Abstract

A novel light-controllable long-period fiber grating (LPFG) is demonstrated by making use of a PCF infiltrated with a photoresponsive liquid crystal (LC) mixture consisting of nematic LC molecules and light-sensitive 4-methoxyazobenzene (4MAB). With the aid of the photo-induced isomerization of 4MAB, the refractive index of the LC mixture can be modulated and the periodic index perturbation along the fiber can be achieved by exposing the PCF to a blue laser through a mask. The resonance wavelength and dip depth of the LPFG can be controlled by using different blue-laser irradiation time, numbers of period, and 4MAB concentrations. In addition, the photo-induced LPFG is erasable under green-laser illumination.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
    [CrossRef] [PubMed]
  2. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter, and T. A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett. 24(21), 1460–1462 (1999).
    [CrossRef]
  3. G. Kakarantzas, T. A. Birks, and P. St. J. Russell, “Structural long-period gratings in photonic crystal fibers,” Opt. Lett. 27(12), 1013–1015 (2002).
    [CrossRef]
  4. Y. Wang, W. Jin, J. Ju, H. Xuan, H. L. Ho, L. Xiao, and D. Wang, “Long period gratings in air-core photonic bandgap fibers,” Opt. Express 16(4), 2784–2790 (2008).
    [CrossRef] [PubMed]
  5. G. Humbert, A. Malki, S. Fvrier, P. Roy, and D. Pagnoux, “Characterizations at high temperatures of long-period gratings written in germanium-free air-silica microstructure fiber,” Opt. Lett. 29(1), 38–40 (2004).
    [CrossRef] [PubMed]
  6. J. S. Petrovic, H. Dobb, V. K. Mezentsev, K. Kalli, D. J. Webb, and I. Bennion, “Sensitivity of LPGs in PCFs fabricated by an electric arc to temperature, strain, and external refractive index,” J. Lightwave Technol. 25(5), 1306–1312 (2007).
    [CrossRef]
  7. A. Diez, T. A. Birks, W. H. Reeves, B. J. Mangan, and P. St. J. Russell, “Excitation of cladding modes in photonic crystal fibers by flexural acoustic waves,” Opt. Lett. 25(20), 1499–1501 (2000).
    [CrossRef]
  8. D. I. Yeom, H. C. Park, I. K. Hwang, and B. Y. Kim, “Tunable gratings in a hollow-core photonic bandgap fiber based on acousto-optic interaction,” Opt. Express 17(12), 9933–9939 (2009).
    [CrossRef] [PubMed]
  9. J. H. Lim, K. S. Lee, J. C. Kim, and B. H. Lee, “Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure,” Opt. Lett. 29(4), 331–333 (2004).
    [CrossRef] [PubMed]
  10. T. B. Iredale, P. Steinvurzel, and B. J. Eggleton, “Electric arc-induced long period gratings in fluid-filled photonic bandgap fibre,” Electron. Lett. 42(13), 739–740 (2006).
    [CrossRef]
  11. P. Steinvurzel, E. D. Moore, E. C. Mägi, B. T. Kuhlmey, and B. J. Eggleton, “Long period grating resonances in photonic bandgap fiber,” Opt. Express 14(7), 3007–3014 (2006).
    [CrossRef] [PubMed]
  12. D. I. Yeom, P. Steinvurzel, B. J. Eggleton, S. D. Lim, and B. Y. Kim, “Tunable acoustic gratings in solid-core photonic bandgap fiber,” Opt. Express 15(6), 3513–3518 (2007).
    [CrossRef] [PubMed]
  13. C. P. Chen and C. P. Yu, “Long-period fiber gratings based on liquid-filled photonic crystal fibers,” Proc. SPIE 7609, 760911, 760911-8 (2010).
    [CrossRef]
  14. D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15(13), 7901–7912 (2007).
    [CrossRef] [PubMed]
  15. L. Wei, J. Weirich, T. T. Alkeskjold, and A. Bjarklev, “On-chip tunable long-period grating devices based on liquid crystal photonic bandgap fibers,” Opt. Lett. 34(24), 3818–3820 (2009).
    [CrossRef] [PubMed]
  16. V. K. Hsiao and C. Y. Ko, “Light-controllable photoresponsive liquid-crystal photonic crystal fiber,” Opt. Express 16(17), 12670–12676 (2008).
    [PubMed]
  17. H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
    [CrossRef]
  18. C. R. Lee, J. D. Lin, B. Y. Huang, T. S. Mo, and S. Y. Huang, “All-optically controllable random laser based on a dye-doped liquid crystal added with a photoisomerizable dye,” Opt. Express 18(25), 25896–25905 (2010).
    [CrossRef] [PubMed]

2010 (2)

2009 (2)

2008 (2)

2007 (3)

2006 (2)

T. B. Iredale, P. Steinvurzel, and B. J. Eggleton, “Electric arc-induced long period gratings in fluid-filled photonic bandgap fibre,” Electron. Lett. 42(13), 739–740 (2006).
[CrossRef]

P. Steinvurzel, E. D. Moore, E. C. Mägi, B. T. Kuhlmey, and B. J. Eggleton, “Long period grating resonances in photonic bandgap fiber,” Opt. Express 14(7), 3007–3014 (2006).
[CrossRef] [PubMed]

2004 (2)

2003 (1)

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

2002 (1)

2000 (1)

1999 (1)

1998 (1)

H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[CrossRef]

Aizawa, M.

H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[CrossRef]

Alkeskjold, T. T.

Bennion, I.

Birks, T. A.

Bjarklev, A.

Chen, C. P.

C. P. Chen and C. P. Yu, “Long-period fiber gratings based on liquid-filled photonic crystal fibers,” Proc. SPIE 7609, 760911, 760911-8 (2010).
[CrossRef]

Diez, A.

Dobb, H.

Eggleton, B. J.

Fujisawa, T.

H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[CrossRef]

Fvrier, S.

Ho, H. L.

Hsiao, V. K.

Huang, B. Y.

Huang, S. Y.

Humbert, G.

Hwang, I. K.

Ikeda, T.

H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[CrossRef]

Iredale, T. B.

T. B. Iredale, P. Steinvurzel, and B. J. Eggleton, “Electric arc-induced long period gratings in fluid-filled photonic bandgap fibre,” Electron. Lett. 42(13), 739–740 (2006).
[CrossRef]

Jin, W.

Ju, J.

Kakarantzas, G.

Kalli, K.

Kanazawa, A.

H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[CrossRef]

Kim, B. Y.

Kim, J. C.

Knight, J. C.

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

Ko, C. Y.

Kuhlmey, B. T.

Lægsgaard, J.

Lee, B.

H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[CrossRef]

Lee, B. H.

Lee, C. R.

Lee, H. K.

H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[CrossRef]

Lee, K. S.

Lim, J. H.

Lim, S. D.

Lin, J. D.

Mägi, E. C.

Malki, A.

Mangan, B. J.

Mezentsev, V. K.

Mo, T. S.

Moore, E. D.

Noordegraaf, D.

Pagnoux, D.

Park, H. C.

Petrovic, J. S.

Reeves, W. H.

Rindorf, L.

Roy, P.

Russell, P. St. J.

Scolari, L.

Shiono, T.

H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[CrossRef]

Spälter, S.

Steinvurzel, P.

Strasser, T. A.

Wang, D.

Wang, Y.

Webb, D. J.

Wei, L.

Weirich, J.

Westbrook, P. S.

Windeler, R. S.

Xiao, L.

Xuan, H.

Yeom, D. I.

Yu, C. P.

C. P. Chen and C. P. Yu, “Long-period fiber gratings based on liquid-filled photonic crystal fibers,” Proc. SPIE 7609, 760911, 760911-8 (2010).
[CrossRef]

Chem. Mater. (1)

H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[CrossRef]

Electron. Lett. (1)

T. B. Iredale, P. Steinvurzel, and B. J. Eggleton, “Electric arc-induced long period gratings in fluid-filled photonic bandgap fibre,” Electron. Lett. 42(13), 739–740 (2006).
[CrossRef]

J. Lightwave Technol. (1)

Nature (1)

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

Opt. Express (7)

Opt. Lett. (6)

Proc. SPIE (1)

C. P. Chen and C. P. Yu, “Long-period fiber gratings based on liquid-filled photonic crystal fibers,” Proc. SPIE 7609, 760911, 760911-8 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Illustration of the reversible photo-induced phase transformation of the photoresponsive LC mixture in a capillary.

Fig. 2
Fig. 2

(a) Fabrication and measurement setup for the photo-induced LPFG in the PLCF. The polarized microscope images of the LPFG as the axis of the PCLF was placed (b) 0° and (c) 45°with respect to the polarizer.

Fig. 3
Fig. 3

Transmission spectra of the photo-induced LPFG with variant blue-laser irradiation time and the erased LPFG by the green laser.

Fig. 4
Fig. 4

(a) Transmission spectra of the photo-induced LPFGs for variant numbers of period. (b) The dip depth versus the number of period.

Fig. 5
Fig. 5

(a) Transmission spectra of the photo-induced LPFGs for variant concentrations of photoresponsive 4MAB. (b) The resonance wavelength versus the 4MAB concentration.

Metrics