Abstract

Based on a polarized and dual-end pumping scheme and a ring resonator, a stable, high power and high beam quality continuous-wave single-frequency Nd:YVO4 green laser directly pumped at 880 nm has been fabricated. A measured maximum output power of 12 W at 532nm was obtained with a conversion efficiency of 23.1%. The stability of the output was better than ±0.5% and no mode hopping was observed over a period of five hours. The output beam was almost diffraction limited with a measured beam quality of M2 x=1.03 and M2 y=1.02. The intensity noise reached the shot noise limit (SNL) for analysis frequencies above 3.5 MHz, and the phase noise was 1.3 dB above the SNL in the range of 2 to 20 MHz.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. K. Samanta, G. R. Fayaz, Z. Sun, and M. Ebrahim-Zadeh, “High-power, continuous-wave, singly resonant optical parametric oscillator based on MgO:sPPLT,” Opt. Lett. 32(4), 400–402 (2007).
    [CrossRef] [PubMed]
  2. J. M. Melkonian, T. H. My, F. Bretenaker, and C. Drag, “High spectral purity and tunable operation of a continuous singly resonant optical parametric oscillator emitting in the red,” Opt. Lett. 32(5), 518–520 (2007).
    [CrossRef] [PubMed]
  3. C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3(2), 91–95 (2007).
    [CrossRef]
  4. A. S. Villar, K. N. Cassemiro, K. Dechoum, A. Z. Khoury, M. Martinelli, and P. Nussenzveig, “Entanglement in the above-threshold optical parametric oscillator,” J. Opt. Soc. Am. B 24(2), 249–256 (2007).
    [CrossRef]
  5. R. Lavi, S. Jackel, Y. Tzuk, M. Winik, E. Lebiush, M. Katz, and I. Paiss, “Efficient pumping scheme for neodymium-doped materials by direct excitation of the upper lasing level,” Appl. Opt. 38(36), 7382–7385 (1999).
    [CrossRef]
  6. X. Ding, R. Wang, H. Zhang, X. Y. Yu, W. Q. Wen, P. Wang, and J. Q. Yao, “High-efficiency Nd:YVO4 laser emission under direct pumping at 880 nm,” Opt. Commun. 282(5), 981–984 (2009).
    [CrossRef]
  7. Y. Sato, T. Taira, N. Pavel, and V. Lupei, “Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level,” Appl. Phys. Lett. 82(6), 844–846 (2003).
    [CrossRef]
  8. N. Pavel and T. Taira, “High-Power Continuous-Wave Intracavity Frequency-Doubled Nd:GdVO4-LBO Laser Under Diode Pumping Into the Emitting Level,” IEEE J. Sel. Top. Quantum Electron. 11(3), 631–637 (2005).
    [CrossRef]
  9. L. McDonagh and R. Wallenstein, “Low-noise 62 W CW intracavity-doubled TEM00 Nd:YVO4 green laser pumped at 888 nm,” Opt. Lett. 32(7), 802–804 (2007).
    [CrossRef] [PubMed]
  10. L. McDonagh, R. Wallenstein, R. Knappe, and A. Nebel, “High-efficiency 60 W TEM(00) Nd:YVO(4) oscillator pumped at 888 nm,” Opt. Lett. 31(22), 3297–3299 (2006).
    [CrossRef] [PubMed]
  11. G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
    [CrossRef]
  12. J. T. Lina, J. L. Montgomerya, and K. Katob, “Temperature-tuned noncritically phase-matched frequency conversion in LiB3O5 crystal,” Opt. Commun. 80(2), 159–165 (1990).
    [CrossRef]
  13. Y. H. Zheng, H. D. Lu, F. Q. Li, K. S. Zhang, and K. C. Peng, “Four watt long-term stable intracavity frequency-doubling Nd:YVO(4) laser of single-frequency operation pumped by a fiber-coupled laser diode,” Appl. Opt. 46(22), 5336–5339 (2007).
    [CrossRef] [PubMed]
  14. S. Machida and Y. Yamamoto, “Quantum-limited operation of balanced mixer homodyne and heterodyne receivers,” IEEE. QE 22, 617–624 (1986).
    [CrossRef]
  15. T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-runing and externally-stabilized laser diode,” Quantum Semiclass. Opt. 7(4), 601–613 (1995).
    [CrossRef]

2009 (1)

X. Ding, R. Wang, H. Zhang, X. Y. Yu, W. Q. Wen, P. Wang, and J. Q. Yao, “High-efficiency Nd:YVO4 laser emission under direct pumping at 880 nm,” Opt. Commun. 282(5), 981–984 (2009).
[CrossRef]

2007 (6)

2006 (1)

2005 (1)

N. Pavel and T. Taira, “High-Power Continuous-Wave Intracavity Frequency-Doubled Nd:GdVO4-LBO Laser Under Diode Pumping Into the Emitting Level,” IEEE J. Sel. Top. Quantum Electron. 11(3), 631–637 (2005).
[CrossRef]

2003 (1)

Y. Sato, T. Taira, N. Pavel, and V. Lupei, “Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level,” Appl. Phys. Lett. 82(6), 844–846 (2003).
[CrossRef]

1999 (1)

1995 (1)

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-runing and externally-stabilized laser diode,” Quantum Semiclass. Opt. 7(4), 601–613 (1995).
[CrossRef]

1990 (1)

J. T. Lina, J. L. Montgomerya, and K. Katob, “Temperature-tuned noncritically phase-matched frequency conversion in LiB3O5 crystal,” Opt. Commun. 80(2), 159–165 (1990).
[CrossRef]

1986 (1)

S. Machida and Y. Yamamoto, “Quantum-limited operation of balanced mixer homodyne and heterodyne receivers,” IEEE. QE 22, 617–624 (1986).
[CrossRef]

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

Bramati, A.

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-runing and externally-stabilized laser diode,” Quantum Semiclass. Opt. 7(4), 601–613 (1995).
[CrossRef]

Bretenaker, F.

Cassemiro, K. N.

Dechoum, K.

Ding, X.

X. Ding, R. Wang, H. Zhang, X. Y. Yu, W. Q. Wen, P. Wang, and J. Q. Yao, “High-efficiency Nd:YVO4 laser emission under direct pumping at 880 nm,” Opt. Commun. 282(5), 981–984 (2009).
[CrossRef]

Drag, C.

Ebrahim-Zadeh, M.

Fayaz, G. R.

Gao, W. B.

C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3(2), 91–95 (2007).
[CrossRef]

Giacobino, E.

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-runing and externally-stabilized laser diode,” Quantum Semiclass. Opt. 7(4), 601–613 (1995).
[CrossRef]

Goebel, A.

C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3(2), 91–95 (2007).
[CrossRef]

Grangier, P.

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-runing and externally-stabilized laser diode,” Quantum Semiclass. Opt. 7(4), 601–613 (1995).
[CrossRef]

Grelu, P.

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-runing and externally-stabilized laser diode,” Quantum Semiclass. Opt. 7(4), 601–613 (1995).
[CrossRef]

Gühne, O.

C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3(2), 91–95 (2007).
[CrossRef]

Jackel, S.

Jost, V.

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-runing and externally-stabilized laser diode,” Quantum Semiclass. Opt. 7(4), 601–613 (1995).
[CrossRef]

Katob, K.

J. T. Lina, J. L. Montgomerya, and K. Katob, “Temperature-tuned noncritically phase-matched frequency conversion in LiB3O5 crystal,” Opt. Commun. 80(2), 159–165 (1990).
[CrossRef]

Katz, M.

Khoury, A. Z.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

Knappe, R.

Lavi, R.

Lebiush, E.

Levenson, M. D.

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-runing and externally-stabilized laser diode,” Quantum Semiclass. Opt. 7(4), 601–613 (1995).
[CrossRef]

Li, F. Q.

Lina, J. T.

J. T. Lina, J. L. Montgomerya, and K. Katob, “Temperature-tuned noncritically phase-matched frequency conversion in LiB3O5 crystal,” Opt. Commun. 80(2), 159–165 (1990).
[CrossRef]

Lu, C. Y.

C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3(2), 91–95 (2007).
[CrossRef]

Lu, H. D.

Lupei, V.

Y. Sato, T. Taira, N. Pavel, and V. Lupei, “Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level,” Appl. Phys. Lett. 82(6), 844–846 (2003).
[CrossRef]

Machida, S.

S. Machida and Y. Yamamoto, “Quantum-limited operation of balanced mixer homodyne and heterodyne receivers,” IEEE. QE 22, 617–624 (1986).
[CrossRef]

Marin, F.

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-runing and externally-stabilized laser diode,” Quantum Semiclass. Opt. 7(4), 601–613 (1995).
[CrossRef]

Martinelli, M.

McDonagh, L.

Melkonian, J. M.

Montgomerya, J. L.

J. T. Lina, J. L. Montgomerya, and K. Katob, “Temperature-tuned noncritically phase-matched frequency conversion in LiB3O5 crystal,” Opt. Commun. 80(2), 159–165 (1990).
[CrossRef]

My, T. H.

Nebel, A.

Nussenzveig, P.

Paiss, I.

Pan, J. W.

C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3(2), 91–95 (2007).
[CrossRef]

Pavel, N.

N. Pavel and T. Taira, “High-Power Continuous-Wave Intracavity Frequency-Doubled Nd:GdVO4-LBO Laser Under Diode Pumping Into the Emitting Level,” IEEE J. Sel. Top. Quantum Electron. 11(3), 631–637 (2005).
[CrossRef]

Y. Sato, T. Taira, N. Pavel, and V. Lupei, “Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level,” Appl. Phys. Lett. 82(6), 844–846 (2003).
[CrossRef]

Peng, K. C.

Poizat, J. P.

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-runing and externally-stabilized laser diode,” Quantum Semiclass. Opt. 7(4), 601–613 (1995).
[CrossRef]

Roch, J. F.

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-runing and externally-stabilized laser diode,” Quantum Semiclass. Opt. 7(4), 601–613 (1995).
[CrossRef]

Samanta, G. K.

Sato, Y.

Y. Sato, T. Taira, N. Pavel, and V. Lupei, “Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level,” Appl. Phys. Lett. 82(6), 844–846 (2003).
[CrossRef]

Sun, Z.

Taira, T.

N. Pavel and T. Taira, “High-Power Continuous-Wave Intracavity Frequency-Doubled Nd:GdVO4-LBO Laser Under Diode Pumping Into the Emitting Level,” IEEE J. Sel. Top. Quantum Electron. 11(3), 631–637 (2005).
[CrossRef]

Y. Sato, T. Taira, N. Pavel, and V. Lupei, “Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level,” Appl. Phys. Lett. 82(6), 844–846 (2003).
[CrossRef]

Tzuk, Y.

Villar, A. S.

Wallenstein, R.

Wang, P.

X. Ding, R. Wang, H. Zhang, X. Y. Yu, W. Q. Wen, P. Wang, and J. Q. Yao, “High-efficiency Nd:YVO4 laser emission under direct pumping at 880 nm,” Opt. Commun. 282(5), 981–984 (2009).
[CrossRef]

Wang, R.

X. Ding, R. Wang, H. Zhang, X. Y. Yu, W. Q. Wen, P. Wang, and J. Q. Yao, “High-efficiency Nd:YVO4 laser emission under direct pumping at 880 nm,” Opt. Commun. 282(5), 981–984 (2009).
[CrossRef]

Wen, W. Q.

X. Ding, R. Wang, H. Zhang, X. Y. Yu, W. Q. Wen, P. Wang, and J. Q. Yao, “High-efficiency Nd:YVO4 laser emission under direct pumping at 880 nm,” Opt. Commun. 282(5), 981–984 (2009).
[CrossRef]

Winik, M.

Yamamoto, Y.

S. Machida and Y. Yamamoto, “Quantum-limited operation of balanced mixer homodyne and heterodyne receivers,” IEEE. QE 22, 617–624 (1986).
[CrossRef]

Yang, T.

C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3(2), 91–95 (2007).
[CrossRef]

Yao, J. Q.

X. Ding, R. Wang, H. Zhang, X. Y. Yu, W. Q. Wen, P. Wang, and J. Q. Yao, “High-efficiency Nd:YVO4 laser emission under direct pumping at 880 nm,” Opt. Commun. 282(5), 981–984 (2009).
[CrossRef]

Yu, X. Y.

X. Ding, R. Wang, H. Zhang, X. Y. Yu, W. Q. Wen, P. Wang, and J. Q. Yao, “High-efficiency Nd:YVO4 laser emission under direct pumping at 880 nm,” Opt. Commun. 282(5), 981–984 (2009).
[CrossRef]

Yuan, Z. S.

C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3(2), 91–95 (2007).
[CrossRef]

Zhang, H.

X. Ding, R. Wang, H. Zhang, X. Y. Yu, W. Q. Wen, P. Wang, and J. Q. Yao, “High-efficiency Nd:YVO4 laser emission under direct pumping at 880 nm,” Opt. Commun. 282(5), 981–984 (2009).
[CrossRef]

Zhang, J.

C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3(2), 91–95 (2007).
[CrossRef]

Zhang, K. S.

Zhang, T. C.

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-runing and externally-stabilized laser diode,” Quantum Semiclass. Opt. 7(4), 601–613 (1995).
[CrossRef]

Zheng, Y. H.

Zhou, X. Q.

C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3(2), 91–95 (2007).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Y. Sato, T. Taira, N. Pavel, and V. Lupei, “Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level,” Appl. Phys. Lett. 82(6), 844–846 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

N. Pavel and T. Taira, “High-Power Continuous-Wave Intracavity Frequency-Doubled Nd:GdVO4-LBO Laser Under Diode Pumping Into the Emitting Level,” IEEE J. Sel. Top. Quantum Electron. 11(3), 631–637 (2005).
[CrossRef]

IEEE. QE (1)

S. Machida and Y. Yamamoto, “Quantum-limited operation of balanced mixer homodyne and heterodyne receivers,” IEEE. QE 22, 617–624 (1986).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Phys. (1)

C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3(2), 91–95 (2007).
[CrossRef]

Opt. Commun. (2)

X. Ding, R. Wang, H. Zhang, X. Y. Yu, W. Q. Wen, P. Wang, and J. Q. Yao, “High-efficiency Nd:YVO4 laser emission under direct pumping at 880 nm,” Opt. Commun. 282(5), 981–984 (2009).
[CrossRef]

J. T. Lina, J. L. Montgomerya, and K. Katob, “Temperature-tuned noncritically phase-matched frequency conversion in LiB3O5 crystal,” Opt. Commun. 80(2), 159–165 (1990).
[CrossRef]

Opt. Lett. (4)

Quantum Semiclass. Opt. (1)

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-runing and externally-stabilized laser diode,” Quantum Semiclass. Opt. 7(4), 601–613 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup of the cw single-frequency green laser. LD: fiber-coupled laser diode; L1: collimating lens; L2-L5: focusing lenses; PBS: polarizing beam splitter; HWP: half-wave plate; F-P: Fabry-Perot interferometer; D1-D3: photodiode detectors; SA: spectrum analyzer.

Fig. 2
Fig. 2

Stability of the laser at an average output power of around 11.6 W over 5 hours.

Fig. 3
Fig. 3

Transmission intensity of the scanning F-P interferometer.

Fig. 4
Fig. 4

Beam quality. Left: energy distribution and intensity profile along two orthogonal axes. Right: the measured beam quality.

Fig. 5
Fig. 5

Measured intensity noise and phase noise. Parameters of the spectrum analyzer: resolution bandwidth 100 kHz, video bandwidth 100 Hz, sweep time 1.4 s.

Metrics