Opt. Express 13(11), 4090–4095 (2005).
    [CrossRef] [PubMed]
  14. A. Mecozzi, C. Antonelli, M. Boroditsky, and M. Brodsky, “Characterization of the time dependence of polarization mode dispersion,” Opt. Lett. 29(22), 2599–2601 (2004).
    [CrossRef] [PubMed]
  15. M. Brodsky, N. J. Frigo, M. Boroditsky, and M. Tur, “Polarization mode dispersion of installed fibers,” J. Lightwave Technol. 24(12), 4584–4599 (2006).
    [CrossRef]
  16. Y. Fukada, “Probability density function of polarization dependent loss (PDL) in optical transmission systems composed of passive devices and connecting fibers,” J. Lightwave Technol. 20(6), 953–964 (2002).
    [CrossRef]
  17. C. Antonelli and A. Mecozzi, “Statistics of the DGD in PMD emulators,” IEEE Photon. Technol. Lett. 16(8), 1840–1842 (2004).
    [CrossRef]
  18. N. Gisin, “Statistics of polarization dependent losses,” Opt. Commun. 114(5-6), 399–405 (1995).
    [CrossRef]
  19. M. Shtaif and A. Mecozzi, “Study of the frequency autocorrelation of the differential group delay in fibers with polarization mode dispersion,” Opt. Lett. 25(10), 707–709 (2000).
    [CrossRef]

2009 (2)

2008 (3)

2006 (1)

2005 (1)

2004 (2)

2002 (2)

A. Mecozzi and M. Shtaif, “The statistics of polarization-dependent loss in optical communication systems,” IEEE Photon. Technol. Lett. 14(3), 313–315 (2002).
[CrossRef]

Y. Fukada, “Probability density function of polarization dependent loss (PDL) in optical transmission systems composed of passive devices and connecting fibers,” J. Lightwave Technol. 20(6), 953–964 (2002).
[CrossRef]

2000 (1)

1995 (1)

N. Gisin, “Statistics of polarization dependent losses,” Opt. Commun. 114(5-6), 399–405 (1995).
[CrossRef]

Allen, C.

J. Jiang, D. Richards, C. Allen, S. Oliva, and R. Hui, “Non-intrusive polarization dependent loss monitoring in fiber-optic transmission systems,” Opt. Commun. 281(18), 4631–4633 (2008).
[CrossRef]

Antonelli, C.

Boroditsky, M.

Brodsky, M.

Feuer, M. D.

Foo, S.

Frigo, N. J.

Fukada, Y.

Gisin, N.

N. Gisin, “Statistics of polarization dependent losses,” Opt. Commun. 114(5-6), 399–405 (1995).
[CrossRef]

Green, P.

J. Jiang, D. Richards, S. Oliva, P. Green, and R. Hui, “PMD and PDL monitoring of traffic-carrying transatlantic fibre-optic system,” Electron. Lett. 45(2), 123–124 (2009).
[CrossRef]

Hanson, D.

Hui, R.

J. Jiang, D. Richards, S. Oliva, P. Green, and R. Hui, “PMD and PDL monitoring of traffic-carrying transatlantic fibre-optic system,” Electron. Lett. 45(2), 123–124 (2009).
[CrossRef]

J. Jiang, D. Richards, C. Allen, S. Oliva, and R. Hui, “Non-intrusive polarization dependent loss monitoring in fiber-optic transmission systems,” Opt. Commun. 281(18), 4631–4633 (2008).
[CrossRef]

Jiang, J.

J. Jiang, D. Richards, S. Oliva, P. Green, and R. Hui, “PMD and PDL monitoring of traffic-carrying transatlantic fibre-optic system,” Electron. Lett. 45(2), 123–124 (2009).
[CrossRef]

J. Jiang, D. Richards, C. Allen, S. Oliva, and R. Hui, “Non-intrusive polarization dependent loss monitoring in fiber-optic transmission systems,” Opt. Commun. 281(18), 4631–4633 (2008).
[CrossRef]

Magill, P.

Magill, P. D.

McGhan, D.

Mecozzi, A.

C. Antonelli and A. Mecozzi, “Statistics of the DGD in PMD emulators,” IEEE Photon. Technol. Lett. 16(8), 1840–1842 (2004).
[CrossRef]

A. Mecozzi, C. Antonelli, M. Boroditsky, and M. Brodsky, “Characterization of the time dependence of polarization mode dispersion,” Opt. Lett. 29(22), 2599–2601 (2004).
[CrossRef] [PubMed]

A. Mecozzi and M. Shtaif, “The statistics of polarization-dependent loss in optical communication systems,” IEEE Photon. Technol. Lett. 14(3), 313–315 (2002).
[CrossRef]

M. Shtaif and A. Mecozzi, “Study of the frequency autocorrelation of the differential group delay in fibers with polarization mode dispersion,” Opt. Lett. 25(10), 707–709 (2000).
[CrossRef]

Moyer, M.

Nelson, L. E.

Oliva, S.

J. Jiang, D. Richards, S. Oliva, P. Green, and R. Hui, “PMD and PDL monitoring of traffic-carrying transatlantic fibre-optic system,” Electron. Lett. 45(2), 123–124 (2009).
[CrossRef]

J. Jiang, D. Richards, C. Allen, S. Oliva, and R. Hui, “Non-intrusive polarization dependent loss monitoring in fiber-optic transmission systems,” Opt. Commun. 281(18), 4631–4633 (2008).
[CrossRef]

Richards, D.

J. Jiang, D. Richards, S. Oliva, P. Green, and R. Hui, “PMD and PDL monitoring of traffic-carrying transatlantic fibre-optic system,” Electron. Lett. 45(2), 123–124 (2009).
[CrossRef]

J. Jiang, D. Richards, C. Allen, S. Oliva, and R. Hui, “Non-intrusive polarization dependent loss monitoring in fiber-optic transmission systems,” Opt. Commun. 281(18), 4631–4633 (2008).
[CrossRef]

Roberts, K.

Shtaif, M.

Sullivan, M. O.

Sun, H.

Tur, M.

Woodward, S. L.

Wu, K.-T.

Zhou, X.

Electron. Lett. (1)

J. Jiang, D. Richards, S. Oliva, P. Green, and R. Hui, “PMD and PDL monitoring of traffic-carrying transatlantic fibre-optic system,” Electron. Lett. 45(2), 123–124 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. Mecozzi and M. Shtaif, “The statistics of polarization-dependent loss in optical communication systems,” IEEE Photon. Technol. Lett. 14(3), 313–315 (2002).
[CrossRef]

C. Antonelli and A. Mecozzi, “Statistics of the DGD in PMD emulators,” IEEE Photon. Technol. Lett. 16(8), 1840–1842 (2004).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Commun. (2)

J. Jiang, D. Richards, C. Allen, S. Oliva, and R. Hui, “Non-intrusive polarization dependent loss monitoring in fiber-optic transmission systems,” Opt. Commun. 281(18), 4631–4633 (2008).
[CrossRef]

N. Gisin, “Statistics of polarization dependent losses,” Opt. Commun. 114(5-6), 399–405 (1995).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Other (6)

C. Hentschel and D. Derickson, in Fiber Optic Test and Measurement, (Prentice Hall, 1998), p. 355.

N. Bergano, in Optical Fiber Telecommunications IVB (Academic Press, 2002), p. 183.

L. E. Nelson, M. Birk, P. Magill, A. Schex, and L. Rapp, “Measurements of the polarization dependent loss of multiple WDM channels in an installed, long-haul terrestrial link,” in IEEE Photonics Society Summer Topical2010, 19–21 July 2010, Playa del Carmen, Mexico, paper MA3.4.

T. Duthel, C. R. S. Fludger, J. Geyer, and C. Schulien, “Impact of polarisation dependent loss on coherent PolMux-NRZ-DQPSK,” in Proc. OFC-NFOEC 2008, Feb. 24–28, 2008, San Diego, CA, paper OThU5.

O. Vassilieva, T. Hoshida, X. Wang, J. Rasmussen, H. Miyata, and T. Naito, “Impact of polarization dependent loss and cross-phase modulation on polarization-multiplexed DQPSK signals,” in Proc. OFC-NFOEC 2008, Feb. 24–28, 2008, San Diego, CA, paper OThU6.

C. Xie, “Polarization-dependent loss induced penalties in PDM-QPSK coherent optical communication systems,” in Proc. OFC-NFOEC 2010, March 21–25, 2010, San Diego, CA, paper OWE6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of transmission system and apparatus for measuring PDL of multiple WDM channels. The twelve measurement channels are denoted as λ1 to λ12. Not shown in the figure are ten WDM loading channels, distributed across the C-band, which also were added at ROADM1 and transmitted over the 1800 km looped-back link.

Fig. 2
Fig. 2

Measured PDL of the 1800 km loop-back link for four channels. Legends show mean PDLs of the channels over 15 days.

Fig. 3
Fig. 3

Normalized autocorrelations of the PDL – <PDL> for the four channels shown in Fig. 2 as a function of time delay. Solid curve is the average of the normalized autocorrelations for all 12 channels included in the histograms in Fig. 4 and is also shown in the inset.

Fig. 4
Fig. 4

Probability density functions of measured PDL along with the fits for the odd and even channels, shown on linear (a,b) and log scales (c,d). For the odd and even channels, the five PDL elements from the fit were 0.2201, 0.2432, 0.3504, 0.3519, and 1.4640 dB; and 0.2810, 0.2881, 0.3075, 0.3089, and 1.3264 dB, respectively. (e) Distribution of the axial component of PDL, PDL u , extracted from the data of (a-d).

Metrics